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Lecture XX

Quantization of the E-M field

2.0.1 Parity and Time Reversal

On space inversion, E(r, t) → −E(−r, t). Think about a pair of capacitor plates at z = ±a.
Reflection in the x-y plane reverses E. Then since E = − 1

c
∂A
∂t , it must be that under inversion

A(r, t) → −A(−r, t). And since B = ∇×A, under inversion B(r, t) → B(−r, t). To determine
how the creation and annihilation operator transform consider

A(r, t) =
√
~c
∫

d3k√
(2π)32k

∑
λ

[ei(k·r)eλ(k)aλ(k, t) + h.c.] (2.1)

P †A(r, t)P =
√
~c
∫

d3k√
(2π)32k

∑
λ

[ei(k·r)eλ(k)P †aλ(k, t)P + h.c.] (2.2)

−A(−r, t) = −
√
~c
∫

d3k√
(2π)32k

∑
λ

[ei(−k·r)eλ(k)aλ(k, t) + h.c.] (2.3)

(2.4)

Then in the last k→ −k,

−A(−r, t) = −
√
~c
∫

d3k√
(2π)32k

∑
λ

[ei(k·r)eλ(−k)aλ(−k, t) + h.c.] (2.5)

= −
√
~c
∫

d3k√
(2π)32k

∑
λ

[ei(k·r)e−λ(k)aλ(−k, t) + h.c.] (2.6)

= −
√
~c
∫

d3k√
(2π)32k

∑
λ

[ei(k·r)eλ(k)a−λ(−k, t) + h.c.] (2.7)

(2.8)

Comparing Equations 2.2 and 2.7 we find that

P †aλ(k, t)P = −a−λ(−k, t)

Evidently the intrinsic parity of a photon is odd. Like the electric field. Think about the emission
of a photon by an atom that transitions from l to l ± 1, changing the sign of its parity.

Similarly

A(r, t) =
√
~c
∫

dk√
(2π)32k

∑
λ

[ei(k·r)eλ(k)aλ(k, t) + h.c.] (2.9)

ItA(r, t)I−1
t = −A(r,−t) = −

√
~c
∫

dk√
(2π)32k

∑
λ

[ei(k·r)eλ(k)aλ(k,−t) + h.c.] (2.10)
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=
√
~c
∫

dk√
(2π)32k

∑
λ

[e−i(k·r)e∗λ(k)Itaλ(k, t)I−1
t + h.c.] (2.11)

= −
√
~c
∫

dk√
(2π)32k

∑
λ

[e−i(k·r)e−λ(k)Itaλ(k, t)I−1
t + h.c.] (2.12)

= −
√
~c
∫

dk√
(2π)32k

∑
λ

[ei(k·r)eλ(k)Itaλ(−k, t)I−1
t + h.c.] (2.13)

Then Equation 2.10 is the same as Equation 2.13 if Itaλ(k, t)I−1
t = aλ(−k,−t). In the last two

steps we use e∗λ(k) = −e−λ(k) and then eλ(−k) = e−λ(k).

Higgs spin from → γγ

Let’s assume that Parity is conserved, that the initial state and final state both have definite parity.
A single photon state with definite helicity a†λ| 0〉 has odd parity. That is

P | k, λ〉 = −| −k,−λ〉

It turns out that particle and anti-particle always have opposite parity. Therefore, a positronium
s-state has odd parity. It can decay to two photons, and since parity is conserved, the two photon
final state also has odd parity. If the final state is two photons with definite helicity, the parity is
even. In general the effect of the parity operator on a two photon state is

| 〉 = | k, λ〉1| −k, λ〉2
P | 〉 = P | k, λ〉1| −k, λ〉2

= | −k,−λ〉1| k,−λ〉2

However we can construct a final state that is not simply a product of definite helicity photon
states. Suppose for example our two photon state

| γγ〉 =
1

2
[| k, λ〉1 − | k,−λ〉1][| −k, λ〉2 + | −k,−λ〉2]

=
1

2
(| k, λ〉1| −k, λ〉2 − | k,−λ〉1| −k, λ〉2 + | k, λ〉1| −k,−λ〉2 − | k,−λ〉1| −k,−λ〉2)

P | 〉 =
1

2
[| −k,−λ〉1 − | −k, λ〉1][| k,−λ〉2 + | k, λ〉2]

=
1

2
(| −k,−λ〉1| k,−λ〉2 − | −k, λ〉1| k,−λ〉2 + | −k,−λ〉1| k, λ〉2 − | −k, λ〉1| k, λ〉2)

Rotate 180◦ so that k→ −k. Then

RP | 〉 =
1

2
(| k,−λ〉1| −k,−λ〉2 − | k, λ〉1| −k,−λ〉2 + | k,−λ〉1| −k, λ〉2 − | k, λ〉1| −k, λ〉2)

= (−1)| 〉

The two photon state with linear combinations of helicity states corresponding to perpendicular
linear polarization states has odd parity. The two photon state with parallel linear polarization
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states has even parity. π0 is quark antiquark, has odd parity and decays to two photons with
prependicular linear polarization. The Higgs has spin parity 0+. So if we can measure the photon
polarization we can determine the parity. But that does not quite give us the total spin. We need
to assume that there is some preferred helicity in the intermediate state that decays to the Higgs
to determine the spin.
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2.1. COMMUTATION RULES FOR FIELD OPERATORS

2.1 Commutation Rules for Field Operators

As the field operators correspond to local observables, (defined at each space time point), the
operators in general do not commute and there is an associated uncertainty in measurement of the
fields. Since we know how to write the fields in terms of the creation and annihilation operators,
and we know how they commute, we can develop the commutation rules of the fields themselves.
Beginning with the vector potential,

Ai(x1) =
√
~c
∫

d3k√
2k(2π)3

∑
λ

[eiλ(k)aλ(k)eik·x1 + h.c.]

at two distinct space time points x1 and x2,

[Ai(x1), Aj(x2)] = ~c
∫

dk

2k(2π)3
[eik·(x1−x2)tij − c.c.] (2.14)

= ~c
∫

dk

2k(2π)3
[eik·(r1−r2)ei|k|c(t1−t2)tij − c.c.] (2.15)

where
tij =

∑
λ

(eikλ)∗ejkλ

and
[aλ(k), a†λ′(k)] = δλλ′δ(k− k′)

Now consider tij . Think about the cartesian representation of the polarization unit vectors,
eα. Because the polarization is transverse to k, α = 1, 2 and not 3. If the sum were α = 1, 2, 3
then

∑
α e

i
α would be the projection of a unit vector onto i and it would be perpendicular to the

projection of that same unit vector onto j and we would have that
∑
α(eiα)∗ejα = δij . But α only

runs from 1 to 2. The 3 component is in the k direction. Therefore

tij = δij −
kikj
k2

The commutator for the electric field is

[Ei(x1), Ej(x2)] =
1

c2
[
∂Ai(x1)

∂t1
.
∂Aj(x2)

∂t2
] =

1

c2
∂

∂t1

∂

∂t2
[Ai(x1), Aj(x2)]

Since
∂

∂t1

∂

∂t2
ei(k·r−|k|ct) = −k2c2ei(k·r−|k|ct)

and
∂

∂r1i

∂

∂r2j
ei(k·r−|k|ct) = −kikjei(k·r−|k|ct)

we can write
k1kj
k2c2

∂

∂t1

∂

∂t2
ei(k·r−|k|ct) =

∂

∂r1i

∂

∂r2j
ei(k·r−|k|ct)

Then

[Ei(x1), Ej(x2)] = 2i~c
(
δij

1

c2
∂

∂t1

∂

∂t2
− ∂

∂r1i

∂

∂r2j

)
D(r, t)
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2.1. COMMUTATION RULES FOR FIELD OPERATORS

where

D(r, t) = −
∫

d3k

2k(2π)3
[ei(k·r−|k|ct) − c.c.] =

1

8πr
[δ(r + ct)− δ(r − ct)].

Field operators evidently commute if localized to points in space time that cannot be connected
by a light signal.

We find that

[Bi(x1), Bj(x2)] = [Ei(x1), Ej(x2)]

[Ei(x1), Bi(x2)] = 0

[Ei(x1), Bj(x2)] = −2i~εijk
∂

∂t1

∂

∂r2k
D(r, t)

At equal times t1 = t2,

[Ei(r1, t), Ej(r2, t)] = [Bi(r1, t,Bj(r2, t)] = 0

but
[Ei(r1, t), Bj(r2, t)] 6= 0

so electric and magnetic fields cannot be specified simultaneously at all points in space.
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2.2. UNCERTAINTY RELATIONS WITH EM FIELDS

2.2 Uncertainty Relations with EM fields

Uncertainty relations are related to commmutators according to

∆V1∆V2 ≥
1

2
|〈[V1, V2]〉|,

where V1 and V2 are operators. Suppose that we have two small regions of space-time volumes Ω1

and Ω2 respectively and that Ω2 is in the future with respect to Ω1. (T1 and T2 are the extent in
time of each region, T1 = t′1 − t1, etc. The field averaged over the volume is

E(Ω) =
1

Ω

∫
Ω

dΩE(x)

The commutator for perpendicular (non-parallel) components of E in regions Ω1 and Ω2 is

[Ei(x1), Ej(x2)] = 2i~c
(
δij

1

c2
∂2

∂t1∂t2
− ∂2

∂r1i∂r2j

)
D(r, t) (2.16)

→ = −2i~c
(

∂2

∂r1i∂r2j

)
D(r, t) (2.17)

= − 2

8π
i~c

∂2

∂x1∂y2

δ(r − ct)
r

(2.18)

→ ∆Ex(Ω1)∆Ey(Ω2) ≥ ~c
8π

∫
Ω1

dΩ1

Ω1

∫
Ω2

dΩ2

Ω2

∂2

∂x1∂y2

δ(r − ct)
r

(2.19)

Very interesting. We evidently cannot determine orthogonal components of the electric field that
can be connected by a light signal with arbitrary precision. The product of the uncertainties does
however decrease with the spatial separation of the points. Which makes sense. We don’t expect a
very distant disturbance to have much of an effect locally.

The uncertainty in fields in Equation 2.19 follows from the construction of vector potential and
then field operators in terms of creation and annihilation operators, and the commutator of those
operators that follows from their association with canonical variables that behaved like P and Q
and where hamilton’s equations were equivalent to Maxwell’s equations. We have not connected
them in any way with uncertainty in real momentum and position space. That is the next step. We
attempt to determine the electric field along the x-direction in volume Ω1 by measuring the change
in the momentum of a charge that is accelerated across the volume. Because of the fundamental
limit on how well we can measure momentum, there is a limit on how well we measure the electric
field. Meanwhile, the test charge induces a scalar and vector potential in volume Ω2. There will be
some uncertainty in the fields in region Ω2 since we are not sure where precisely the test charge is
located or how fast it is moving. The product of the uncertainties of the fields in the two regions
is an independent check on the consistency of the quantization formalism.

First we determine the x-component of the E-field in region Ω1 with test charge Q.

Ex(Ω1) ∼ px(t′1)− px(t1)

Q(t′1 − t1)

→ ∆Ex(Ω1) ≥ ~
2QT1∆x

6



2.2. UNCERTAINTY RELATIONS WITH EM FIELDS

where the uncertainty in the change in p is related to the uncertainty in position ∆x. In region Ω2

there is a scalar and vector potential associated with Q in region Ω1. The scalar potential due to
the charge is

φ(r2, t2) =

∫
Ω1

dr1cdt1ρ(r1, t)
δ(c(t2 − t1)− |r2 − r1|)

4π|r1 − r2|

=
Q

V1

∫
Ω1

dr1cdt1
δ(c(t2 − t1)− |r2 − r1|)

4π|r1 − r2|

→ ∆φ(r2, t2) =
cQ∆x

V1

∫
Ω1

dr1cdt1
∂

∂x1

δ(c(t2 − t1)− |r2 − r1|)
4π|r1 − r2|

The uncertainty in the x-component of momentum of the test charge in region 1 generates an
uncertainty in Ax in region 2, and therefore an uncertainty in By and Bz, but not Bx in 2, but it
contributes nothing to the uncertainty in Ey in region 2.

The uncertainty in the electric field at 2 is

∆E(r2, t2) ∼ − ∂

∂r2
∆φ(r2, t2)− 1

c

∂

∂t2
∆A(r2, t2)

The uncertainty in the y-component is

∆Ey(Ω2) ≥ −
∫

Ω2

dΩ2

Ω2

∂

∂y2
∆φ(r2, t)

≥ −cQ∆x

4πV1

∫
Ω2

dΩ2

Ω2

∫
Ω1

dΩ1
∂2

∂x1∂y2

δ(r − ct)
r

Finally

∆Ex(Ω1)∆Ey(Ω2) ≥ ~c
8π

∣∣∣∣∫
Ω2

dΩ2

Ω2

∫
Ω1

dΩ1

Ω1

∂2

∂x1∂y2

δ(r − ct)
r

∣∣∣∣ (2.20)

same as from Equation 2.15
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