2.1 Commutation Rules for Field Operators

As the field operators correspond to local observables, (defined at each space time point), the operators in general do not commute and there is an associated uncertainty in measurement of the fields. Since we know how to write the fields in terms of the creation and annihilation operators, and we know how they commute, we can develop the commutation rules of the fields themselves. Beginning with the vector potential,

\[A_i(x_1) = \sqrt{\hbar c} \int \frac{d^3k}{\sqrt{2k(2\pi)^3}} \sum_\lambda [e^{i(k \cdot x_1)} a_\lambda(k) e^{ik \cdot x_1} + h.c.] \]

at two distinct space time points \(x_1 \) and \(x_2 \),

\[[A_i(x_1), A_j(x_2)] = \hbar c \int \frac{d^3k}{2k(2\pi)^3} [e^{i(k \cdot (x_1 - x_2))} t_{ij} - c.c.] \] (2.1)

\[= \hbar c \int \frac{d^3k}{2k(2\pi)^3} [e^{i(k \cdot (r_1 - r_2))} e^{ik|c(t_1 - t_2)|} t_{ij} - c.c.] \] (2.2)

where

\[t_{ij} = \sum_\lambda (e_{k\lambda}^i)^* e_{k\lambda}^j \]

and

\[[a_\lambda(k), a_\lambda^\dagger(k)] = \delta_{\lambda\lambda'} \delta(k - k') \]

Now consider \(t_{ij} \). Think about the cartesian representation of the polarization unit vectors, \(e_\alpha \). Because the polarization is transverse to \(k \), \(\alpha = 1, 2 \) and not 3. If the sum were \(\alpha = 1, 2, 3 \) then \(\sum_\alpha e_\alpha \) would be the projection of a unit vector onto \(i \) and it would be perpendicular to the projection of that same unit vector onto \(j \) and we would have that \(\sum_\alpha (e_{k\lambda}^\ast)^* e_{k\lambda}^j = \delta_{ij} \). But \(\alpha \) only runs from 1 to 2. The 3 component is in the \(k \) direction. Therefore

\[t_{ij} = \delta_{ij} - \frac{k_i k_j}{k^2} \]

The commutator for the electric field is

\[[E_i(x_1), E_j(x_2)] = \frac{1}{c^2} \left[\frac{\partial A_i(x_1)}{\partial t_1} - \frac{\partial A_j(x_2)}{\partial t_2} \right] = \frac{1}{c^2} \frac{\partial}{\partial t_1} \frac{\partial}{\partial t_2} [A_i(x_1), A_j(x_2)] \]

Since

\[\frac{\partial}{\partial t_1} \frac{\partial}{\partial t_2} e^{i(k \cdot r - |k|c|t_1 - t_2|)} = -k^2 c^2 e^{i(k \cdot r - |k|c|t_1 - t_2|)} \]

and

\[\frac{\partial}{\partial r_{1i}} \frac{\partial}{\partial r_{2j}} e^{i(k \cdot r - |k|c|t_1 - t_2|)} = -k_i k_j e^{i(k \cdot r - |k|c|t_1 - t_2|)} \]
2.1. COMMUTATION RULES FOR FIELD OPERATORS

we can write

\[
\frac{k_1 k_j}{k^2 c^2} \frac{\partial}{\partial t_{1}} \frac{\partial}{\partial t_{2}} e^{i (k \cdot r - |k| ct)} = \frac{\partial}{\partial r_{1i}} \frac{\partial}{\partial r_{2j}} e^{i (k \cdot r - |k| ct)}
\]

Then

\[
[E_i(x_1), E_j(x_2)] = 2i\hbar c \left(\delta_{ij} \frac{1}{c^2} \frac{\partial}{\partial t_{1}} \frac{\partial}{\partial t_{2}} - \frac{\partial}{\partial r_{1i}} \frac{\partial}{\partial r_{2j}} \right) \mathcal{D}(r, t)
\]

where

\[
\mathcal{D}(r, t) = - \int \frac{d^3k}{2k(2\pi)^3} \left[e^{i (k \cdot r - |k| ct)} - c.c. \right] = \frac{1}{8\pi r} \left[\delta(r + ct) - \delta(r - ct) \right].
\]

Field operators evidently commute if localized to points in space time that cannot be connected by a light signal.

We find that

\[
[B_i(x_1), B_j(x_2)] = [E_i(x_1), E_j(x_2)]
\]

\[
[E_i(x_1), B_i(x_2)] = 0
\]

\[
[E_i(x_1), B_j(x_2)] = -2i\hbar \epsilon_{ijk} \frac{\partial}{\partial t_{1}} \frac{\partial}{\partial r_{2k}} \mathcal{D}(r, t)
\]

At equal times \(t_1 = t_2\),

\[
[E_i(r_1, t), E_j(r_2, t)] = [B_i(r_1, t), B_j(r_2, t)] = 0
\]

but

\[
[E_i(r_1, t), B_j(r_2, t)] \neq 0
\]

so electric and magnetic fields cannot be specified simultaneously at all points in space.
2.2 Uncertainty Relations with EM Fields

Uncertainty relations are related to commutators according to

\[\Delta V_1 \Delta V_2 \geq \frac{1}{2} |\langle [V_1, V_2] \rangle|, \]

where \(V_1 \) and \(V_2 \) are operators. Suppose that we have two small regions of space-time volumes \(\Omega_1 \) and \(\Omega_2 \) respectively and that \(\Omega_2 \) is in the future with respect to \(\Omega_1 \). \((T_1 \text{ and } T_2 \text{ are the extent in time of each region, } T_1 = t'_1 - t_1, \text{ etc.} \)

The field averaged over the volume is

\[E(\Omega) = \frac{1}{\Omega} \int_\Omega d\Omega E(x) \]

The commutator for perpendicular (non-parallel) components of \(E \) in regions \(\Omega_1 \) and \(\Omega_2 \) is

\[[E_i(x_1), E_j(x_2)] = 2i\hbar c \left(\partial_0 + \frac{1}{c^2} \frac{\partial^2}{\partial t_1 \partial t_2} - \frac{\partial^2}{\partial r_1 \partial r_2} \right) D(r,t) \]

\[\rightarrow = -2i\hbar c \left(\frac{\partial^2}{\partial r_1 \partial r_2} \right) D(r,t) \]

\[= -\frac{2}{8\pi} i\hbar c \frac{\partial^2}{\partial x_1 \partial y_2} \frac{\delta(r - ct)}{r} \]

\[\rightarrow \Delta E_x(\Omega_1) \Delta E_y(\Omega_2) \geq \frac{\hbar c}{8\pi} \int_{\Omega_1} d\Omega_1 \int_{\Omega_2} d\Omega_2 \frac{\partial^2}{\partial x_1 \partial y_2} \frac{\delta(r - ct)}{r} \]

Very interesting. We evidently cannot determine orthogonal components of the electric field that can be connected by a light signal with arbitrary precision. The product of the uncertainties does however decrease with the spatial separation of the points. Which makes sense. We don’t expect a very distant disturbance to have much of an effect locally.

The uncertainty in fields in Equation 2.6 follows from the construction of vector potential and then field operators in terms of creation and annihilation operators, and the commutator of those operators that follows from their association with canonical variables that behaved like \(P \) and \(Q \) and where hamilton’s equations were equivalent to Maxwell’s equations. We have not connected them in any way with uncertainty in real momentum and position space. That is the next step. We attempt to determine the electric field along the x-direction in volume \(\Omega_1 \) by measuring the change in the momentum of a charge that is accelerated across the volume. Because of the fundamental limit on how well we can measure momentum, there is a limit on how well we measure the electric field. Meanwhile, the test charge induces a scalar and vector potential in volume \(\Omega_2 \). There will be some uncertainty in the fields in region \(\Omega_2 \) since we are not sure where precisely the test charge is located or how fast it is moving. The product of the uncertainties of the fields in the two regions is an independent check on the consistency of the quantization formalism.

First we determine the x-component of the E-field in region \(\Omega_1 \) with test charge \(Q \).

\[E_x(\Omega_1) \sim \frac{p_x(t'_1) - p_x(t_1)}{Q(t'_1 - t_1)} \]

\[\rightarrow \Delta E_x(\Omega_1) \geq \frac{\hbar}{2QT_1 \Delta x} \]
where the uncertainty in the change in p is related to the uncertainty in position Δx. In region Ω_2 there is a scalar and vector potential associated with Q in region Ω_1. The scalar potential due to the charge is

$$\phi(r_2, t_2) = \int_{\Omega_1} d\Omega_1 c d t_1 \rho(r_1, t) \delta(c(t_2 - t_1) - \frac{|r_2 - r_1|}{4\pi |r_1 - r_2|})$$

$$= \frac{Q}{V_1} \int_{\Omega_1} d\Omega_1 c d t_1 \frac{\delta(c(t_2 - t_1) - \frac{|r_2 - r_1|}{4\pi |r_1 - r_2|})}{4\pi |r_1 - r_2|}$$

$$\Rightarrow \Delta \phi(r_2, t_2) = \frac{cQ\Delta x}{V_1} \int_{\Omega_1} d\Omega_1 c d t_1 \frac{\partial}{\partial x_1} \frac{\delta(c(t_2 - t_1) - \frac{|r_2 - r_1|}{4\pi |r_1 - r_2|})}{4\pi |r_1 - r_2|}$$

The uncertainty in the x-component of momentum of the test charge in region 1 generates an uncertainty in A_x in region 2, and therefore an uncertainty in B_y and B_z, but not B_x in 2, but it contributes nothing to the uncertainty in E_y in region 2.

The uncertainty in the electric field at 2 is

$$\Delta E(r_2, t_2) \sim -\frac{\partial}{\partial r_2} \Delta \phi(r_2, t_2) - \frac{1}{c} \frac{\partial}{\partial t_2} \Delta A(r_2, t_2)$$

The uncertainty in the y-component is

$$\Delta E_y(\Omega_2) \geq -\int_{\Omega_2} d\Omega_2 \frac{\partial}{\partial y_2} \Delta \phi(r_2, t)$$

$$\geq -\frac{cQ \Delta x}{4\pi V_1} \int_{\Omega_2} d\Omega_2 \int_{\Omega_1} d\Omega_1 \frac{\partial^2}{\partial x_1 \partial y_2} \frac{\delta(r - ct)}{r}$$

Finally

$$\Delta E_x(\Omega_1) \Delta E_y(\Omega_2) \geq \frac{\hbar c}{8\pi} \left| \int_{\Omega_2} d\Omega_2 \int_{\Omega_1} d\Omega_1 \frac{\partial^2}{\partial x_1 \partial y_2} \frac{\delta(r - ct)}{r} \right|$$

same as from Equation 2.2