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Quantization of the E-M field

2.1 Uncertainty Relations with EM fields

Uncertainty relations are related to commmutators according to

∆V1∆V2 ≥
1

2
|〈[V1, V2]〉|,

where V1 and V2 are operators. Suppose that we have two small regions of space-time volumes Ω1

and Ω2 respectively and that Ω2 is in the future with respect to Ω1. (T1 and T2 are the extent in
time of each region, T1 = t′1 − t1, etc. The field averaged over the volume is

E(Ω) =
1

Ω

∫
Ω

dΩE(x)

The commutator for perpendicular (non-parallel) components of E in regions Ω1 and Ω2 is

[Ei(x1), Ej(x2)] = 2i~c
(
δij

1

c2
∂2

∂t1∂t2
− ∂2

∂r1i∂r2j

)
D(r, t) (2.1)

→ = −2i~c
(

∂2

∂r1i∂r2j

)
D(r, t) (2.2)

= − 2

8π
i~c

∂2

∂x1∂y2

δ(r − ct)
r

(2.3)

→ ∆Ex(Ω1)∆Ey(Ω2) ≥ ~c
8π

∫
Ω1

dΩ1

Ω1

∫
Ω2

dΩ2

Ω2

∂2

∂x1∂y2

δ(r − ct)
r

(2.4)

Very interesting. We evidently cannot determine orthogonal components of the electric field that
can be connected by a light signal with arbitrary precision. The product of the uncertainties does
however decrease with the spatial separation of the points. Which makes sense. We don’t expect a
very distant disturbance to have much of an effect locally.

The uncertainty in fields in Equation 2.4 follows from the construction of vector potential and
then field operators in terms of creation and annihilation operators, and the commutator of those
operators that follows from their association with canonical variables that behaved like P and Q
and where hamilton’s equations were equivalent to Maxwell’s equations. We have not connected
them in any way with uncertainty in real momentum and position space. That is the next step. We
attempt to determine the electric field along the x-direction in volume Ω1 by measuring the change
in the momentum of a charge that is accelerated across the volume. Because of the fundamental
limit on how well we can measure momentum, there is a limit on how well we measure the electric
field. Meanwhile, the test charge induces a scalar and vector potential in volume Ω2. There will be
some uncertainty in the fields in region Ω2 since we are not sure where precisely the test charge is
located or how fast it is moving. The product of the uncertainties of the fields in the two regions
is an independent check on the consistency of the quantization formalism.
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2.1. UNCERTAINTY RELATIONS WITH EM FIELDS

First we determine the x-component of the E-field in region Ω1 with test charge Q.

Ex(Ω1) ∼ px(t′1)− px(t1)

Q(t′1 − t1)

→ ∆Ex(Ω1) ≥ ~
2QT1∆x

where the uncertainty in the change in p is related to the uncertainty in position ∆x. In region Ω2

there is a scalar and vector potential associated with Q in region Ω1. The scalar potential due to
the charge is

φ(r2, t2) =

∫
Ω1

dr1cdt1ρ(r1, t)
δ(c(t2 − t1)− |r2 − r1|)

4π|r1 − r2|

=
Q

V1

∫
Ω1

dr1cdt1
δ(c(t2 − t1)− |r2 − r1|)

4π|r1 − r2|

→ ∆φ(r2, t2) =
cQ∆x

V1

∫
Ω1

dr1cdt1
∂

∂x1

δ(c(t2 − t1)− |r2 − r1|)
4π|r1 − r2|

The uncertainty in the x-component of momentum of the test charge in region 1 generates an
uncertainty in Ax in region 2, and therefore an uncertainty in By and Bz, but not Bx in 2, but it
contributes nothing to the uncertainty in Ey in region 2.

The uncertainty in the electric field at 2 is

∆E(r2, t2) ∼ − ∂

∂r2
∆φ(r2, t2)− 1

c

∂

∂t2
∆A(r2, t2)

The uncertainty in the y-component is

∆Ey(Ω2) ≥ −
∫

Ω2

dΩ2

Ω2

∂

∂y2
∆φ(r2, t)

≥ −cQ∆x

4πV1

∫
Ω2

dΩ2

Ω2

∫
Ω1

dΩ1
∂2

∂x1∂y2

δ(r − ct)
r

Finally

∆Ex(Ω1)∆Ey(Ω2) ≥ ~c
8π

∣∣∣∣∫
Ω2

dΩ2

Ω2

∫
Ω1

dΩ1

Ω1

∂2

∂x1∂y2

δ(r − ct)
r

∣∣∣∣ (2.5)

same as from Equation ??
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2.2 Casimir Effect

We established that the uncertainty principle for quantized electromagnetic fields guarantees a
vacuum expectation value for the fields. In particular we found that for two space-time volumes Ω1

and Ω2, with spatial dimension L, and separated by distance r and time t that

∆Ex(Ω1)∆Ey(Ω2) ≥ ~c
8π

∣∣∣∣∫
Ω2

dΩ2

Ω2

∫
Ω1

dΩ1

Ω1

∂2

∂x1∂y2

δ(r − ct)
r

∣∣∣∣ ∼ ~c
8π

1

L4

We assume that r ∼ L, that is, the two volumes are adjacent. Then the fluctuation of the field

∆E ∼ ∆B ∼
√
~c/L2.

The fluctuation in the energy

∆H ∼ (∆E)2dV ∼ ~c
L4
L3 ∼ ~c

L

This is the energy of a single photon of wavelength L. The fluctuation in the field strengths are due
to changes in occupation number of order 1 for a photon with energy ~c/L. The vacuum energy
is infinite, but the fluctuations corresponds to the longest wavelength photon that can fit in the
volume. The larger the volume, the smaller the fluctuation.

Suppose we have a pair of parallel conducting plates in vacuum, perpendicular to the z-axis,
with length and width L, and separation z = d. The standing wave electric field between the plates
that satisfies the boundary conditions is

ψn(x, y, z, t) = e−iωntei(kxx+kyy) sin(knz)

where kn =
√
k2
x + k2

y +
(
nπ
d

)2
. The expectation value of the square of the electric field in the

vacuum state is

〈E2〉 =
〈
0 | E2 | 0

〉
=
∑
k

~ck
2V

〈
0 | aka†k | 0

〉
.

The zero point energy, vacuum energy, ground state energy is
∑
i

1
2~ωi. The total energy between

the plates is

E(a) =
1

2

∑
nx

∑
ny

∑
nz

~c
√(nxπ

L

)2

+
(nyπ
L

)2

+
(nzπ
z

)2

→ 1

2
~c
∫
Ldkx
π

∫
Ldky
π

∞∑
nz=0

εn

√
k2
x + k2

y +
(nzπ
d

)2

ε0 = 1
2 and εn>0 = 1 as there are two polarizations for all but the n = 0 mode. The sums in x and y

propagation directions become continuous for L very large. The sums /integrals clearly diverge so
we introduce a cutoff. In the end we are interested in the difference of the energy with and without
the plates. That difference will appear and the cutoff will drop out. Meanwhile define the cutoff
function f(kna) with the property that for kna� 1, f → 1, and for ka� 1, f(ka)→ 0.
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Then

E(d)→ 1

2
~c
∫
Ldkx
π

∫
Ldky
π

∞∑
nz=0

εn

√
k2
x + k2

y +
(nzπ
d

)2

f(akn(d)) (2.6)

where

kn(d) =

√
k2
x + k2

y +
(nzπ
d

)2

.

To get the total energy that would be in the region bounded by the plates, if the plates were not,
we would treat kz as if it were continuous like kx and ky and Equation 2.6 would become

E∞(d) = ~c
L2

π2

π

4

∫ ∞
0

dκ2

∫ ∞
0

(d)dkz
π

√
k2
x + κ2f(a

√
k2
z + κ2) (2.7)

In that last define κ2 = k2
x + k2

y and we get∫ ∞
0

dkx

∫ ∞
0

=
1

4

∫ ∞
−∞

dkx

∫ ∞
−∞

dky =
2π

4

∫ ∞
0

κ2dκ.

Also when continuous the fact that there is only a single nz = 0 mode is irrelevant. The difference
in the total energy in the region of width d with and without the plates is

δE = E(d)− E∞(d)

And

δE(d) = ~c
L2

4π

∫ ∞
0

dκ2

{∑
n

εn
√

(nπ/d)2 + κ2f(a
√

(nπ/d)2 + κ2)

− d
π

∫ ∞
0

dkz
√
k2
z + κ2f(a

√
k2
z + κ2)

}
(2.8)

(2.9)

Define u = (κd/π)2 and we have

E(d) = ~c
L2

4π

(π
d

)2
∫ ∞

0

du

{∑
n

εn(
π

d
)
√
n2 + uf((aπ/d)

√
n2 + u)−

d

π

∫ ∞
0

dkz

(π
d

)√
(kzd/π)2 + uf((aπ/d)

√
(kzd/π)2 + u)

}
In order to make the sum over n and the integral over kz look more alike define n = kzd/π and
rewrite the integral so that

d

π

∫ ∞
0

dkz
√

(kzd/π)2 + κ2f(aπ/d
√

(kzd/π)2 + u) =
d

π
(
π

d
)

∫ ∞
0

dn(
π

d
)2
√
n2 + uf(aπ/d

√
n2 + u)

and finally

δE(d) = ~c
L2

4π

(π
d

)3
∫ ∞

0

du

{∑
n

εn
√
n2 + uf((aπ/d)

√
n2 + u)−

∫ ∞
0

dn
√
n2 + uf((aπ/d)

√
n2 + u)

}
(2.10)
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In order to evaluate Equation 2.10 we use the Euler-Maclaurin formula which relates integrals with
sums.

∞∑
i=1

F (i) =

∫ ∞
0

F (x)dx+B1(F (∞)− F (0)) +

∞∑
r=1

B2r

(2r)!

(
F (2r−1)(∞)− F 2r−1)(0)

)
+R

where Bj are Bernoulli numbers, (which are zero for all odd j except j = 1, and R is a remainder
that is small, and F j = djF (x)/dxj . If w = n2 + u and we define

F (n) =

∫ ∞
n2

w
1
2 f(w

1
2πa/d)dw

where instead of integrating u from 0→∞ we are integrating w from n2 →∞

δE(d) ∼ ~c
L2

4π

(π
d

)3
{ ∞∑
n=0

F (n)−
∫ ∞

0

dnF (n)

}

= ~c
L2

4π

(π
d

)3
{

1

2
F (0)−B1(F (∞)− F (0))−

∞∑
r=1

B2r

(2r)!
(F (2r−1)(∞)− F (2r−1)(0))

}

Note that the Maclaurin formula sums from 1 to∞ but our sum starts at n = 0. That’s why we add
the extra F (0) in the last formula. Now remember that the n = 0 term had only one polarization
and all modes with n > 1 had two. We assume that F (∞) and deriviatives of F at infinity are all
zero (thanks to the cutoff). Then

δE(d) ∼ ~c
L2

4π

(π
d

)3
{

1

2
F (0) +B1F (0)− B4

(4)!
(−F (3)(0))

}

Note that
dF (n)

dn
=
dF (w)

dw

dw

dn
|w=∞ −

dF (w)

dw

dw

dn
|w=n2 ,

and
dF

dw
= w

1
2 f(w

1
2πa/d)

So
dF

dn
= −nf(nπa/d)(2n) = −2n2f(nπa/d)

Then dF (0)
dn = 0, d

3F (0)
dn3 = −4. Now

δE(d) = ~c
L2

4π

(π
d

)3
{ ∞∑
n=0

ε(n)F (n)−
∫ ∞

0

dnF (n)

}
= ~c

L2

4π

(π
d

)3
{
B4

(4)!
(F (3)(0))

}
= ~c

L2

4π

(π
d

)3 −4

4!30

where B1 = −1/2 and B4 = 1/30. We keep only the first term in the series and assume that
F (∞) = 0 and its derivatives.
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The difference in energy per unit area of the plates is

δE(d)

L2
= −~cπ

2

d3

1

4!30

and the pressure squeezing the plates together is (energy is gained as the plates are separated)

P = −~cπ
2

d4

3

4!30
= −~c π2

240d4
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