
2.1. CASIMIR EFFECT
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Lecture XXIII

Quantization of the E-M field

2.1 Casimir Effect

We established that the uncertainty principle for quantized electromagnetic fields guarantees a
vacuum expectation value for the fields. In particular we found that for two space-time volumes Ω1

and Ω2, with spatial dimension L, and separated by distance r and time t that

∆Ex(Ω1)∆Ey(Ω2) ≥ ~c
8π

∣∣∣∣∫
Ω2

dΩ2

Ω2

∫
Ω1

dΩ1

Ω1

∂2

∂x1∂y2

δ(r − ct)
r

∣∣∣∣ ∼ ~c
8π

1

L4

We assume that r ∼ L, that is, the two volumes are adjacent. Then the fluctuation of the field

∆E ∼ ∆B ∼
√
~c/L2.

The fluctuation in the energy

∆H ∼ (∆E)2dV ∼ ~c
L4
L3 ∼ ~c

L

This is the energy of a single photon of wavelength L. The fluctuation in the field strengths are due
to changes in occupation number of order 1 for a photon with energy ~c/L. The vacuum energy
is infinite, but the fluctuations corresponds to the longest wavelength photon that can fit in the
volume. The larger the volume, the smaller the fluctuation.

Suppose we have a pair of parallel conducting plates in vacuum, perpendicular to the z-axis,
with length and width L, and separation z = d. The standing wave electric field between the plates
that satisfies the boundary conditions is

ψn(x, y, z, t) = e−iωntei(kxx+kyy) sin(knz)

where kn =
√
k2
x + k2

y +
(
nπ
d

)2
. The expectation value of the square of the electric field in the

vacuum state is

〈E2〉 =
〈
0 | E2 | 0

〉
=
∑
k

~ck
2V

〈
0 | aka†k | 0

〉
.

The zero point energy, vacuum energy, ground state energy is
∑
i

1
2~ωi. The total energy between

the plates is

E(a) =
1

2

∑
nx

∑
ny

∑
nz

~c
√(nxπ

L

)2

+
(nyπ
L

)2

+
(nzπ
z

)2

→ 1

2
~c
∫
Ldkx
π

∫
Ldky
π

∞∑
nz=0

εn

√
k2
x + k2

y +
(nzπ
d

)2

ε0 = 1
2 and εn>0 = 1 as there are two polarizations for all but the n = 0 mode. The sums in x and y

propagation directions become continuous for L very large. The sums /integrals clearly diverge so
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2.1. CASIMIR EFFECT

we introduce a cutoff. In the end we are interested in the difference of the energy with and without
the plates. That difference will appear and the cutoff will drop out. Meanwhile define the cutoff
function f(kna) with the property that for kna� 1, f → 1, and for ka� 1, f(ka)→ 0.

Then

E(d)→ 1

2
~c
∫
Ldkx
π

∫
Ldky
π

∞∑
nz=0

εn

√
k2
x + k2

y +
(nzπ
d

)2

f(akn(d)) (2.1)

where

kn(d) =

√
k2
x + k2

y +
(nzπ
d

)2

.

To get the total energy that would be in the region bounded by the plates, if the plates were not,
we would treat kz as if it were continuous like kx and ky and Equation 2.1 would become

E∞(d) = ~c
L2

π2

π

4

∫ ∞
0

dκ2

∫ ∞
0

(d)dkz
π

√
k2
x + κ2f(a

√
k2
z + κ2) (2.2)

In that last define κ2 = k2
x + k2

y and we get∫ ∞
0

dkx

∫ ∞
0

=
1

4

∫ ∞
−∞

dkx

∫ ∞
−∞

dky =
2π

4

∫ ∞
0

κ2dκ.

Also when continuous the fact that there is only a single nz = 0 mode is irrelevant. The difference
in the total energy in the region of width d with and without the plates is

δE = E(d)− E∞(d)

And

δE(d) = ~c
L2

4π

∫ ∞
0

dκ2

{∑
n

εn
√

(nπ/d)2 + κ2f(a
√

(nπ/d)2 + κ2)

− d
π

∫ ∞
0

dkz
√
k2
z + κ2f(a

√
k2
z + κ2)

}
(2.3)

(2.4)

Define u = (κd/π)2 and we have

E(d) = ~c
L2

4π

(π
d

)2
∫ ∞

0

du

{∑
n

εn(
π

d
)
√
n2 + uf((aπ/d)

√
n2 + u)−

d

π

∫ ∞
0

dkz

(π
d

)√
(kzd/π)2 + uf((aπ/d)

√
(kzd/π)2 + u)

}
In order to make the sum over n and the integral over kz look more alike define n = kzd/π and
rewrite the integral so that

d

π

∫ ∞
0

dkz
√

(kzd/π)2 + κ2f(aπ/d
√

(kzd/π)2 + u) =
d

π
(
π

d
)

∫ ∞
0

dn(
π

d
)2
√
n2 + uf(aπ/d

√
n2 + u)
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and finally

δE(d) = ~c
L2

4π

(π
d

)3
∫ ∞

0

du

{∑
n

εn
√
n2 + uf((aπ/d)

√
n2 + u)−

∫ ∞
0

dn
√
n2 + uf((aπ/d)

√
n2 + u)

}
(2.5)

In order to evaluate Equation 2.5 we use the Euler-Maclaurin formula which relates integrals with
sums.

∞∑
i=1

F (i) =

∫ ∞
0

F (x)dx+B1(F (∞)− F (0)) +

∞∑
r=1

B2r

(2r)!

(
F (2r−1)(∞)− F 2r−1)(0)

)
+R

where Bj are Bernoulli numbers, (which are zero for all odd j except j = 1, and R is a remainder
that is small, and F j = djF (x)/dxj . If w = n2 + u and we define

F (n) =

∫ ∞
n2

w
1
2 f(w

1
2πa/d)dw

where instead of integrating u from 0→∞ we are integrating w from n2 →∞

δE(d) ∼ ~c
L2

4π

(π
d

)3
{ ∞∑
n=0

F (n)−
∫ ∞

0

dnF (n)

}

= ~c
L2

4π

(π
d

)3
{

1

2
F (0)−B1(F (∞)− F (0))−

∞∑
r=1

B2r

(2r)!
(F (2r−1)(∞)− F (2r−1)(0))

}

Note that the Maclaurin formula sums from 1 to∞ but our sum starts at n = 0. That’s why we add
the extra F (0) in the last formula. Now remember that the n = 0 term had only one polarization
and all modes with n > 1 had two. We assume that F (∞) and deriviatives of F at infinity are all
zero (thanks to the cutoff). Then

δE(d) ∼ ~c
L2

4π

(π
d

)3
{

1

2
F (0) +B1F (0)− B4

(4)!
(−F (3)(0))

}

Note that
dF (n)

dn
=
dF (w)

dw

dw

dn
|w=∞ −

dF (w)

dw

dw

dn
|w=n2 ,

and
dF

dw
= w

1
2 f(w

1
2πa/d)

So
dF

dn
= −nf(nπa/d)(2n) = −2n2f(nπa/d)

Then dF (0)
dn = 0, d

3F (0)
dn3 = −4. Now

δE(d) = ~c
L2

4π

(π
d

)3
{ ∞∑
n=0

ε(n)F (n)−
∫ ∞

0

dnF (n)

}
= ~c

L2

4π

(π
d

)3
{
B4

(4)!
(F (3)(0))

}
= ~c

L2

4π

(π
d

)3 −4

4!30
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where B1 = −1/2 and B4 = 1/30. We keep only the first term in the series and assume that
F (∞) = 0 and its derivatives.

The difference in energy per unit area of the plates is

δE(d)

L2
= −~cπ

2

d3

1

4!30

and the pressure squeezing the plates together is (energy is gained as the plates are separated)

P = −~cπ
2

d4

3

4!30
= −~c π2

240d4
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2.2 Lamb Shift

Because of the vacuum fluctuations of the E and B fields, a charged particle in vacuum is subject to
fluctuating electromagnetic forces that introduce an uncertainty into its position. If the particle is
in a potential, (like the coulomb potential of an atom), then the potential energy will also fluctuate
(as long as there is some position dependence). We want to estimate the shift in the bound state
energy due to this fluctuating potential energy.

First we see how the potential energy depends on some average spread in the position. We know
that

δV (r) = V (|r + δr| − V (r) = δr · ∇V +
1

2

∑
i,j

δxiδxj
∂2V

∂xi∂xj
+ . . . (2.6)

The fluctuations are in random directions and uncorrelated so the average 〈δ(r)〉 = 0 leaving

〈δV (r)〉0 =
1

6
〈|δr|2〉0∇

2V (2.7)

Next suppose that the charged particle is being pushed around by the flucuating electric field. The
equation of motion for the particle is

m
d2

dt2
δr(t) = −eE(r,t) ∼ −eE(t) (2.8)

where we assume that the particle motion is non-relativstic (generally true for atoms) and that
the electric field is more or less constant over the region of motion and since the velocities v � c,
magnetic fields are irrelevant. For each mode we will have an amplitude of oscillation

δrωλ =
e

mω2
Eωλ (2.9)

and the expectation value of the square of the amplitude will be

(∆rωλ)2 = 〈|δrωλ〉0|
2 =

e2

m2ω4
〈|Eωλ|2〉0 (2.10)

The vacuum energy of the electric field is

〈H〉0 =

∫
V

d3r
∑
k.λ

〈|Ek,λ|2〉0 =
1

2

∑
k,λ

~ω (2.11)

Then the efield fluctuation 〈|Ek,λ|2〉 ∼ ~ω
2V .

(∆r)2 =
∑
k,λ

e2

m2ω4

~ω
2V

=
e2~
m2

∫ ∞
0

dk
4πk2

(2π)3ω3
= 8α(λC/2π)2

∫ ∞
0

dω

ω
(2.12)

where we use the conversion from periodic boundary conditions to continuous spectrum of wave
vectors

1

V

∑
k

↔
∫

d3k

(2π)3

and where λC = h/mc. The integral is divergent for both low and high ω. As long as the electron
is in a bound state, it is unaffected by frequencies that would change its energy by less than some
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fraction of the bound state energy. So we use something like the bound state energy Ēb as the lower
limit of integration. At very high energy the non-relativstic formulation falls apart. Furthermore,
in the more precise calculation we find that there is a change in the energy(mass) of a free electron
due to the vacuum fluctuations. The change in the energy of the bound state that we are exploring
will subtract the effect of the fluctuations in free space. For the time being we will use the electron
mass mc2 as the high frequency cutoff. Then

(∆r)2 = 8α(λC/2π)2 ln(mc2/Ēb) (2.13)

Now let’s determine the shift in the atomic bound state energy due to the change in V . The coulomb
potential V = −Ze2/4πr.

δV (r) =
8α(λC/2π)2

6
ln

(
mc2

Ēb

)
∇2V (2.14)

Since ∇2 1
4π|r−r′| = δ(r)

δV (r) =
4αZe2(λC/2π)2

3
ln

(
mc2

Ēb

)
δ(r) (2.15)

The energy shift is the expectation value of 〈ψn | δV | ψn〉

∆En =
4αZe2(λC/2π)2

3
ln

(
mc2

Ēn

)
|ψn0(0)|2 (2.16)

For a hydrogenic atom

|ψn0(0)|2 =
(Z/a0)3

πn3
(2.17)

where a0 = 4π~2/me2

∆En =
4αZe2~2

3(mc)2

Z3(me2)3

(4π~2)3

1

πn3
ln

(
mc2

Ēn

)
=

4α

3
Z44π

(
e2

4π~c

)4

mc2
1

πn3
ln

(
mc2

Ēn

)
=

32

3

α3Z4

n3
ln

(
mc2

Ēn

)
E0

and

E0 =
1

2
mc2α2

Our estimate is within a factor of two of the right answer. which in view of our rather cavelier
choice of high and low energy cutoffs, is closer than we might have expected. For hydrogen, the
shift of the ground state energy is order α3 times the binding energy 1

2mc
2α2 Only l = 0 states are

effected since only l = 0 states are finite at the origin. Note that if Eb = − 1
2mc

2α2 = −13.6eV
then ln(mc2/Eb) ∼ 10. It depends weakly on the precise choice of the cutoff. (We will come back
to this when we know more about transitions.)
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