
2.1. RADIATIVE TRANSITIONS
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Quantization of the E-M field

2.1 Radiative transitions

We consider the nonrelativistic regime so no pair production or annihilation.The hamiltonian for
interaction of fields and sources is

Hγ +
∑
i

1

2mi
(pi −

e

c
Ai)

2 −
∑

µi ·Bi +
1

8π

∑
i 6=j

eiej
|ri − rj|

+ everything else. (2.1)

Hγ is the energy of the free field ∼
∑
k ~ωk. µ is the magnetic dipole moment

µ =
e~

2mic
gicsi

and si is the particle spin. “Everything else” contains non-electromagnetic interactions and fine and
hyperfine structure. The interaction term in our Hamiltonian has terms linear (H1) and quadratic
(H2) in the E-B fields.

H1 =
e

mc
p ·A− µ ·B

H2 =
1

2m

(e
c

)2
|A|2

(Coulomb gauge where ∇ ·A = 0.) What are the relative strengths of the pieces? We are thinking
about atomic transitions so non-relativistic electrons and emssion or absorption of photons with
energy characteristic of atomic biniding energy.

e

mc
p ·A ∼ e

mc
mv

√
Eγ
λ
∼ eα

√
(α2mc2)2/~c ∼

√
αα3(mc2) ∼

√
α
(v
c

)3
mc2 (2.2)

µ ·B ∼ e~
2mc

kA ∼ e~
2mc

k

√
Eγ
λ
∼ e~

2mc

Eγ
~c

√
E2
γ

(~c)
∼
√
α

2mc2
(α2mc2)2 ∼

√
αα4mc2 ∼

√
α
(v
c

)4
mc2

(2.3)
Finally

H2 ∼
e2

2mc2
|A|2 ∼ e2

2mc2
Eγ
λ
∼ αα4mc2 ∼ α

(v
c

)4
mc2 (2.4)

2.1.1 Emission and absorption of photons

Let’s write the vector potential field operator for future reference.

A(x, t) =
∑
k,λ

c

√
~

2ωV
[ak,λε̂

λei(k·r−ωt) + a†k,λε̂
λe−i(k·r−ωt)]
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The creation and annihilation operators connect states that differ by precisely one photon of mo-
mentum k and polarization λ. In particular〈

nk + 1 | a†kλ | nk
〉

=
√
nk + 1

and
〈nk − 1 | akλ | nk〉 =

√
nk

Consider absorption of a photon by an atom transitioning from | i〉 to | f〉. The annihilation operator
component of the field operator is the only part that contributes.

〈f ;nkλ − 1 | H1 | i;nkλ〉 = − e

mc

〈
f ;nk − 1 |

∑
i

c

√
~

2ωV
ak,λe

i(k·x−ωt)p · εkλ | i;nk

〉

= − e

m

√
nk~
2ωV

〈
f | ei(k·x)p · εkλ | i

〉
e−iωt

The annihilation gives zero for all but the photon k and polarization in the initial state.

2.1.2 Semi-classical description

Let’s revisit the semi-classical description. Then we said that akλ was a fourier coefficient of the
plane wave expansion of the vector potential, rather than an annihilation operator. We could write
the absorption process as

A = c

√
nkλ~
2ωV

ελe
i(k·x−ωt)

The absorption probability is proportional to |A|2. In the quantum theory the probablity scales
linearly with nkλ. Works fine and the results are equivalent. What about the emission process.
Then we have something like

〈f ;nkλ + 1 | H1 | i;nkλ〉 = − e

mc

〈
f ;nk + 1 |

∑
i

c

√
~

2ωV
a†k,λe

−i(k·x−ωt)p · εkλ | i;nk

〉

= − e

m

√
(nk + 1)~

2ωV

〈
f | e−i(k·x)p · εkλ | i

〉
eiωt

Time dependent perturbation theory

We have a hamiltonian H = H0 +HI and state

| ψ(t)〉 =
∑
k

ck(t)| uk〉e−iEkt/~

where
H0| uk〉 = Ek| uk〉
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Then substitution into Schrodinger’s equation

H| ψ〉 = i~
∂

∂t
| ψ〉

(H0 +HI)| ψ〉 = i~
∑
k

(
∂ck
∂t
− iEk

~
ck| uk〉

)
e−iEkt/~

〈um |(H0 +HI)| ψ〉 = i~〈um |
∑
k

(
∂ck
∂t
− iEk

~
ck| uk〉

)
e−iEmt/~

∑
k

ck 〈um | HI | uk〉 e−iEkt/~ = i~
∂cm
∂t

e−iEmt/~

→ ċm =
1

i~
∑
k

ck 〈m | HI | k〉 ei(Em−Ek)t/~

If at t = 0 the system is in the state l and if the perturbation is weak so that cl(0) = 1 and all
others are small, then

ċm =
1

i~
〈m | HI | l〉 ei(Em−El)t/~

and

cm(t) =
1

i~

∫ t

0

〈m | HI(t
′) | l〉 ei(Em−El)/~dt′

If the time dependence of HI is sinusoidal then HI(t
′) = HIe

±iωt and

cm(t) =
1

i~

∫ t

0

〈m | HI | l〉 ei((Em−El)/~∓iω)dt′

Then

|cm|2 =
1

~2
| 〈m | HI | l〉 |2

sin2((Em − El ∓ ~ω)/~)t/2

t[(Em − El ∓ ~ω)/2/~]2

=
1

~2
| 〈m | HI | l〉 |2tπδ((Em − El ∓ ~ω)/2)

where we use

lim
α→∞

sin2 αx

αx2
= δ(x)

Finally

|cm|2 =
1

~2
| 〈m | HI | l〉 |22πt~δ(Em − El ∓ ~ω)

and the transition rate is

d

dt
|cm|2 =

2π

~
| 〈m | HI | l〉 |2 δ(Em − El ∓ ~ω)

To turn it into a real measureable rate we need to sum over all of the final states. For photons
there are

ρ =
V |k2|dkdΩ

(2π)3d(~ω)
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states per unit energy ~ω in the interval ~ω → ~ω + d(~ω). Then

ρ =
V ω2dΩ

(2π)3~c3
.

So the transition probability per unit time into dΩ is

w =
2π

~
| 〈m | HI | l〉 |2ρ

where ρ must satisfy the delta function.

2.1.3 Density of States

For spontaneous emission, we multiply by the density of states, that is the number of states per
unit energy available to the final state photon with energy ~ω. Then

ρ(E) =
V d3k

(2π)3d(~ω)
=

V k2dωdΩ

(2π)3c~dω
=

V k2dΩ

(2π)3~c

What about absorption? Suppose the atom is in a cavity with modes with frequencies corresponding
to the interesting transition. Now put a single photon into each mode. There is one and only one
mode (and photon) that can excite the transition and be absorbed. Now put a second photon into
every mode. The absorption rate will increase by a factor of two. The number of photons per unit
energy is

ρ =
V k2dΩ

(2π)3~c
nk

2.1.4 Quantum mechanical one photon transitions

The lowest order interaction hamiltonian for single photon transitions is

H1 =
e

mc
c

√
~

2ωV
p · ε̂λ(k)e−i(k·r−ωt) (2.5)

The transition rates are given by the Golden rule

Γi→f =
2π

~
| e
mc

c

√
~

2ωV

〈
f | p · ε̂λ(k)e−i(k·r) | i

〉
|2δ(Ei − Ef ) (2.6)

and

dΓi→f =
2π

~
e2

m2

~
2ωV

|
〈
f | p · ε̂λ(k)e−i(k·r | i

〉
|2 V

(2π)3
k2dΩ

~c

Spontaneous emission

Here the initial state is | i; 0〉 = | i〉atom| 0〉γ and the final state is | f, 1〉 = | f〉atom| 1kλ〉 =

| f〉a†kλ| 0〉. The differential transition rate is

dΓ =
2π

~
| 〈f ; 1kλ | H1 | i; 0〉 |2ρf (k)
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where the density of fnal photon states is

ρf =
V

(2π)3
d3k

~dω
=

V

~c(2π)3
k2dΩ

Only the part of the interaction hamiltonian proportional to the creation operator contributes. And
that contribution is a single photon.

2.1.5 Electric Dipole transition

We will need to evaluate 〈
f | p · ε̂λ(k)e−i(k·r) | i

〉
. The energy of a photon emitted in an atomic transition is of order the binding energy ∼ α2mc2.

The wavelength λ = ~c
α2mc2 . The size of the atom is of order a0 = ~2

me2 = ~
mcα . Therefore λ/a0 ∼ 1

α ,
that is, the wavelength is much bigger than the atom so that we can expand

ei(k·r) ∼ 1 + ik · r + . . .

and keep only the lowest order term, namely 1. This is the dipole approximation. Then〈
f | p · ε̂λ(k)e−i(k·r) | i

〉
=
〈
f | p · ε̂λ(k) | i

〉
We use the fact that

[H0, r] =
1

2m
[p2, r] = −i p

m
~

to rewrite
〈f | p | i〉 · ε̂λ(k) =

m

~
〈f | [H0, r] | i〉 · ε̂λ(k)

and since initial and final states are eigenkets of H0 with Ei − Ef = ~ω

〈f | [H0, r | i〉 · ε̂λ(k) = imω 〈f | r | i〉 · ε̂λ(k)

Spherical tensor

Let’s work in the spherical basis with unit vectors ε̂± = ∓ 1√
2
(x̂ ± iŷ), ε̂0 = ẑ. and write r as a

spherical tensor

V ±11 = ∓ 1√
2

(x± iy) = r

√
4π

3
Y ±11 , V 0

1 = z = r

√
4π

3
Y 0
1

Let’s consider λ = +1 and k in the θ direction with respect to the z-axis of the atom, and the
matrix element 〈

nf , lf ,mf | V 1
1 | ni, li,mi

〉
ε̂∗+ · ε̂λ=+1(k)

The polarization vector ε̂+1(k) = − 1√
2
(x̂′+iŷ′) where x̂′ and ŷ′ are the unit vectors in the coordinate

system with ẑ ‖ k. Then ε̂+1(k) = − 1√
2
(x̂ cos θ + ẑ sin θ + iŷ). (We assume that the angle θ is

about the ŷ axis.) Now〈
nf , lf ,mf | V 1

1 | ni, li,mi

〉
ε̂∗+ · ε̂λ=+1(k) =

〈
nf , lf ,mf | V 1

1 | ni, li,mi

〉 1

2
(1 + cos θ)
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Similarly〈
nf , lf ,mf | V 0

1 | ni, li,mi

〉
ε̂∗0 · ε̂λ=+1(k) =

〈
nf , lf ,mf | V 0

1 | ni, li,mi

〉 1√
2

sin θ〈
nf , lf ,mf | V −11 | ni, li,mi

〉
ε̂∗0 · ε̂λ=+1(k) =

〈
nf , lf ,mf | V −11 | ni, li,mi

〉 1

2
(1− cos θ)

The total rate from | ni, l)i,mi〉 to final state | nf , lf ,mf 〉 with a photon into angle θ with polar-
ization +1 is proportional to

dΓ

dΩ
∝ |

〈
nf , lf ,mf | V 1

1 | ni, li,mi

〉 1

2
(1 + cos θ)|+2 +|

〈
nf , lf ,mf | V 0

1 | ni, li,mi

〉 1√
2

sin θ|2

+|
〈
nf , lf ,mf | V −11 | ni, li,mi

〉 1

2
(1− cos θ)|2 (2.7)

Remembering the Wigner Ekhart theorem〈
nf , jf ,mf | V kq | ni, ji,mi

〉
= 〈jf ,mf |q, k, ji,mi〉 〈nf , jf | V1 | ni, ji〉

where 〈jf ,mf |q, k, ji,mi〉 is a Clebsch-Gordon coefficient. The C-G coefficient is zero unless mf =
k + mi and |ji + q| ≥ jf ≥ |ji − q|. Evidently only one term in Equation 2.7 is non-zero for any
given choice of initial and final state. Also, the dipole operator has odd parity so the expectation
value is nonzero only if initial and final states have opposite parity. We conclude that ∆l = ±1.
Let’s suppose mf = mi+1. Then only the first term in Equation 2.7 contributes. Sum over photon
polarizatons,

dΓ

dΩ
∝ |

〈
nf , li ± 1,mi + 1 | V 1

1 | ni, li,mi

〉
|2 1

4

(
(1 + cos θ)2 + (1− cos θ)2

)
sin θdθ

and integrate over photon directions k.

Γ ∝ |
〈
nf , li ± 1,mi + 1 | V 1

1 | ni, li,mi

〉
|2 8π

3
(2.8)

Next we might sum over all 2mf + 1 possible final states. That will involve the other terms in
Equ. 2.7. But they are all related (according to WignerEkhart) by Clebsch-Gordon coefficients so
it won’t be too painful. And if the inital state is 2P and the final state 1S, the only final state
is mf = 0. We might also average over initial states. But if the final state has l = 0, then by
symmetry the rate from l = 1,mi = 0,±1 must all be the same.

Matrix element

Next we want to evaluate 〈
nf , lf ,mf | V kq | ni, li,mi

〉
Initial and final atomic states are 〈x | ni〉 = Rni

(r)Y mi

li
(θ, φ), and 〈x | nf 〉 = Rnf

(r)Y
mf

lf
(θ, φ) and

V kq = r
√

4π
3 Y

k
q (θ, φ). Then

〈
nf , lf ,mf | V kq | ni, li,mi

〉
=

∫ ∞
0

r3Rni(r)R
∗
nf

(r)dr

∫
Y
mf

lf

∗
(θ, φ)Y kq (θ, φ)Y mi

li
(θ, φ)dΩ (2.9)
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=

∫ ∞
0

r3Rni
(r)R∗nf

(r)dr

√
(2q + 1)(2li + 1)

4π(2lf + 1)
〈liq; 00 | liq : lf0〉〈liq;mik | liq; lfmf 〉

(2.10)

Note that the triple product of spherical harmonics enforces the Wigner-Ekhart selection rules.
Again if the initial state is li = 1,mi = −1 and the final state lf = 0,mf = 0 then k = 1 and

〈
nf , 0, 0 | V 1

1 | ni, 1,−1
〉

=

∫ ∞
0

r3Rni
(r)R∗nf

(r)dr

√
4π

3

√
(3)(3)

4π(1)
〈11; 00 | 00〉〈11;−11 | 00〉

=

∫ ∞
0

r3Rni(r)R
∗
nf

(r)dr

√
4π

3

√
(3)(3)

4π(1)

√
1

3

√
1

3

=

√
1

3

∫ ∞
0

r3Rni
(r)R∗nf

(r)dr

where 〈11;−11 | 00〉 = 〈00 | 11;−11〉 =
√

1
3

Note that if the atom were in a magnetic field, then it would be polarized and the levels might be
split there would be a correlation between direction, energy, and polarization.
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