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Lecture XXV

Quantization of the E-M field

2.0.1 Electric quadrupole transition

If E1 transitions are forbidden by selection rules, then we consider the next term in the expansion of
the spatial dependence of the field operator and the magnetic term in the interaction Hamiltonian.
Recall that the = p - A term in the interaction, that can connect initial and final states with a
difference of a single photon, is write
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Expanding the exponent to first order, where x - x is the small parameter (long wavelength and
small atom) gives us

o . _ e [mh e . A
(Fimax =1L Hy Lisngn) = ——y [ (f | (L4 i(k-x))p e [ i) €

Typically the first order term contributes only if the zeroth order (dipole) is forbidden. Then
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Consider evaluation of the matrix element
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The first term

(k x)(p-ex) + (kD) X)) = Tk (xp +Px) - e

DN | =

As before, we can write the operator p = ’%"[Ho,x] so that

Xp + px = %[HO,XX].
Finally
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This transition is the electric quadrupole (E2) transition. Since k - € = 0,
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where
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has zero trace and 5 independent components that can be written as a linear combination of Y3"
(spherical tensor operator). The the WE theorem tells use that the total angular momentum of
initial and final states can change by at most 2.

2.0.2 Magnetic dipole transition

The second term can be written
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k X ey is the leading term in the plane-wave expansion of the magnetic field B and x x p is
the orbital angular momentum. This term contributes to magnetic dipole M1 transitions. The
operator is constructed from Y;™ and corresponds to transitions between states with Al < 1. The
M1 transition will be relevant when the E1 transition is zero, perhaps because initial and final
states have dl even so no parity change. This might correspond to a spin flip. As stated above, the
intrinsic parity of the photon is odd, so if initial and final states of the emitting atom have the same
parity, it must be that the photon has some orbital angular momentum with respect to the atomic
coordinate system. If the orbital angular momenum is kr = [ = 1, then the photon would have
had to be emitted at » = 1/k. But as we determined earlier, kr < 1 for typical energy differences
between levels and so the rate for such a process is low.
The next term in the interaction Hamiltonian is
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2.0.3 Forbidden transition

Typical E1 transitions are of order 1078 s. And E2 and M1 10~3s. What about something like 2.5
to 1S which is forbiddent for all E and M transitions by angular momentum conservation? Decays
by emission of two photons. How about a ball park estimate.

First the E1 transition We have something like
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to be compared to

Clearly of the same order.
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For an E2 transition, instead of (x) we have k(xx) so the rate will be smaller by
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Again that 2s to 1s transition. The term Hj is a candidate. But it cannot couple the atomic
states. We need to revisit the time dependent perturbation theory. We started with
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Then for the first order approximation we assume that ¢, (0) = 0y to get
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If we need the next order then substitute ¢!, into that last equation to get
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If the perturbation has harmonic time dependence we get
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Let’s suppose that the perturbation turns on gradually, rather than suddenly at ¢ = 0, so that we
can integrate from —oco.  We add an infinitesimal imaginary term (—ie), (We choose the sign of



w and w’ to look like emission and absorption of photons in a scattering process.
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Then let and we have, (where E,,; = F,,, — E, etc.),
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The transition probability
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The transition rate
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