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Lecture XXVI

Quantization of the E-M field

2.0.1 Electric quadrupole transition

If E1 transitions are forbidden by selection rules, then we consider the next term in the expansion of
the spatial dependence of the field operator and the magnetic term in the interaction Hamiltonian.
Recall that the e

mcp · A term in the interaction, that can connect initial and final states with a
difference of a single photon

〈f ;nkλ − 1 | H1 | i;nkλ〉 = − e

m

√
nk~
2ωV

〈
f | ei(k·x)p · εkλ | i

〉
e−iωt

Expanding the exponent to first order, where k · x is the small parameter (long wavelength and
small atom) gives us

〈f ;nkλ − 1 | H1 | i;nkλ〉 = − e

m

√
nk~
2ωV

〈f | (1 + i(k · x))p · εkλ | i〉 e−iωt

Typically the first order term contributes only if the zeroth order (dipole) is forbidden. Then

〈f ;nkλ − 1 | H1 | i;nkλ〉 = −i e
m

√
nk~
2ωV

〈f | (k · x)p · εkλ | i〉 e−iωt

Consider evaluation of the matrix element

〈f | (k · x)p · εkλ | i〉

We can expand

〈f | (k · x)(p · εkλ) | i〉 =
1

2
〈f | (k · x)(p · εkλ) + (k · p)(εkλ · x) | i〉

+
1

2
〈f | (k · x)(p · εkλ)− (k · p)(εkλ · x) | i〉

The first term

1

2
((k · x)(p · εkλ) + (k · p)(εkλ · x)) =

1

2
k · (xp + px) · εkλ

As before, we can write the operator p = im
~ [H0,x] so that

xp + px =
im

~
[H0,xx].

Finally

1

2
k · 〈f | xp + px | i〉 · εkλ = − imω

2
k · 〈f | xx | i〉 · εkλ.
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This transition is the electric quadrupole (E2) transition. Since k · ε = 0,

ki〈xixj〉εj = ki〈Tij〉εj

where

Tij = xixj −
δij
3
|x|2.

has zero trace and 5 independent components that can be written as a linear combination of Y m2
(spherical tensor operator). The the WE theorem tells use that the total angular momentum of
initial and final states can change by at most 2.

Spherical tensor operator

Let’s examine the tensor operator Tij in more detail. Recall that a cartesian tensor operator can
be assembled from cartesian vector operators U and V according to

Wij = UiVj

As long as U and V transform as vectors under rotations then so will Wij . But the cartesian tensor
does not transform irreducibly. We can write

UiVj = U ·V δij
3

+
1

2
(UiVj − UjVi) +

1

2
(UiVj + UjVi)−U ·V δij

3

The first term transforms as a scalar, the second as a vector (namely U×V) and the third term
is a 3X3 symmetric traceless tensor. The 9 real parameters of the 3X3 cartesian tensor correspond
to one parameter for the scalar, 3 for the vector and 5 for the symmetric zero trace tensor. We can
identify a correspondence between the spherical tensors with spherical harmonics.

Y 0
1 =

√
3

4π
cos θ =

√
3

4π

z

r
→ T 1

0 =

√
3

4π
Vz

Y ±11 = ∓
√

3

8π
sin θe±iφ = ∓

√
3

4π

x± iy√
2r
→ T 1

±1 = ∓
√

3

4π

Vx ± iVy√
2

Y ±22 =

√
15

32π
sin2 θe±2iφ =

√
15

8π

(
x± iy√

2r

)2

→ T 2
±2 =

√
15

8π

(
Vx ± iVy√

2

)2

Y ±12 = ∓
√

15

8π
sin θ cos θe±iφ = ∓

√
15

4π

(x± iy)z√
2r2

→ T 2
±1 = ∓

√
15

4π

(Vx ± iVy)√
2

Vz

Y 0
2 =

√
15

16π
(3 cos2 θ − 1) =

√
15

16π
2
z2 − (x+ iy)/

√
2(x− iy)/

√
2

r2
→ T 2

0 =

√
15

16π
2
(
V 2
z − (Vx + iVy)(Vx − iVy)/2

)
The above is obviously a special case, namely U = V but at least we see that we can write a

cartesian tensor in spherical basis. More generally
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T 0
0 = −U ·V

3
=

(U+1V−1 + U−1V+1 − U0V0)

3

T 1
q =

(U×V)q

i
√

2

T 2
±2 = U±1V±1

T 2
±1 =

U±1V0 + U0V±1√
2

T 2
0 =

U+1V−1 + 2U0V0 + U−1V+1√
6

Indeed if Xk1
q1 and Y k2q2 are irreducible spherical tensors under rotations then

Zkq =
∑
q1,q2

〈kq | k1qqk2q2〉Xk1
q1 Y

k2
q2

wnere 〈kq | k1q1k2q2〉 is a Clebsch Gordon coefficient. We see that spherical tensors can be combined
in the same way as angular momentum states as we can write analogously

| kq〉 =
∑
q1,q2

〈kq | k1qqk2q2〉| k1q1〉| k2q2〉

Back to the quadrupole operator

Tij → T 2
±2,±1,0 = xixj −

1

3
δij → T k=2

q=±2,±1,0 → r2Y m=±2,±1,0
l=2

Wigner Ekhart Theorem

We take advantage of the spherical tensor formalism to evaluate the matrix element for the electric
quadrupole transition. Suppose the quantum numbers of initial and final state are α, j,m and
α′, j′,m′ respectively. Then we need to evaluate〈

α′, j′,m′ | T 2
q | α, j,m

〉
The Wiger Ekhart theorem states that

〈
α′, j′,m′ | T kq | α, j,m

〉
= 〈j′,m′ | k, q, j,m〉 〈α

′j′||T k||αj〉√
2j + 1

The Clebsch Gordon coefficient is zero unless j′ = m + q and k + j ≥ j′ ≥ |k − j| We see that
∆l ≤ 2. Parity is conserved in electromagnetic interactions. The quadrupole operator is even under
the parity operation. Therefore, initial and final states must have the same parity so ∆l = 2, 0. The
wave functions of initial and final atomic states are Ri(r)Y

m
l (θ, φ) and Rf ()Y m

′

l′ (θ, φ) respectively.
And we saw above that T kq = r2Y qk (θ, φ). Therefore

〈
f | T kq | i

〉
=

∫
Rf (r)Ri(r)r

2r2dr

∫
Y m

′

l′
∗
Y qk Y

m
l dΩ
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We can use the triple integral for spherical harmonics∫
dΩY ml

∗(θ, φ)Y m1

l1
(θ, φ)Y m2

l2
(θ, φ) =

√
(2l1 + 1)(2l2 + 1)

4π(2l + 1)
〈l0 | l10l20〉〈l1m1l2m2 | lm〉

The last Clebsch Gordon coefficient enforces the Wigner Ekhart selection rules. Note that for any
given initial and final state, there will be a non-zero for only one of the five T kq . All that remains
is the radial integrals.

2.0.2 Magnetic dipole transition

The second term can be written

1

2
〈f | (k · x)(p · εkλ)− (k · p)(εkλ · x) | i〉 =

1

2
〈f | (k× εkλ) · (x× p) | i〉

k × εkλ is the leading term in the plane-wave expansion of the magnetic field B and x × p is
the orbital angular momentum. This term contributes to magnetic dipole M1 transitions. The
operator is constructed from Y m1 and corresponds to transitions between states with ∆l ≤ 1. The
M1 transition will be relevant when the E1 transition is zero, perhaps because initial and final
states have δl even so no parity change. This might correspond to a spin flip. As stated above, the
intrinsic parity of the photon is odd, so if initial and final states of the emitting atom have the same
parity, it must be that the photon has some orbital angular momentum with respect to the atomic
coordinate system. If the orbital angular momenum is kr = l = 1, then the photon would have
had to be emitted at r = 1/k. But as we determined earlier, kr � 1 for typical energy differences
between levels and so the rate for such a process is low.

The next term in the interaction Hamiltonian is

µ·B =
e~

2mc
σ · (k× ε)

(√
~

2ωV

)

to be compared to

e

2mc
L · (k× ε)

(√
~

2ωV

)
Clearly of the same order.
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2.1. PLANK RADIATION LAW

2.1 Plank radiation law

Suppoe we have atoms that make transitions between state A and B as follows

A↔ γ +B

The higher energy state A decays to state B with emission of a photon. Then state B absorbs a
photon and transitions to A. If the system is in equilibrium then

N(B)wabs = N(A)wemis

where N(B), N(A) are the numbers of atoms in states A and B respectively. wabs is the probablity
that an atom in the state B absorbs a photon and wemis is the probablity that an atom in state A
emits a photon. If the atoms are in thermal equilibrium then

N(B)

N(A)
=
wemis
wabs

=
e−EB/kT

e−EA/kT
= e~ω/kT (2.1)

The transition probability from state A and n photons to the state B with n+ 1 photons

wemis ∝ |
〈
B,nγ + 1 | e−ik·xεα · pak | A,nγ

〉
|2 = (nγ + 1)|

〈
B | e−ik·xεα · p | A

〉
|2

The probability for transition from state B with n photons to state A with n− 1 is

wabs ∝ |
〈
A,nγ − 1 | e+ik·xεα · pa†k | A,nγ

〉
|2 = (nγ)|

〈
A | e+ik·xεα · p | B

〉
|2

The ratio
wemis
wabs

=
n+ 1

n

Together with Equation 2.1 we find that the number of photons in thermal equilibrium with wave
number k and polarization ε is

n =
1

e~ω/kT − 1

That is, we imagine that there is an oscillator with omega = c|k| and that it is in equilibrium
at temperature T when it is in the nth energy level. Now imagine a box with walls that absorb
and emit photons at all wavelengths and polarizations. It is filled with oscillators at every possible
frequency. Each oscillator will be at energy

En =
~ωn

e~ω/kT − 1

The total number of oscillators per unit frequency is the density of states

dN = 2
V 4πk2dk

(2π)3
= 2

V 4πω2dω

(2π)3c3

The number of states per unit frequency per unit volume is

ρ(ω) =
8πω2

(2π)3c3

The total energy per unit frequency per unit volume is

U(ω) = ρ(ω)En =
8π~ω3

(2π)3c3(e~ω/kT − 1)
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