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Quantization of the E-M field

2.1 Plank radiation law

Suppoe we have atoms that make transitions between state A and B as follows

A↔ γ +B

The higher energy state A decays to state B with emission of a photon. Then state B absorbs a
photon and transitions to A. If the system is in equilibrium then

N(B)wabs = N(A)wemis

where N(B), N(A) are the numbers of atoms in states A and B respectively. wabs is the probablity
that an atom in the state B absorbs a photon and wemis is the probablity that an atom in state A
emits a photon. If the atoms are in thermal equilibrium then

N(B)

N(A)
=
wemis
wabs

=
e−EB/kT

e−EA/kT
= eh̄ω/kT (2.1)

The transition probability from state A and n photons to the state B with n+ 1 photons

wemis ∝ |
〈
B,nγ + 1 | e−ik·xεα · pak | A,nγ

〉
|2 = (nγ + 1)|

〈
B | e−ik·xεα · p | A

〉
|2

The probability for transition from state B with n photons to state A with n− 1 is

wabs ∝ |
〈
A,nγ − 1 | e+ik·xεα · pa†k | A,nγ

〉
|2 = (nγ)|

〈
A | e+ik·xεα · p | B

〉
|2

The ratio
wemis
wabs

=
n+ 1

n

Together with Equation 2.1 we find that the number of photons in thermal equilibrium with wave
number k and polarization ε is

n =
1

eh̄ω/kT − 1

That is, we imagine that there is an oscillator with ω = c|k| and that it is in equilibrium at
temperature T when it is in the nth energy level. Now imagine a box with walls that absorb and
emit photons at all wavelengths and polarizations. It is filled with oscillators at every possible
frequency. Each oscillator will be at energy

En =
h̄ωn

eh̄ω/kT − 1

The total number of oscillators per unit frequency is the density of states

dN = 2
V 4πk2dk

(2π)3
= 2

V 4πω2dω

(2π)3c3
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2.1. PLANK RADIATION LAW

The number of states per unit frequency per unit volume is

ρ(ω) =
8πω2

(2π)3c3

The total energy per unit frequency per unit volume is

U(ω) = ρ(ω)En =
8πh̄ω3

(2π)3c3(eh̄ω/kT − 1)
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2.2. SCATTERING AND TIME DEPENDENT PERTURBATION THEORY

2.2 Scattering and Time Dependent Perturbation Theory

With time dependent perturbation theory we calculate a rate. The Golden Rule gives us the
transition rate.

dΓ =
2π

h̄
| 〈f | HI | i〉 |2ρ

where ρ is some density states over which we can integrate the energy conserving delta-function.
The rate is the product of the cross section and the flux of incoming particles. If there is a single
incident particle the flux is v/V . Then the differential cross section is

dσ =
dΓ

v/V

We imagine an incident plane wave, a scattering potential and an outgoing plane wave. The
perturbation is constant in time from t = 0 to t = t. The energy conserving delta function will
ensure that energy in initial and final plane wave are the same. Looks just like the first Born
approximation. For nonrelativistic particles, the density of final states is

2.3 Scattering photons

Now rather than absorption or emission of a single photon we investigate photon scattering. We
consider scattering from a hydrogen like, single electron atom. Initial and final states are | k(ε), i〉
and | k′(ε′), f〉. The photon in the initial state with wave number k and polarizaiton ε̂λ is absorbed.
Atomic state | i〉 transitions to | f〉 and a photon k′, ε̂′λ′ is emitted. Recall the interaction

HI =
e

mc
p ·A +

e2

2mc2
A ·A

The first lowest order term absorbs or emits a single photon so cannot be responsible for photon
scattering at first order in the perturbation theory. The A ·A term changes the photon number by
0 or 2 so it can effect the transition, at least an elastic scatter. The field operator

A(x, t) =
1√
V

∑
k

∑
α

c

√
h̄

2ω
[ak,α(0)eαei(k·x−ωt) + a†k,α(0)eαe−i(k·x−ωt)]

Then A ·A will have the combinatons of creation and annihilation operators

a†k′,α′ak,α + ak,αa
†
k′,α′

that will connect the initial and final states.

〈B,k′ | HI | A,k〉 =
e2

2mc2
〈A, k′ | A ·A | B,k〉

=
e2

2mc2

〈
B,k′ | (aka†k′ + a†k′ak)ei(k−k

′)·x | A,k
〉 c2h̄

2V
√
ωω′

ε · ε′e−i(ω−ω
′)t

And in the dipole approximation (k · x� 1.)

〈B,k′ | HI | A,k〉 ∼
e2

2mc2
2

c2h̄

2V
√
ωω′

ε · ε′e−i(ω−ω
′)t〈B | A〉

3



2.3. SCATTERING PHOTONS

the scattering is necessarily elastic as initial and final atomic states must be identical. The transition
amplitude to first order from intial to final state is

c1A(t) =
1

ih̄

e2

2mc2
c2h̄

2V
√
ωω′

2δA,Bελ · ε′λ′

∫ t

0

ei(h̄ω
′+Ef−h̄ω−Ei)t

′/h̄dt′ (2.2)

The transition probability

|cA|2 =
2π

h̄
| 〈B | HI | A〉 |2tδ(EB − EA + h̄ω)

and the transition rate

Γ =

∫
d|cA|2

dt
ρ(E)dE =

2π

h̄
| 〈B | HI | A〉 |2ρ(E)

where ρ(E) is the density of final states for the scattered photon. Putting the pieces together

Γ =
2π

h̄

(
e2

2mc2
c2h̄

2V
√
ωω′

)2

4|ε̂ · ε̂′|2 V

(2π)3

ω′
2

h̄c3
dΩ

The differential cross section
dσ

dΩ
=

TransitionRate

Flux
=

Rate

c/V

where the photon flux is one per unit volume at velocity c. Then

dσ

dΩ
=

2π

h̄

(
e2

2mc2
c2h̄

2
√
ωω′

)2

4|ε̂ · ε̂′|2 1

(2π)3

ω′
2

h̄c4
=

(
e2

4πmc2

)2(
ω′

ω

)
|ε̂ · ε̂′|2 = r2

0

(
ω′

ω

)
|ε̂ · ε̂′|2

where r0 is the classical electron radius.

Angular distribution

It is interesting to consider the angular distribution of the scattered photons. That is the easiest to
measure experimentally. Suppose the incident photon is traveling in the +z direction with circular
polarization ε+ = − 1√

2
(εx + iεy). It scatters at the origin. The scattered photon leaves the origin

with momentum k′ = |k′|ẑ′ at angle θ with respect to the z-axis in the x-z plane. The scattered
photon polarization ε′± = ∓ 1√

2
(εx′ ± iεy′) where εx′ , εy′ are the unit vectors orthogonal to the z′

axis which coincides with the scattered photon momentum. Since

x̂′ = x̂ cos θ + ẑ sin θ, ŷ′ = ŷ

we can write

ε′± = ∓ 1√
2

(εx cos θ + εz sin θ ± iεy)

Then

ε̂∗ · ε̂′± = ∓1

2
(cos θ ± 1)
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2.3. SCATTERING PHOTONS

And the differential cross section for scattering to both polarizations is

dσ

ddΩ
= r2

0

(
ω′

ω

)(
|1
2

(1 + cos θ)|2 + |1
2

(1− cos θ)|2
)
r2
0

(
ω′

ω

)(
1

2
(1 + cos2 θ)

)
And the total cross section (elastic scattering)

σ = r2
0

(
ω′

ω

)∫ (
1

2
(1 + cos2 θ)

)
dΩ =

8

3
πr2

0

Second order time dependent perturbation theory

But what about the term A · p to second order. Then we can create k′ and annihilate k. Check
out the Feynman diagrams. There are three. Time goes from bottom of the page to the top. In the
first, an electron in an initial state | i〉 and a photon with | k, ελ〉 end in a vertex. An intermediate
(electron) state | I〉 emerges from that vertex. At the next vertex an electron in state | f〉 and
photon | k′, ε′λ′〉 emerge.

In the second, the photon | k′, ε′λ′〉 is created leaving the electron in the intermediate state and
subsequently the photon | k′, ελ〉 is absorbed. The third diagram is a seagull. No intermediate
state, it corresponds to the A ·A term in the interaction hamiltonian. Let’s revisit second order
perturbation theory. After expansion of the state | ψ(t)〉 in terms of time dependent coefficients of
the eigenkets of the unperturbed Hamiltonian, we write

ċm =
∑
k

1

ih̄
〈m | HI | k〉 ei(Em−Ek)t/h̄ck(t)

If at t = 0, ck(0) = δlk, the first and second order solutions are

ċm =
1

ih̄
〈m | HI | l〉 ei(Em−El)t/h̄

c1m(t) =
1

ih̄

∫ t

〈m | HI | l〉 ei(Em−El)t
′/h̄dt′

→ c2m(t) =
1

ih̄

∑
k

∫ t

〈m | HI | k〉 ei(Em−Ek)t′′/h̄dt′′c1k(t′′)

=
1

(ih̄)2

∑
k

∫ t

〈m | HI | k〉 ei(Em−Ek)t′′/h̄dt′′
∫ t′′

〈k | HI | l〉 ei(Ek−El)t
′/h̄dt′

Next assume the usual harmonic time dependence for HI as per the vector potential field operater.
Actually the operator is a sum over all frequencies. The frequency that is singled out is that which
corresponds to the difference in energy of the atomic electron states. Therefore if intial and final
atomic states have different energy, the relevant frequencies for the corresponding photons are also
different. Let’s suppose that the photon with ω is absorbed and that with ω′ is emitted. Then for
the diagram where the photon k is absorbed before k′ is emitted,

c(2)
m (t)[a] = =

1

(ih̄)2

∑
k

Hmk
I

′
Hkl
I

∫ t

ei(Em−Ek+h̄ω′)t′′/h̄dt′′
∫ t′′

ei(Ek−El−h̄ω)t′/h̄dt′
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2.3. SCATTERING PHOTONS

And for the other time ordering

c(2)
m (t)[b] = =

1

(ih̄)2

∑
k

Hmk
I Hkl

I

′
∫ t

ei(Em−Ek−h̄ω)t′′/h̄dt′′
∫ t′′

ei(Ek−El+h̄ω
′)t′/h̄dt′

If we insert a regularizing −iε term into the exponent of the integration over dt′, and integrate from
−∞ to t, then ∫ t′′

ei(Ek−El+h̄ω
′)t′/h̄dt′ =

ei(Ek−El+h̄ω
′−iε)t′′/h̄

i(Ek − El + h̄ω′)

Combining both terms we have

c(2)
m (t) =

1

−h̄2

∑
k

(
Hmk
I

′
Hkl
I

Ek − El − h̄ω
+

Hmk
I Hkl

I

′

Ek − El + h̄ω′

)∫ t

dt′′ei(Em−El+h̄ω
′−h̄ω)t′′/h̄

This second order amplitude can now be combined with the first order term from Equation 2.2.
If we furthermore use the dipole approximation the transition rate is

w =

∫
(|c1 + c2|2/t)ρ(E)dE

=
2π

h̄

(
c2h̄

2V
√
ωω′

)2(
22

mc2

)2
V

(2π)3

ω′
2

h̄c3
dΩ

×

∣∣∣∣∣δmlελ · ελ′ − 1

m

∑
k

(
(p · ε′)mk(p · ε)kl
Ek − El − h̄ω

+
(p · ε)mk(p · ε′)kl
Ek − El − h̄ω′

)∣∣∣∣∣
2

Divide the transition rate by the flux (c/V ) to determine the differential cross section. We find that

dσ

dΩ
= r2

0

(
ω′

ω

)2
∣∣∣∣∣δmlελ · ελ′ − 1

m

∑
k

(
(p · ε′)mk(p · ε)kl
Ek − El − h̄ω

+
(p · ε)mk(p · ε′)kl
Ek − El − h̄ω′

)∣∣∣∣∣
2

(2.3)

where r0 = α h̄
mc is the classical electron radius. Equation 2.3 is the Kramers-Heisenberg formula.

2.3.1 Rayleigh scattering

Rayleigh scattering is the limit where initial and final atomic states are the same, and the photon
energy is small compared to the energy between the atomic states. Equation 2.3 can be simplified,
using the commutation relation of x and p and the completeness of the intermediate states | k〉 in
the appropriate limit to

dσ

dΩ
=

( r0

mh̄

)2

ω4

∣∣∣∣∣∑
k

1

ω3
kl

[(p · ε′)lk(p · ε)kl + (p · ε)lk(p · ε′)kl]

∣∣∣∣∣
2

(2.4)

=
(r0m

h̄

)2

ω4

∣∣∣∣∣∑
k

1

ωkl
[(x · ε′)lk(x · ε)kl + (x · ε)lk(x · ε′)kl]

∣∣∣∣∣
2

(2.5)

The cross section scales inversely as the fourth power of the wavelength.

6
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2.3.2 Thomson scattering

Thomson scattering is the limit where the photon energy is much greater than the binding energy.
We can ignore the terms in Equation 2.3 with h̄ω or h̄ω′ in the denominator. That leaves only the
seagull diagram.

dσ

dΩ
= r2

0|ε · ε′|2 (2.6)

independent of wavelength.

Classical scattering

Conceptual scattering light from a charged particle involves first accelerating the charge with the
E-field in the incoming light and then radiaition by the accelerating charge. In the case of Rayleigh
scattering we imagine the electron bound to an atom in a harmonic oscillator potential so that

ẍ + ω2
0x = − e

m
E0e

−iωt

Then

ẍ = − e

m

ω2

ω2
0 − ω2

E0e
−iωt

The power radiated by an accelerating charge

P ∼ e2ẍ2

c3
∼ e2

c3

(
e

m

ω2

ω2
0 − ω2

E0

)2

The flux of incident radiation is Flux = cE2
0 . So the cross section is

Power

Flux
=
e2

c4

(
e

m

ω2

ω2
0 − ω2

)2

= α2

(
h̄

mc

)2(
ω2

ω2
0 − ω2

)2

= r2
0

(
ω2

ω2
0 − ω2

)2

(Note that the above may have missing factors of 2 and π. But it does otherwise have the same
dependencies as the quantum mechanical version. Note that in the Thomson scattering limit, where
ω � ω0, the cross section is independent of wavelength.

Born approximation

Now we consider scattering of light with the formalism that we developed for determining scattering
amplitudes from a fixed potential. The initial state has a single photon

| i〉 = | i; kλ〉 = a†kλ| i; 0〉

and the final state
| f〉 = | f ; k′λ′〉 = a†k′λ| f ; 0〉

The total energy E = Ei + k = Ef + k′. The collision rate is given by the golden rule

2π

h̄
| 〈f ; k′λ′ | T | i; kλ〉 ρk′λ′
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2.3. SCATTERING PHOTONS

where

T = H2 +H1
1

E −H0 + iε
H1

and H0 = Hγ +Hmatter with no interaction.

H2 =
e2

2mc2
|A|2 H1 =

e

m
p ·A− µ ·B

H2 can create and annihilate (or the other way around). H1 in second order can do the same. Just
keeping the terms that can create k2 and annihilate k1 we get

|A|2 =
e2

2mc2

∑
k1,k2

1√
2V k12V k2

ek1 · e∗k2
ei(k1−k2)·r(ak1a

†
k2

+ a†k2ak1)

=
1

2V

∑
k

1

k
+

1

V

∑
k1k2

1√
k1k2

(e∗k1
· ek2)ei(k1−k2)·ra†k2ak1
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