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3.1 Klein Gordon

Before we get to the Dirac equation, let’s consider the most straightforward derivation of a rela-
tivistically invariant wave equation. The energy momentum relationship

E2 = p2 +m2

becomes the Klein Gordon equation

(
∂2

∂t2
+∇2)ψ = m2ψ

on replacement p → −ih̄∇ and E → ih̄ ∂
∂t . It is easy to write plane wave solutions, and indeed a

free particle wave function had better be a solution to the KG equation. But perhaps there is more.
After all, the solutions are scalar functions. Spin is not incorporated. Also, since it is second order
in time, a unque solution requires specification of wave function and its first derivative at t = 0,
whereas for the Schrodinger equation that is not required. There are negative energy solutions
which are annoying. And consider the Maxwell equations. Electric and magnetic fields in empty
space are solutions to a second order wave equation but E&B are totally independent. Turns out
they are related by the first order Maxwell equations from which the wave equations are derived.
Perhaps there is some equivalent first order relationship among the components of the particle spin
that imply the Klein Gordon equation.

3.2 First order wave equation

We could just fish around with some guidance from dimensional analysis to come up with first
order equations. Instead we will develop the Dirac equation as the Lorentz transformation of
spinors. The str¡ategy comes from the notion that the existence of spin 1/2 was because it was
possible to find a set of 2X2 matrices homomorphic to the rotation group in 3 real dimensions. Or
altenratively, there exist a 2-dimensional representation of the generators of rotations as defined by
certain commutation relations. We said that the generators had to behave according to

[Ji, Jj ] = iεijkh̄Jk

and sure enough the Pauli matrices had the appropriate commutation relation so we concluded
that there is a 2-dimensional representation, and because the angular momentum algebra told us
that eigenvalues of angular momentum eigenkets are integer or half integer, the 2-d representation
corresponds to spin 1/2. Now we try to extend that strategy to Lorentz transformations. Rotations
are a subgroup of the Lorentz group. First let’s look again at rotations. Cast the usual 3-dimensional
spatial vector into a 2X2 Hermitian matrix according to

X =

(
−z −x+ iy

−x− iy z

)
= −x · σ (3.1)
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The determinant of X is the rotation invariant length of the vector −(z2 + xz + y2). If the matrix
X is to represent the vector x then the transformation

X ′ = AXB

must preserve the determinant implying detAB = 1. If Hermiticity is to be preserved then

X ′
†

= X ′ = B†XA† → A = B†

If the determinant of X is to remain invariant, then detX ′ = 1 → detAA† = 1 → |detA| = 1.
Also

TrX ′ = TrAXA† = TrXA†A→

A unitary. We already know from our study of rotations that the most general 2X2 unitary matrix
is

ein̂·σθ

But if we had to construct it we could start with the most general 2X2 matrix expressed as a+ib · σ
where a and b are complex. If it is unitary, a and b are real. And if the absolute value of the
determinant is 1, that leaves three free parameters, namely the three angles. And

A = cos
θ

2
+ σ · n̂ sin

θ

2

Next we define a 2 component vector spinor χ where under rotations χ′ = Aχ. Then the spinor
formed as Xχ transforms according to

X ′χ′ = AXχ = AXA†Aχ

We could also effect a spatial inversion. Then X → −X. Note that detX = det (−X) and that
(−X) transforms with the same A under rotations. We can not transform x · σ → −x · σ with
A. A is the rotation operator and does not invert space. However, both vector and its inversion
transform with the same A. Or the determinant is the same. Are all vectors with the same
determinant connected by a rotation?

Now let’s try to extend that strategy to transformations of 4-component vectors. The 2X2
representation of the 4-vector is

X+ =

(
t− z −x+ iy
−x− iy t+ z

)
= It− r · σ.

The invariant Q = detX as before. Again we search for a transformation that preserves the
determinant. This time the trace is not an invariant. The detAA† = 1, but A is not unitary. We
now suppose that as before the product of spinor and X transforms according to

X ′+χ
′
+ → A+X+χ+ = A+X+A

†(A†)−1χ+ → χ′+ = (A†)−1χ

which is a bit awkward since A† is in general not A−1.
But now again consider the space inverted representation of the 4-vector.

X+ =

(
t− z −x+ iy
−x− iy t+ z

)
→

(
t+ z x− iy
x+ iy t− z

)
= t+ r · σ = X−
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The transformation for X+ to X− requires that

A(t− r · σ)A† = t+ r · σ → AσA† = −σ

but there is no 2X2 matrix that along with its adjoint changes the sign of all three Pauli matrices.
Just as for rotations we cannot effect space inversion by a proper Lorentz transformation. But unlike
rotations, the Lorentz transformation for a vector and its inverted form are necessarily different.
In order to include all possible 4-vectors with the same length, two 2X2 matrices are required,
and therefore two sets of transformations and two independent spinors. Two 2X2 matrices X+

and X− are neccesary if we want to include reflections as Lorentz transformation of spinors. If a
transformation of a spinor is to produce another spinor, then each needs to be represented as a
combination of χ+ and χ−.

The second type of matrix X− and spinor χ− transform according to

A−X−A
†
− = X ′−

and χ′ = (A†−)−1. The 4-component Dirac spinor is

ψ =

(
χ+

χ−

)
χ+ and χ− are not mixed under proper Lorentz transformations (no reflection or time reversal.
Note that time reversal has the same effect as reflection in that it cannot be accomplished by a
proper Lorentz transformation.) Then

A =

(
A+ 0
0 A−

)
.

Under reflection χ+ ↔ χ−. Then (
χ−
χ+

)
=

(
0 I
I 0

)(
χ+

χ−

)
and

ψ → γ0ψ, γ0 =

(
0 I
I 0

)
Lorentz invariance including reflections requires a four component spinor. Irrespective of the

dynamics. Just to include the possiblity that the reflected image of the state exists.
Let’s construct A. We set a 2X2 matrix as A+ = a+ ib · σ where a,b are complex. detAA† =

1 → detA = eiφ =

∣∣∣∣( a+ ibz ibx + by
ibx − by a− ibz

)∣∣∣∣ = a2 + b2z + b2x + b2y where φ is real. It turns out that

φ is just an arbitrary phase since in the transformation X ′ = AXA† the phase drops out. We can
chose φ so that a =

√
1− b · b. Then A = 1 + i sin(θ/2) b

|b| · σ and we have two equations, one for

the real part and the other for the imaginary part and that leaves 6 free parameters, namely the
three angles and three velocities.

To construct A for a Lorentz transformation begin with boost along z. We will use rapidity as
the boost parameters. The invariant Q = (t − z)(t + z). If (t − z) → (t′ − z′) = (t − z)e−ξ and
(t+ z)→ (t′ + z′) = (t+ z)eξ then Q→ (t′ − z′)(t′ + z′) = (t− z)(t+ z). We’re not yet sure how ξ
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is related to a velocity, but we do know that successive transformations first by ξ1 and then ξ2 are
accomplished by ξ = ξ1 + ξ2. From the above we can write

t′ − z′ = (t− z)e−ξ
t′ + z′ = (t+ z)e+ξ

t′ = t cosh ξ + z sinh ξ

z′ = t cosh ξ + z sinh ξ

t′ = t sinh ξ + z cosh ξ, z′ = t sinh ξ + z cosh ξ

with z, t in frame K and z′, t′ in frame K ′ that is moving with velocity −v along z with respect to
K. To connect with velocity note that if we are at rest in K and at z = 0 then

v = ∆z′/∆t′ = tanh ξ.

Then
1

cosh2 ξ
= 1− tanh2 ξ = (1− v2)→ cosh ξ =

1√
1− v2

= γ

and
sinh ξ = γv

So for a boost along z, A = e−ξσz/2. Then

X ′ =

(
t′ − z′

0 t′ + z′

)
=

(
(t− z)e−ξ

0 (t+ z)eξ

)
= e−ξσz/2(t− zσz)e−ξσz/2

Generalize to any direction and we have that

A+ = e−n̂·σξ/2

To include rotations, n̂ is complex. What about Lorentz transformation of X−. It had better turn
out that

t′ = t cosh ξ + z sinh ξ, z′ = t sinh ξ + z sinh ξ

just like it does for X+. Therefore, A− = en̂·σξ.
Finally

(A†+)−1 = A−

and we can write
χ′+ = A−χ+, χ′− = A+χ−

3.2.1 Transformation to Dirac equation

We begin in the rest frame with a two-component spinor χ0. We can effect the Lorentz transfor-
mation to a new frame using A± = e∓

1
2 ξ·σ. Then

χ+ = e
1
2 ξn̂·σχ0

χ− = e−
1
2 ξn̂·σχ0

→
χ− = e−ξn̂·σχ+ = (cosh ξ − n̂ · σ sinh ξ)χ+

χ+ = eξn̂·σχ− = (cosh ξ + n̂ · σ sinh ξ)χ−
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