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1.2 Entangled States

If a composite system is in a pure state, its sub systems are in general in mixed states. Consider
the two particle spin singlet state

| α〉 = 1√
2
(| +〉1| −〉2 − | −〉1| +〉2)

It is an entangled state. It cannot be written as a product of states of the two particles. The density
matrix ρ = | α〉〈α |. The expectation value of an observable that acts on only one particle (σ1 for
example)

〈σ1〉 = 〈α | σ1 | α〉 =
1

2
[(〈+ |1〈− |2 − 〈− |1〈+ |2)σ1(| +〉1| −〉2 − | −〉1| +〉2)]

=
1

2
[〈+ |1σ1| +〉1 + 〈− |1σ1| −〉1]

which is the same as Trρ1 where

ρ1 =
1

2
| +〉〈− |+ 1

2
| −〉〈− |,

namely a completely mixed state. If our observables are in only a subsystem of the state, the state
is mixed. Or put another way, if we only have access to one of the particles then there is no way
to know whether or not it is in an entangled state. The measurements available to us will tell us
nothing about the two particle state.

More generally, suppose | αi〉 and | βj〉 are base states each for particle 1 and 2 and further that
the base states are orthonormal. The simplest entangled state is a linear combination

c1| α1〉| β1〉+ c2| α2〉| β2〉

|c1|2 + |c2|2 = 1. The density matrix for the pure state is

[c1| α1〉| β1〉+ c2| α2〉| β2〉[ [c1〈α1 |〈β1 |+ c2〈α2 |〈β2 |]

The expectation value of an operator that acts only on particle 1, (perhaps measuring the spin of
particle 1) is

Tr(Aρ) =
∑
ij

〈αi |〈βj | [c1| α1〉| β1〉+ c2| α2〉| β2〉[ [c∗1〈α1 |〈β1 |+ c∗2〈α2 |〈β2 |]A| αi〉| βj〉

=
∑
ij

〈αi | [c1| α1〉δj1 + c2| α2〉δj2[ [c∗1〈α1 |δj1 + c∗2〈α2 |δj2]A| αi〉

=
∑
i

〈αi |
[
|c1|2| α1〉〈α1 |+ |c2|2| α2〉〈α2 |

]
A| αi〉
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→ ρ1 = |c1|2| α1〉〈α1 |+ |c2|2| α2〉〈α2 |

It is clear that Trρ1 = 1. And furthermore

ρ21 = |c1|4| α1〉〈α1 |+ |c2|4| α2〉〈α2 |

And Tr(ρ21) = |c1|4 + |c2|4 < 1. Therefore the density matrix for particle 1 alone, that is assuming
that when we measure anything about particle 1 alone we simply trace over the particle 2 states,
corresponds to a mixed rather than a pure state. The entropy will depend on |c1|2 and |c2|2. If one
or the other is zero than the initial state is pure but no longer entangled and the sub state is pure.
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1.2.1 Hidden Variables

Now construct a theory with a hidden variable λ that determines the value of v1 along n̂ to have
value ±1 that is given by v1(λ, n̂1). The observed correlation will be

R(n̂1, n̂2) =

∫
v1(λ, n̂1)v2(λ, n̂2)w(λ)dλ

corresponding to

C(n̂1, n̂2) =
1

N

∑
v1,v2

N(v1, v2)v1v2

where w(λ) is the probability distribution of the λ. We want a local hidden variable theory. That
means that vi(λ, n̂i) depends only on n̂i where it is measured and not on the value of n̂2. Also w(λ)
does not depend on the settings of the device that is doing the measuring. The values displayed by 1
cannot depend on the direction chosen for the measurement of 2. In the single state the correlations
are perfect. Therefore

R(n̂, n̂) = −1
for all n̂. and

v1(λ, n̂) = −v2(λ, n̂)

R(n̂1, n̂2) = −
∫
v1(λ, n̂1)v1(λ, n̂2)w(λ)dλ

Then

R(â, b̂)−R(â, ĉ) = −
∫ [

v1(â, λ)v1(b̂, λ)− v1(â, λ)v1(ĉ, λ)
]
w(λ)dλ

Now |v1(b̂)|2 = 1. Therefore

R(â, b̂)−R(â, ĉ) = −
∫ [

v1(â)v1(b̂)− v1(b̂)v1(b̂)v1(â)v1(ĉ)
]
dλ

= −
∫
v1(â)v1(b̂)

[
1− v1(b̂)v1(ĉ)

]
dλ

The term in the square brackets is always greater than or equal to zero. Meanwhile v1(â)v1(b̂) = ±1.
The maximum absolute value of the right had side is when that product is always the same, (either
always +1 or always -1). Therefore the absolute value of the left hand side

|R(â, b̂)−R(â, ĉ)| ≤
∫

[1− v1(b̂)v1(ĉ)]w(λ)dλ

|R(â, b̂)−R(â, ĉ)| ≤ 1 +R(b̂, ĉ)

We computed earlier that R(â, b̂) for the spin singlet system, at least according to quantum
mechanics is Q(â, b̂) = − cos θab If θab = θbc = π/4 and θac = π/2 then the local hidden variable
theory requires that

| − cos(π/4) + cos(π/2)| ≤ 1− cos(π/4)
√
2

2
≤ 1−

√
2

2
which ain’t so. Evidently the observations consistent with quantum mechanics cannot be reproduced
with a theory with a hidden variable.
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