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Lecture XXXIII

Relativsitic Quantum Mechanics

3.1 Dirac Equation Summary and notation

We found that the two component spinors transform according to A = e±σ · ξ/2 where ± refers
to the two independent transformations that are relatd by parity, the direction of the vector χ is
parallel to the velocity, and |ξ| is the rapidity, tanh ξ = v. Two distinct transformations produce
two distinct spinors that are equivalent in the respt frame. To transform from one to the other,
transform to the rest frame with A+ and then back to the moving frame with A−.

χ+ = eσ·ξ/2ζ χ− = e−σ·ξ/2ζ

→ e−σ·ξχ+ = χ−

→ (E − σ · p) = mχ−

→ (E + σ · p) = mχ+

χ± are eigenkets of helicity with eigenvalues λ = ±~/2. In the ultra-relativistic limit χ± are
decoupled and never mix. Helicity is conserved. And in the low energy limit, χ+ = χ−. The
coordinate state representation is

(i
∂

∂t
+ iσ · ∇)φ+(r, t) = mφ−(r, t)

(i
∂

∂t
− iσ · ∇)φ−(r, t) = mφ+(r, t)

where

φ±(r, t) =

∫
d3pe−iEteip·rχ±(p)

Define (
φ+
φ−

)
→


ψ1

ψ2

ψ3

ψ4


A =

(
A+ 0
0 A−

)
=

(
eσ·ξ/2 0

0 e−σ·ξ/2

)
Σi =

(
σi 0
0 −σi

)
Then the Dirac equation is written

(
∂

∂t
+ Σi

∂

∂xi
+ imγ0)ψ = 0 (3.1)

or(
i ∂∂t + iσ · ∇ −m
−m i ∂∂t − iσ · ∇

)(
φ+
φ−

)
= 0
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3.1. DIRAC EQUATION SUMMARY AND NOTATION

Define

γ0 =

(
0 I
I 0

)
Then γ0

2
= I and

γ0Σi = γi =

(
0 −σi
σi 0

)
Then multiply Equation 3.1 from the left by γ0 and we have

γ0(
∂

∂t
+ Σi

∂

∂xi
+ imγ0)ψ = 0

(γ0
∂

∂t
+ γi

∂

∂xi
+ im)ψ = 0

(γ0∂0 + γi∂i + im)ψ = 0

(γµ∂µ + im)ψ = 0

(iγµ∂µ −m)ψ = 0

Just as σ transforms as a three vector, γµ = (γ0, γ) transforms like a four vector.
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3.2. CURRENT DENSITY

3.2 Current density

Go back to coordinate representation

i∂tφ+ = −iσ · ∇φ+ +mφ− (3.2)

i∂tφ− = iσ · ∇φ+ +mφ+ (3.3)

(3.4)

The complex conjugates are

−i∂tφ∗+ = i∇ · (φ∗+σ) +mφ∗− (3.5)

−i∂tφ∗− = −i∇ · (φ∗−σ) +mφ∗+ (3.6)

(3.7)

Now multiply Equations 3.2 and 3.3 from the right by φ∗+ and φ∗− respectively and Equations 3.5
and 3.6 from the right by φ+ and φ− and add and we have

i∂t(φ
∗
+φ+) = −i∇ · (φ∗+σφ+) +m(φ−φ

∗
+ − φ∗−φ+)

i∂t(φ
∗
−φ−) = i∇ · (φ∗−σφ−) +m(φ+φ

∗
− − φ∗+φ−)

(We have used

(MΘ)∗α = (MαβΘβ)∗ = Mαβ)Θ
∗
β

= Θ∗βM
†
βα = (Θ∗M†)α

→ (σφ)∗α = (φ∗σ)α)

The continuity equation
∂ρ

∂t
+∇ · j = 0

suggests
ρ = φ∗+φ+ + φ∗−φ−

and
j = φ∗+σφ+ − φ∗−σφ−

Note that there is no mixing of left and right states. More notation.

jµ = (ρ, j), ∂µj
µ = 0

Also
ρ = ψ∗ψ = ψ∗γ0γ0ψ = ψ̄γ0ψ

where ψ̄ = ψ∗γ0 is the Pauli adjoint. Then

j = ψ∗
(
σ 0
0 −σ

)
ψ = ψ∗γ0γiψ = ψ̄γψ

and
jµ = ψ̄γµψ

Coupling term is ψ̄γµψAµ
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3.3. FERMION MAGNETIC MOMENT

3.3 Fermion magnetic moment

First we introduce the EM field by the usual strategy, p → p − e
cA or in coordinate space i∂µ →

i∂µ − eAµ. Then the Dirac equation becomes

iγµ(∂µ − eAµ)ψ = mψ

In terms of the left and right handed spinors

[(i∂0 − eV ) + σ·(−i∇− eA)]φ+ = mφ−

[(i∂0 − eV )− σ·(−i∇− eA)]φ− = mφ+

or more compactly

(P0 − σ ·P)φ+ = mφ−

(P0 + σ ·P)φ− = mφ+

Take the sum and difference and define

Ψ̃ =
1√
2

(φ+ + φ−)

Φ̃ =
1√
2

(φ+ − φ−)

Then

P0Ψ̃− σ ·PΦ̃ = mΨ̃ (3.8)

P0Φ̃− σ ·PΨ̃ = −mΦ̃ (3.9)

Now define
Φ̃ = e−imtΦ, Ψ̃ = e−imtΨ

Substitution into the above gives

P 0Ψ− σ ·PΦ = 0 (3.10)

P 0Φ− σ ·PΨ = −2mΦ (3.11)

Now that last equation can be rewritten

−σ ·PΨ = (−i∂0 + eV − 2m)Φ ∼ −2mΦ (3.12)

in the non-relativistic limit. Then substitution into the next to last gives

P 0Ψ− 1

2m
σ ·Pσ ·PΨ = (P 0 − 1

2m
(σ ·P)2)Ψ = 0
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3.3. FERMION MAGNETIC MOMENT

which leads us to

0 = (i∂0 − eV −
1

2m
(P 2 − iσ · (P×P))Ψ

= (i∂0 − eV −
1

2m
(P 2 − iσkεijkPiPj))Ψ

= (i∂0 − eV −
1

2m
(P 2 − i1

2
σkεijk[Pi, Pj ]))Ψ

= (i∂0 − eV −
1

2m
(P 2 + e

1

2
σkεijk[∇iAj −∇jAi]))Ψ

= (i∂0 − eV −
1

2m
(P 2 + eσ ·B))Ψ

→ (
1

2m
(−i∇− eA)2 +

e

2m
σ ·B + eV )Ψ = i∂0Ψ

The fermion magnetic moment µ = e
2mσ = ge

2ms→ g = 2.
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3.4. FINE STRUCTURE HAMILTONIAN

3.4 Fine Structure Hamiltonian

Let’s write an approximation of the Dirac equation to order (v/c)4. We begin with a pair of coupled
equations for the two spinors. In the non-relativistic limit we solve for Φ in terms of Ψ and then
write an equation with only Ψ which is the solution to the Schrodinger equation when v = 0. We
are trying to derive the fine structure hamiltonian in the Schrodinger limit, since we will in the
end still rely on perturbation theory and that depends on knowing the unperturbed energies for

H0 = p2

2m + eV . Refering back to equations 3.10 and 3.11, in the non-relativistic limit, Equation
3.11 become

Φ ∼ σ ·P
2m

Ψ (3.13)

Substitution back into 3.11 gives Φ to next higher order

Φ =

(
− P

0

2m

σ ·P
2m

+
σ ·P
2m

)
Ψ

and then substituting into 3.10

P 0Ψ = σ ·P
(
− P

0

2m

σ ·P
2m

+
σ ·P
2m

)
Ψ (3.14)

= σ ·P
(
−P

0σ ·P
4m2

+
σ ·P
2m

)
Ψ (3.15)

Our goal here is to derive the Schrodinger equation to order (v/c)6. But Ψ is not the same as ψ.
After all ∫

|ψ|2d3r =

∫
d3r(|Ψ|2 + |Φ|2) ≈

∫
d3r(|Ψ|2 + |Ψ∗σ ·P

2m

σ ·P
2m

Ψ|)

Therefore, in order that ψ be properly normalized

ψ = (1 +
1

2

(
σ ·P
2m

)2

)Ψ

and

Ψ = (1− 1

2

(
σ ·P
2m

)2

)ψ

and substitution into 3.15 gives an equation for the Schrodinger wave function

P 0(1− 1

2

(
σ ·P
2m

)2

)ψ = σ ·P
(
−P

0σ ·P
4m2

+
σ ·P
2m

)
(1− 1

2

(
σ ·P
2m

)2

)ψ

Let’s expand and rearrange that last

P 0ψ = σ ·P
(
−P

0σ ·P
4m2

+
σ ·P
2m

)
(1− 1

2

(
σ ·P
2m

)2

)ψ + P 0 1

2

(
σ ·P
2m

)2

ψ

=
(σ ·P)2

2m
− (σ ·P)4

16m3
+

1

8m2
([P 0, (σ ·P)2] + (σ ·P)2P 0)− σ ·P

4m2
([P 0, σ ·P] + σ ·PP 0)ψ

=
(σ ·P)2

2m
− (σ ·P)4

16m3
+

1

8m2
([P 0, (σ ·P)2])− σ ·P

4m2
([P 0, σ ·P])− (σ ·P)2

8m2
P 0)ψ
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3.5. FINE STRUCTURE HAMILTONIAN (SAKURAI’S TREATMENT) V/C

As we are interested in a hydrogen atom, we know that P 0 = i∂t − eV and as we are in an energy
eigenstate i∂tψ = Eψ. Also σ ·P = σ · p.

(E − eV )ψ = (
(σ · p)2

2m
− (σ · p)4

16m3
+

1

8m2
([eV, (σ · p)2])− σ · p

4m2
([eV, σ · p])− (σ · p)2

8m2
(E − eV ))ψ

= (
(p)2

2m
− (p)4

16m3
+

e

8m2
(∇2V )− eσ · p

4m2
(σ·[V,p])− (σ · p)2

8m2
(E − eV ))ψ

= (
(p)2

2m
− (p)4

16m3
+

e

8m2
(∇2V ) +

e

4m2
(p·[p, V ]− iσ · (p× [p, V ])− (σ · p)2

8m2
(E − eV ))ψ

= (
(p)2

2m
− (p)4

16m3
+

e

8m2
(∇2V ) +

e

4m2
(−∇2V − iσ · (−ip×∇V ))− (σ · p)2

8m2
(E − eV ))ψ

= (
(p)2

2m
− (p)4

16m3
+

e

8m2
(∇2V ) +

e

4m2
(−∇2V − iσ · (−ip× 1

r

dV

dr
r))− (σ · p)2

8m2
(
p2

2m
))ψ

= (
(p)2

2m
− (p)4

16m3
− e2

8m2
δ3(r) +

e

4m2
(σ · L1

r

dV

dr
)− (

p4

16m3
))ψ

= (
(p)2

2m
− (p)4

8m3
− e2

8m2
δ3(r) +

e

4m2
(σ · L1

r

dV

dr
))ψ

The second term is the “relativistic” correction. The third, the Darwin term, and the last, the spin
orbit coupling. Note that the factor of two that in the nonrelativistic approach comes from the
Thomas precession is already there.

3.5 Fine Structure Hamiltonian (Sakurai’s treatment) v/c

To recover the fine structure hamiltonian we need to keep terms to next order in v/c like we started
to do in Equation ?? and we need to pay attention to the normalization. The solution to the
Schrodinger must be normalized and Ψ and Φ are not, but rather we should have that∫

|ψ|2d3r =

∫
d3r(|Ψ|2 + |Φ|2) =

∫
d3r(|Ψ|2(1 +

p2

4m2c2
+ . . .)2)

where we use ?? to lowest nonzero order. Now define

ψ = ΩΨ = (1 +
p2

8m2c2
)ψ

so that

|ψ|2 = |Ψ|2(1 +
p2

4m2c2
)

Then multiply ?? from the left by Ω−1 and for simplicity assume that A = 0.

Ω−1(
cp · σ

(2mc2)
(1 +

eV − Enr
2mc2

)cp · σ + eV )Ω−1ψ = EnrΩ
−2ψ

To order (v/c)2 we have[
p2

2m
+ eV −

{
p2

8m2c2
,

(
p2

2m
+ eV

)}
− σ · p

2m

(
Enr − eV

2mc2

)
σ · p

]
ψ = Enr

(
1− p2

4m2c2

)
ψ
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3.6. DARWIN

With some manipulation, using ∇V = −E and ∇×E = 0 we get[
p2

2m
+ eV − p4

8m3c2
− e~σ · (E× p)

4m2c2
− e~2

8m2c2
∇ ·E

]
ψ = Enrψ

Using

E = −1

r

dV

dr
x

we get that the fourth term is

− e~
4m2c2

−1

r

dV

dr
σ · (x× p) =

e~
4m2c2

1

r

dV

dr
σ · L =

e~
2m2c2

1

r

dV

dr
S · L

The last is the Darwin term. For hydrogen

e~2

8m2c2
∇ ·E =

e~2

8m2c2
δ3(x)

3.6 Darwin

We associate the Darwin term with the fact that for a relativistic electron we cannot localize it
better than the compton wavelength λ = 1/m. Therefore, the interaction with the Coulomb field
is smeared out and becomes a bit weaker. We can estimate the size of the effect in these terms by
first considering the average of the Coulomb potential over a small region of space.

V (r) = V (r0) +
∂V

∂ri
ri +

1

2

∑
i,j

∂2V

∂ri∂rj
δriδrj + . . .

V (r) ≈ 1

6
∇2V (δr)2 =

1

6
e2δ3(r)(δr)

Finally approximate δr ∼ 1/m and

HD =
1

6

e2

m2
δ3(r)

which is pretty close to what we get from the Dirac equation. Note that it will only shift the energy
of l = 0 states, and it turns out by the same amount as the contribution from L · S when l = 0 and
spin orbit really cannot be contributing at all.
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