
January 30, 2015
Lecture V

1.1.1 Clauser Horne Inequality

The Bell inequality is difficult to test experimentally. The derivation assumed perfect anticorre-
lation,namely C(n̂, n̂) = −1. Clauser and Horne derived an alternative inequality that can be
understood in terms of a counting experiment.

Suppose that some observable of the two particles registers as a count in a detector. In the
case of the muons we might arrange our Stern Gerlach magnet that is oriented at some angle, so
that it kicks spin +1 into the detector. If the composite state consists of two photons, the detector
registers a hit if the polarization is along some direction. The inequality will be determined by
counting. There will be a total of N events, with N1(â) counts in detector 1 when it is set to select
â and N2(b̂) counts in detector 2 when it is set to select b̂. The number of coincidences of the two
detectors with settings â and b̂ respectively is N12(â, b̂). The probabilities are

p1(â) = N1(â)/N p2(b̂) = N2(b̂)/N p12(â, b̂)) = N12(â, b̂)/N

In this formulation, the hidden variable will determine the probability that p1(â) will have a certain
value. Remember that in the Bell formulation, the hidden variable determined absolutely the value
of the spin for a particular measurement. Then

p1(â) =

∫
(pa(1̂, λ)w(λ)dλ

and
p12(â, b̂, λ) = p1(â, λ)p2(b̂, λ)

and

p12(â, b̂) =

∫
p1(â, λ)p2(b̂, λ)w(λ)dλ

It can be shown that for any four real numbers x, x′, y, y′ in the range 0 ≤ r ≤ 1 that

xy − xy′ + x′y + x′y′ ≤ x′ + y

If we identify the probabilities (all in the range between 0 and 1) as

x = p1(â, λ), y = p2(b̂, λ), x′ = p1(â′, λ), y′ = p2(b̂′, λ)

and subsitute into our inequality we get

p1(â, λ)p2(b̂, λ)− p1(â, λ)p2(b̂′, λ) + p1(â′, λ)p2(b̂, λ) + p1(â′, λ)p2(b̂′, λ) ≤ p1(â′, λ) + p2(b̂, λ)

Next multiply by w(λ) and integrate over all λ to get

p12(â, b̂)− p12(â, b̂′) + p12(â′, b̂) + p12(â′, b̂′) ≤ p1(â′) + p2(b̂)

This is the Clauser Horne Inequality. Note that it does not depend on any specific correlations of
spin states or perfect anti-correlation.
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1.1.2 Experimental Test with 2 photons

An atomic s-state with total angular momentum zero and even parity decays in two steps. Photon
γ1 is emitted in the E1 transition from the S-state to a P-state with m = ±1, 0. Photon γ2 is
emitted in the second E1 transition to the ground state. The final state of the atom also has zero
angular momentum and even parity. Therefore the photons which are emitted back to back have
the same helicity, so that their total angular momentum is zero. The two photons have differnt
energies, ω− 1 and ω2. The helicity of each of the photons is determined by the intermediate state.
If the intermediate state is m = +1 then the helicity of both photons is odd and if m = −1 then
the helicities are even. The energy of the intermediate state is degenerate. There is no magnetic
field that might split the energies of the m = ±1, 0 levels. The final pure photon state is therefore
the linear combination

| α〉 =
1√
2

(| +1〉| +1〉+ | −1〉| −1〉)

where the states | ±1〉 are the right and left handed helicities. If detector 1 measures helicity ±1
then detector 2 is guaranteed to measure ∓1.

It will be more interesting if the measurements of the photon polarizations are in the linear
basis. Then we can look for correlations of the measurement of linear polarization by detector 1
along â and by 2 along b̂. So let’s write | α〉 in the linear polarization basis. The linear and circular
polarization bases are related according to

| x, y, k〉 =
1√
2

(| 1〉 ± i| −1〉)

and

| x, y,−k〉 =
1√
2

(| 1〉 ∓ i| −1〉)

Then we can rewrite

| α〉 =
1√
2

(| x〉1| x〉2 + | y〉1| y〉2)

Evidently if detector 1 measures horizontal polarization then so will detector 2, etc. In general we
want to measure the correlation p12(θ1, θ2), that is the probability that we get a count on detetor
1 with polarization axis θ1 coincident with a count in detector 2 with polarization axis θ2. The
observable is the operator

A(θ1, θ2) = | θ1〉1| θ2〉2〈θ1 |1〈θ2 |2
I supppose that we can write

A(θ1 − θ2)

Since there is zero angular momentum in the final state, there is rotation symmetry so the observable
can only depend on the difference of the polarization angles.

The expectation value of A

〈A(θ1 − θ2)〉 = 〈α | A | α〉

=
1

2
(〈x |1〈x |2 + 〈y |1〈y |2) | θ1〉1| θ2〉2〈θ1 |1〈θ2 |2 (| x〉1| x〉2 + | y〉1| y〉2)
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We know that

〈x | θ〉 = cos θ

〈y | θ〉 = sin θ

with which we can compute

〈A(θ1 − θ2)〉 =
1

2

(
cos2 θ1 cos θ22 + 2 sin θ1 cos θ1 sin θ2 cos θ2 + sin2 θ1 sin2 θ2

)
=

1

2
(cos θ1 cos θ2 + sin θ1 sin θ2)

2

=
1

2
(cos(θ1 − θ2))

2

=
1

4
(1 + cos 2(θ1 − θ2))

The Clauser Horne inequality is

N12(â, b̂) +N12(b̂, â′) +N12(â′, b̂′)−N12(â, b̂′)

N1(â′) +N2(b̂)
≤ 1

If â, b̂, â′, b̂′ are all separated by the angle φ then

N12(φ) +N12(φ) +N12(φ)−N12(3φ)

N1(â′) +N2(b̂)
≤ 1

=
3N12(φ)−N12(3φ)

N1(â′) +N2(b̂)
≤ 1

Next relate coincidences to expectation values. N12(φ) = N 〈α | A(φ) | α〉 As regards the singles
counts N1(â′) and N2(b̂), we know that the number of counts must be independent of the direction
of â′ or b̂ and that for any direction N1 = 1

2N , since half the photons will be polarized along and
direction. Therefore the inequality becomes

=
( 3
4 (1 + cos 2φ)− 1

4 (1 + cos 6φ)
1
2 + 1

2

≤ 1

=
1

2
+

3

4
cos 2φ− 1

4
cos 6φ ≤ 1

The inequality is maximally violated if φ = π/8. Then

1

2
+

3

4

2√
2

+
1

4

2√
2
∼ 1.2

which is not less than 1.
The measurements are consistent with the prediction of quantum mechanics and therefore im-

possible to reconcile with any kind of local variable theory. If the measurement outcomes are
determined before the measurements at detectors 1 or 2 take place, the correlations will satisify the
inequality. But the measured correlations do not satisfy the inequality.
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1.2. NO CLONE THEOREM

1.2 No Clone Theorem

Suppose there is a unitary transformation that copies a state | ψ〉 to a state subject to some standard
initialization.

U | ψ〉| 0〉 = | ψ〉| ψ〉

We will find a contradiction if we follow the logic. Let | ψ〉 = α| 1〉+ β| 0〉. Then

U | ψ〉| 0〉 = U (α| 1〉+ β| 0〉) | 0〉 = α| 1〉| 1〉+ β| 0〉| 0〉.

But we showed above that

U | ψ〉| 0〉 = | ψ〉| ψ〉 = (α| 1〉+ β| 0〉) (α| 1〉+ β| 0〉) = α2| 1〉| 1〉+αβ| 1〉[| 0〉+βα| 0〉| 1〉+β2| 0〉| 0〉
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1.3. TELEPORTATION

1.3 Teleportation

Alice has a quantum state, a single q-bit. And she wants to send that state to Bob. Unfortunately
she does not know what the state is

| α〉 = a| 0〉+ β| 1〉.

If she did she could just tell Bob over a telephone line and he could make his own version. Also,
she only has one of these states. She would need an ensemble of copies to determine the state from
measurement.

Suppose they share the components of an entangled state. We consider the standard maximally
entangled 2 qubit state

| ψ〉 =
1√
2

[| 1〉| 1〉+ | 0〉| 0〉]

Bob can measure his bit and Alice hers. Of course Alice’s measurement determines Bob’s. Now
Alice wants to teleport her unknown state | α〉. She puts it together with the entangled state

1√
2

(a| 0〉+ β| 1〉)[| 1〉| 1〉+ | 0〉| 0〉]

or
1√
2

[α| 0〉| 1〉| 1〉+ β| 1〉| 1〉| 1〉+ α| 0〉| 0〉| 0〉+ β| 1〉| 0〉| 0〉]

=
1

2

(
| Φ+〉(a| 0〉+ b| 1〉) + | Φ−〉(a| 0〉 − b| 1〉) + | Ψ+〉(a| 1〉+ b| 0〉) + | Ψ+〉(a| 1〉 − b| 0〉)

)
where

| Φ+〉 =
1√
2

(| 00〉+ | 11〉)

| Φ−〉 =
1√
2

(| 00〉 − | 11〉)

| Ψ+〉 =
1√
2

(| 01〉+ | 10〉)

| Ψ−〉 =
1√
2

(| 01〉 − | 10〉)

Alice has access to the first two q-bits, and Bob to the third. Alice then performs a measurement
on her two q-bits. She transforms to the Bell basis | Φ+〉, | Φ−〉, | Ψ+〉, | Ψ−〉 and the outcome of
her measurement is that the system is in one of the four eigenstates. She then calls Bob and tells
him the eigenvalue. (the state of her half of the entangled state is know to her.)

If she measures the system to be in the state

• | Φ+〉 - Then Bob’s q-bit is in the state a| 0〉 + b| 1〉 and she has managed to transport her
state to Bob

• | Φ−〉 - Then Bob’s q-bit is in the state a| 0〉 − b| 1〉 and she has managed to transport her
state to Bob. He then performs the unitary transformation σz(a| 0〉 − b| 1〉) = | α〉
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1.3. TELEPORTATION

• | Ψ+〉 - Then Bob’s q-bit is in the state a| 1〉 + b| 0〉 and she has managed to transport her
state to Bob. He then performs the unitary transformation σx(a| 1〉+ b| 0〉) = | α〉

• | Ψ−〉 - Then Bob’s q-bit is in the state a| 1〉 − b| 0〉 and she has managed to transport her
state to Bob. He then performs the unitary transformation σzσx(a| 1〉 − b| 0〉) = | α〉

Of course the protocol was established in advance. Bob now has his hands on the state that Alice
started with. Alice is left without the state. (Otherwise we would have a copy) If she attempts a
measurement of the unkown Q-bit she will get 0 or 1 with equal probability. That is, it is maximally
mixed.

Teleportation requres that the state that Alice and Bob share is entangled. Otherwise the shared
state looks like

| 0〉| 0〉,

(again Bob can see the Q-bit to the right and Alice to the left.) Together with the state to be
transported we have

| α〉| 0〉| 0〉

No matter what Alice does to the states at her disposal, Bob’s state is simply | 0〉.
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