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1.2 Differential cross section

We found that the solution to the Schrodinger equation has the form

〈x | ψ〉 ∼ 1

(2π)3/2

(
eikr

r
f(k′, k) + eik·x

)
and that

f(k′,k) =
4π2m

~2

∫
d3x′〈k′ | x′〉V (x′)〈x′ | ψ〉 (1.1)

Not really much good since we need the solution to do the calculation, but we do learn something
about the form. We have been sloppy about normalization. Multiply by V −

1
2 where V is volume of

space. Then if the plane wave represents the incoming flux, we have incident flux v/V = ~k/mV .
The flux scattered radially outward is

v

V

|f(k, k′)|2

r2
.

Let dṄ be the number of particles scattered outward per unit time into the solid angle dΩ.

dṄ =
v

V

|f(k, k′)|2

r2
r2dΩ (1.2)

The differential cross section
dσ

dΩ
=

dṄ

Inc Flux
= |f(k, k′)|2 (1.3)

1.2.1 Probability current

The scattered particle probability flux is

j =
~
m

Im(ψ∗∇ψ)

∼ ~
m

Im

(
1

8π3

f∗

r
e−ikr

(
ik
eikr

r
f − eikr

r2
f +

eikr

r
∇f
))

At large r, all terms fall off faster than 1/r2 except the first. Note that ∇f will involve angular
derivatives that all have 1/r and then derivatives with respect to θ and φ. So very far away,

j ∼ ~
m

Im

(
1

8π3

f∗

r
e−ikr

(
ik
eikr

r
f

))
∼ ~

m

k|f2|
8π3r2
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1.2. DIFFERENTIAL CROSS SECTION

The flux into the detector with area r2dΩ will be Fdet = jr2dΩ. The total incoming flux is
jinc = k ~

(2π)3m . Then the rate of scattering into solid angle dΩ is

R = Fincdσ = jscatr
2dΩ→ dσ

dΩ
=
j2r2

jinc
= |f |2

That’s all well and good. But, probability is conserved. So j for the entire wave function ψ
integrated over the entire sphere must be zero.
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1.3. BORN APPROXIMATION

1.3 Born approximation

We have an integral equation for the scattering amplitude but it is of limited valued since it includes
the solution to Schrodinger’s equation. The first order Born approximation is pretty simple. We
assume that the potential is very weak and that the exact solution is not very different from the
free particle state. Then we get

f1(k′, k) = −4π2m

~2

∫
d3x′〈k′ | x′〉V (x′)〈x′ | k〉

= −4π2m

~2

∫
d3x′

ei(k−k
′)·x′

(2π)3
V (x′) (1.4)

Here, k,k′ are in the direction of the incoming plane wave and the scattered wave respectively.
Define |q| = |k− k′| = 2k sin θ/2 where θ is the scattering angle.

Then we can perform the angular integral if we assume that V is spherically symmetric.

f1(k′, k) = −4π2m

~2

∫
d3x′

eiq·x
′

(2π)3
V (x′) (1.5)

= −4π2m

~2

∫
r2dr2π(. cos θ′)

eiqr cos θ
′

(2π)3
V (r) (1.6)

= −4π2m

~2

∫
r2dr2π(. cos θ′)

eiqr cos θ
′

(2π)3
V (r) (1.7)

= −4π2m

iq~2

∫
r2

r
dr2π

eiqr − e−iqr

(2π)3
V (r) (1.8)

= − m

iq~2

∫
rdr(eiqr − e−iqr)V (r) (1.9)

= − 2m

q~2

∫
rdr sin(qr)V (r) (1.10)

Yukawa potential

Consider the Yukawa potential

V (r) =
V0e
−µr

µr

which reduces to the Coulomb potential with µ→ 0 with V0/µ fixed. Substitution and integration
gives

f1(θ) = −
(

2mV0
µ~2

)
1

q2 + µ2

= −
(

2mV0
µ~2

)
1

4k2 sin2(θ/2) + µ2

Note that for the first order Born approximation, the scattering cross section is always indepen-
dent of the sign of V (r), and the scattering amplitude is always real
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1.3. BORN APPROXIMATION

1.3.1 Higher Order Born Approximation and transition operator T

We would like to have an operator that effects a transition from a plane wave intial state to a plane
wave final state. Let’s revisit the Schrodinger equation for the plane wave.

H0| φ〉 = E| φ〉
(H − V )| φ〉 = E| φ〉
(E −H)| φ〉 = −V | φ〉 (1.11)

| φ〉 = − 1

E −H ± iε
V | φ〉+ | ψ±〉 (1.12)

where (E −H)| ψ±〉 = 0. Solve Equation ?? for

| ψ±〉 =

(
1 +

1

E −H ± iε
V

)
| φ〉

and

V | ψ±〉 =

(
V + V

1

E −H ± iε
V

)
| φ〉

Then the transition operator

T =

(
V + V

1

E −H ± iε
V

)
| φ〉

T | φ(k)〉 = V | ψ〉 (1.13)

where | φ(k)〉 is a plane wave with momentum k, and | ψ〉 is a solution to Schrodinger’s equation.
The differential cross section

f(k′,k) = −4π2m

~2
〈φ(k′) | T | φ(k〉

1.3.2 Born approximation again

Multiplying (Lippmann-Schwinger) Equation by V gives

T | φ〉 = V
1

E −H0
T | φ〉+ V | φ〉

Assuming that latter is true for a complete set of base states, it must be a legitimate operator
equation.

T = V
1

E −H0 + iε
T + V (1.14)

On iteration we get something like

T = V + V
1

E −H0 + iε

(
V + V

1

E −H0 + iε
T

)
→ V + V

1

E −H0 + iε

(
V + V

1

E −H0 + iε

(
V + V

1

E −H0 + iε
T

))
= V + V

1

E −H0 + iε
V + V

1

E −H0 + iε
V

1

E −H0 + iε
V + . . .
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1.3. BORN APPROXIMATION

and so on. The scattering amplitude

f(k′,k) = −4π2m

~2
〈k′ | V | ψ〉 (1.15)

becomes

f(k′,k) = −4π2m

~2
〈k′ | T | k〉 (1.16)

The momentum eigneket | k〉 is scattered to definite momentum plane wave state | k′〉.
Then

f1(k′,k) = − 4π2m

(2π)3~2

∫
d3x′e−ik

′·x′
V (x′)eix

′·k (1.17)

Next order

f2(k′,k) = − 4π2m

(2π)3~2

∫
d3x′

∫
d3x′′e−ik

′·x′
V (x′)

2m

~2
G(x′,x′′)V (x′′)eix

′′·k (1.18)
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1.4. CURRENTS AND OPTICAL THEOREM

1.4 Currents and optical theorem

ψ = ψ0 + ψs (1.19)

ψ0 represents the incoming free particle and is a solution to

H0ψ0 = i~
∂

∂t
ψ0

where H0 = p2

2m . Then Hψ = i~ ∂
∂tψ where H = H0 + V and

The flux of scattered particles into area element da is

js · n̂da =
~
m

Im(ψ∗s∇ψs) · n̂da

=
k

8π3

~
m

|f |2

r2
r2dΩ

The flux of incoming particles is

jinc =
~
m

Im(ψ∗0∇ψ0) =
k

8π3

~
m

(1.20)

The differential cross section is
dσ

dΩ
=

jscat · n̂da
jinc

= |f |2 (1.21)

Then along with the divergence theorem,

σt =
8π3m

~k

∫
js · n̂da =

8π3m

~k

∫
∇ · jsdv

By the continuity equation ∫
∇ · jsdv =

∫
∂

∂t
|ψs|2dv

Altogether we find that

σt =
m

~k

∫
∂

∂t
|ψs|2dv

Substituting Equation 1.1 we have

σt =
8π3m

~k
∂

∂t

∫
dv
(
|ψ0|2 + |ψ|2 − 2<ψ∗0ψ

)
=

8π3m

~k

∫
dv

(
∂ψ∗0
∂t

ψ0 + ψ∗0
∂ψ0

∂t
+
∂ψ∗

∂t
ψ + ψ∗

∂ψ

∂t
− 2<(

∂ψ∗0
∂t

ψ + ψ∗0
∂ψ

∂t
)

)
= −2

8π3m

~k
<
∫

i

~
dv(−H0ψ

∗
0ψ + ψ∗0(H0 + V )ψ)

= −2
8π3m

~k
<
∫

i

~
dv(ψ∗0V ψ)
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1.4. CURRENTS AND OPTICAL THEOREM

= Im
8π3m

~k
2

~
〈k | V | ψ〉

= Im
8π3m

~k
2

~
~2

4π2m
f(0)

= Im
4π

k
f(0)

The total cross section is proportional to the imaginary part of the forward scattering amplitude.
The flux of scattered particles is balanced by the imaginary part of the forward amplitude, the
shadow.

There is another way: The total wave function

ψinc + ψscat = eikz + f(θ)
eikr

r
(1.22)

The flux density is

j =
~
m

Im(ψ∗∇ψ) (1.23)

The total flux density in the radial direction is

jr =
~
m

Im

(
(e−ikz + f∗

e−ikr

r
)(ik cos θeikr cos θ + (ikf − 1

r2
)
eikr

r
)r̂

)

Since we are interested in r →∞, only the first and two terms in the second brackets will remain.
Then

jr =
~
m

Im

(
(e−ikz + f∗

e−ikr

r
)(ik cos θeikr cos θ + ikf)

eikr

r

)
r̂

The interference term is

jintr =
~
m

Im
ik

r

(
e−ikr(cos θ−1)f + f∗e−ikr(1−cos θ cos θ

)
r̂]

Next integrate jintr over a tiny cone in the forward direction to show∫
forward cone

jintr r2dΩ = −
(
~k
m

)
4π

k
Imf(0) (1.24)

∫
forward cone

jintr r2dΩ = 2π
~rk
m

∫ β

0

Imi(e−ikr(cos θ−1)f + cos θf∗e−ikr(1−cos θ)d(cos θ)

∼ 2π
~rk
m

∫ β

0

Imi(eikre−ikr cos θf + f∗e−ikreikr cos θ)d(cos θ)

= 2π
~rk
m

Imi(
eikr

−ikr
e−ikr cos θf + f∗

e−ikr

ikr
eikr cos θ) |β0
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1.4. CURRENTS AND OPTICAL THEOREM

= 2π
~rk
m

Imi(
eikr

−ikr
(e−ikr cos β − 1)f + f∗

e−ikr

ikr
(eikr cos β − 1))

= 2π
~rk
m

Im(
1

−kr
(e−ikr(cos β−1) − eikr)f + f∗

1

kr
(eikr(cos β−1) − e−ikr))

As long as θ 6= 0, the average of jintr over any small solid angle is zero because r → ∞. (Assume
f(θ) is a smooth function.)

In the limit β → 0, and as r →∞, we use the average value for e±irk, namely zero, we get∫
forward cone

jintr r2dΩ = 2π
~k
m
rIm(

1

−kr
(1)f + f∗

1

kr
(1))

= 2π
~k
m

1

k
Im(f∗ − f)

= −4π
~k
m

1

k
Imf(0)

= −4π
~k
m

1

k
Imf(0)]

In evaluating the upper limit in the θ integration, assume that the limit of a function that
oscillates as its argument approaches infinity is equal to its average value.

The total probability current in the region behind the target produces a depletion of particles.
It must be that the product of the incident flux and the total cross section is equivalent to hwat is
depleted in the forward direction. Therefore∫

forward

jintr r2dΩ = −4π
~k
m

1

k
Imf(0) =

~k
m
σt

→ σt =
4π

k
Imf(0)

1.4.1 Optical Theorem

We begin with the basic Lippmann/Schwinger equation

| ψ±〉 = | φ〉+
1

E −H0 ± iε
V | ψ±〉 (1.25)

The scattering amplitude is

f(k,k′) = −4π2m

~2
〈φ(k) | T | φ(k′)〉 (1.26)

where T | φ〉 = V | ψ±〉 by definition. Then

f(k,k′) =

(
〈ψ± | − 〈ψ± |V 1

E −H0 ± iε

)
V | ψ±〉

= 〈ψ± |V | ψ±〉 − 〈ψ± |V 1

E −H0 ± iε
V | ψ±〉
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1.4. CURRENTS AND OPTICAL THEOREM

The imaginary part of the forward scattering amplitude is

Imf(k,k) = −8π3

4π

2m

~2
〈k | T | k〉

Imf(k,k) = −Im
8π3

4π

2m

~2

∫ ∫
〈φ(k) |T | φk′〉〈φk′ |

1

E −H0 ± iε
| φk′′〉〈φk′′ |T | φ(k)〉d3k′d3k′′

Imf(k,k) = −Im
8π3

4π

2m

~2
2m

~2

∫
d3k′〈φ(k) |T | φk′〉

1

k′′2 − k′2 ± iε
〈φk′ |T | φ(k)〉

= −Im
8π3

4π

2m

~2
2m

~2

∫
dk′k′

2
dΩ〈φ(k) |T | φk′〉

1

k′′2 − k′2 ± iε
〈φk′ |T | φ(k)〉

= −Im
8π3

4π

2m

~2
2m

~2

∫
dk′k′

2
dΩ〈φ(k) |T | φk′〉

1

(k′′
√

1± iε
k′′2

+ k′)(k′′
√

1± iε
k′′2
− k′)

〈φk′ |T | φ(k)〉

∼ −Im
8π3

4π

2m

~2
2m

~2

∫
dk′k′

2
dΩ〈φ(k) |T | φk′〉

1

(k′′ ± iε+ k′)(k′′ ± iε− k′))
〈φk′ |T | φ(k)〉

∼ −Imiπ
1

2π2

8π3

4π

8π3

4π

2m

~2
2m

~2

∫
k′′

2
dΩ〈φ(k) |T | φk′′〉

1

2k′′
〈φk′′ |T | φ(k)〉

∼ −Im
ik′′

4π

∫
dΩf∗(k,k′′)f(k′′,k)

∼ −k
′′

4π
σt

Shadowing

We write the solution to Schrodinger’s equation as ψ+ as the sum of an incoming plane wave that
extends over all space, and an outgoing spherical wave with angular distribution represented as
f(θ). Consider scattering from a hard sphere. The forward direction along the axis of the incoming
wave is shadowed. In that region the probability density |ψ+|2 = 0. There must be destructive
interference between the incoming plane wave and the scattering amplitude in the forward direction.
So the scattering amplitude in the forward direction cannot be zero.

More generally we write

σtot =
4π

k
Imfelastic(0) (1.27)

Only states scattered elastically in the forward direction will have the same energy as the incident
state, which is required if there is to be destructive interference. Also the depletion of the forward
flux must account for all scattered states elastic or inelastic.
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