1.2. CURRENTS AND OPTICAL THEOREM
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1.2 Currents and optical theorem
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0 represents the incoming free particle and is a solution to
0
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where Hy = L. Then Hy) = ih4 where H = H° +V and
The flux of scattered particles into area element da is
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The flux of incoming particles is
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Then along with the divergence theorem,
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By the continuity equation
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Altogether we find that

Substituting Equation 1.1 we have
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The total cross section is proportional to the imaginary part of the forward scattering amplitude.
The flux of scattered particles is balanced by the imaginary part of the forward amplitude, the
shadow.

There is another way: The total wave function

) ikr
¢inc + '@Z]scat - ezkz + f(g) er (14)
The flux density is
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The total flux density in the radial direction is
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Since we are interested in r — oo, only the first and two terms in the second brackets will remain.
Then
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The interference term is
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Next integrate ji"! over a tiny cone in the forward direction to show
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As long as 6 # 0, the average of ji"! over any small solid angle is zero because r — oco. (Assume

f(0) is a smooth function.)

In the limit 8 — 0, and as r — 0o, we use the average value for e*"* namely zero, we get
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In evaluating the upper limit in the 6 integration, assume that the limit of a function that
oscillates as its argument approaches infinity is equal to its average value.

The total probability current in the region behind the target produces a depletion of particles.
It must be that the product of the incident flux and the total cross section is equivalent to hwat is
depleted in the forward direction. Therefore
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1.2.1 Optical Theorem

We begin with the basic Lippmann/Schwinger equation

+y 1 +
|¢>*|¢>+mv|¢> (L.7)
The scattering amplitude is
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where T'| ¢) = V| 9F) by definition. Then

fleK) = Owi—«wi|v:‘.>vwwi>

E — Hy +i¢
1
_ + £\t +
= WV — W IV eV V)
The imaginary part of the forward scattering amplitude is
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We write the solution to Schrodinger’s equation as ¥ as the sum of an incoming plane wave that
extends over all space, and an outgoing spherical wave with angular distribution represented as
f(0). Consider scattering from a hard sphere. The forward direction along the axis of the incoming
wave is shadowed. In that region the probability density [)*|?> = 0. There must be destructive
interference between the incoming plane wave and the scattering amplitude in the forward direction.
So the scattering amplitude in the forward direction cannot be zero.

More generally we write

47
?Imfelastic(o) (19)

Only states scattered elastically in the forward direction will have the same energy as the incident
state, which is required if there is to be destructive interference. Also the depletion of the forward
flux must account for all scattered states elastic or inelastic.

Otot =
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1.3 Partial Wave Analysis

We have described scattering in terms of an incoming plane wave, a momentum eigenket, and and
outgoing spherical wave, also with definite momentum. We now consider the basis of free particle
states with definite energy and angular momentum (rather than linear momentum) that look like
| E,1,m). These are eigenkets of of Hy, L?, and L.. We would like to expand our plane wave in
terms of these spherical waves like so

| k) => | E,l,m)(E,l,m k) (1.10)
Im

Then we can write the scattering amplitude

1 2m

f(k/ak) = _E K2 87T3 <k/ | T | k>
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If the scattering potential is spherically symmetric, T is a scalar operator, and by WE, [ =1I',m =
m’, and (E,l,m | T | E,l,m) is independent of m. Then

12m _ .
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The ”spherical” scattering amplitude conserves angular momentum.
Now let’s figure out (k | E,1,m). Consider the state | kz).

(kz | L, | E,2lim) = 0 (m#0)
= (kz | E,l,m) = 0 (m#0)

Also (kz | E,l,m = 0) is independent of 0, ¢p,so (k,z | E,l,m =0) = 2fl—'frlgl(k). We can transform
the z-direction momentum ket into an arbitrary direction by a rotation.

| k) =D(a= 9,8 =10,0)| kz) (1.13)
Then

k| E,Il,m) = (kz|D|E,l,m)
= Y (k2| E,l',m' =0)(E,l''m' =0|D|E,l,m)
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[21+1 l
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One more thing.
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To determine NV, let’s try to normalize.
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From which we get

(k| E,lm,) = V™0, 0)6(E — ——) (1.14)

1.3.1 py—7m

The p meson is spin 1 and it decays to two spin 0 pions. Suppose that the pisinthe [=1,m =1
state, where there is some z-axis defined by something. The final state has the same angular
momentum quantum numbers and the amplitude to find a 7 with momentum in the k direction is

(k| E,1,m) o« Y; (k) o sin 6
The angular distribution of the 7 is
[YH? ~ sin? 6
If we imagine producing p in eTe™ collisions where electrons and positrons are polarized so that
j» = +1 along the z-axis defined by the direction of the positron beam, then

do . 9
m(@) o sin“ 6
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1.3.2 Back to partial wave expansion

Substituting into Equation 1.11 we have
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Let k = |k|2 so that § = 0, ¢ =? and then Y;™(k) = 1/2:£16,,0. So only m = 0 contributes. Then

YO(K') = /2L Py(cos 0) where 6 is the angle between k and k’. The scattering amplitude becomes
47r 20+1
f k) ===~ o hO)Ti = —EZ(Ql—k 1)Py(cos 0)T; (1.15)
1 ]

Define f;(k) = 7%(13) and

FK k) = (20 + 1) Py(cos0) fy (k) (1.16)

l

f1(k) is amplitude to scatter an incident particle with angular momentum Al or impact parameter
b such that kb = [. Remember that the outgoing solution to the SE far outside the range of the
potential is

ikr

¢+
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1.3.3 Expansion of plane wave as spherical waves

The radial part of the free particle Schrodinger equation is

2 d%u I(1+1)R?
C2m dr? + [V(r) + 2mr? } u=Eu

The solution to the free particle Schrodinger equation in spherical coordinates is
(x| E,l,m) = ciji(kr)Y;" (£).

Next expand the plane wave as a linear combination of incoming and outgoing spherical waves.

zkx
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where we use the addition theorem

e omaes 201 o
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Turns out that ¢ = %\/ 2:’:’“ so that

e™* = (20 + 1)itjy (kr)Py(k - £
l

]
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thex 2041 P 1.1
e %;( l+1) STy ) (cos 9) (1.17)

1.3.4 Partial wave expansion

Now
= e () 1.18
Y= W) e (9) . (1.18)
Yt = Fz (21 + 1) Ay (r) Py(cos 6) (1.19)
= (21 + 1) (¢t hi (r) + cihi(r)) Pi(cos 6) (1.20)
AT
Remember that for large r,
ei(kr—(ln’/Q) ) e—i(kr—(lﬂ/2)
L ikr L ikr

(1.21)
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becomes, usin
8 ei(kr—(lﬂ/?)) _ e—i(k:r—(lTr/Q))

2ikr
Anyway, we can write, the general solution to the Schrodinger equation in the partial wave basis,
far from the scattering potential as

Ji(kr) = (large r) —

i(kr—(m/2)) _ Clefi(krf(lﬂ’/Q))
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Then since .
1 ixk 1 ernr
welastzc - We - (271_)3/2 f(e) r

we know that ¢; = 1 so that the ingoing wave is the same. Therefore

L — oyt — E -l 2+ 1 i(kr—In/2) _ _—i(kr—Im/2)
ql}elastzc w \/8? %ukr l 1 ( + )(7716 e )
Probablity conservation requres || < 1. If || = 1, the scattering is pure elastic and each partial

wave gets some phase shift. If 7 = 0 the scattering for that partial wave is purely inelastic.
And we know that

m—1_ f
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Yt = (27T)73/2) Z(Ql + 1)P;(cos ) (21]@7’) + f(0) ” 1

L I

[ eikr _ efi(krfl‘n') eikr
- W Z(2l + 1)P;(cos 0) <21kr> + Z(?l + 1)Py(cos0) fi(k) . ]

l l

—i(kr—Im)

I eikr e
= G > (21 + 1)Py(cos ) (1 + 2ik f(6)) (%kr) + 212(25 + 1) Py(cos H)MT]
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Unitarity requires that flux is conserved for each angular momentum state. Outgoing flux is no
more than incoming. Therefore

1+ 2ik fi(0)] = [m] <1 (1.22)

and equal to one for elastic scattering.
For elastic scattering we define a phase shift

1+ 2ikfy(9) = e (1.23)
The elastic partial wave amplitude

e _ 1 eWiginyg,
fi(0) = 2%k k
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and

f(0) % Z (20 + 1)e™ sin &, P;(cos 0)
1

The total cross section is

[ a3 1+ PP R os)
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If the scattering is elastic then the total cross section is

1
Ocla = ﬁ/dQZ(QH—1)2sin251Pl2(c059)
1
4
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where n; = €2,

(1.24)

(1.25)
(1.26)

(1.27)

(1.28)

Suppose that there is an inelastic component, so that the magnitude of the

outgoing wave at momentum k in s is less than the magnitude in the incoming plane wave.
Then || < 1. The inelastic cross section is the piece lost from the outgoing, namely 1 — |n;|2.

Therefore )
(1—|ml*)

Oinelastic — dr Z(Ql + 1) |22k|2

= @)~ )

And the optical theorem 7
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The inelastic cross section is the difference of the total and the elastic

Oine = Otot — Oelas

= S )R- 1) -
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