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A study is presented of Berry’s observation that when a quantum-mechanical system is
transported on a closed adiabatic journey, a topological phase arises in addition to the usual
dynamical phase expected from the adiabatic theorem. Consequences are explored in the case of a
simple magnetic moment-magnetic field interaction and are shown to lead, among other things,
to Dirac’s famous relation between electric and magnetic charges.

I. INTRODUCTION

It is now over 60 years since the development of quan-
tum mechanics, and the subject is by now an integral part
of every graduate and undergraduate physics curriculum.
It is remarkable then that in 1984 Berry pointed out a fea-
ture that had been overlooked by others for these 60 years,
having to do with the existence of a topological phase factor
that can arise in certain applications of the adiabatic
theorem.’ In the 5 years since this discovery, many authors
have studied this phenomenon and applications to a re-
markably wide range of problems have been discussed—in
particle physics and quantum field theory, in condensed
matter physics, in atomic and molecular physics, etc.”
While many such articles appear somewhat formal and for-
bidding, the concept itself is elementary enough to be pre-
sented to an advanced quantum mechanics class. (Indeed,
Berry’s original article is remarkable for its clarity and
should be read by anyone interested in this subject, as
should a recent popular account which he has written.!)
Below then we outline Berry’s idea, with application made
to a simple physical system.

The adiabatic approximation,® wherein the time scale
over which a (time-dependent) Hamiltonian varies is long
compared to typical quantum-mechanical oscillation per-
iods, asserts that if a system begins at time ¢; in an instanta-
neous eigenstate ¥, (x,Z,), then at all later times it will re-
main in this same eigenstate, but develops a simple
dynamical phase factor

.exp—if[th"(t). (1)

Here E, () and ¢, (x,2) are “instantaneous” eigenvalues,
eigenfunctions of the time-dependent Hamiltonian 4 (),
satisfying

h()¢, (x,8) = E, (D1, (x,0) . ' (2)

It is usually noted in deriving this result that one is free to
adjust the phase of the instantaneous eigenstates arbitrar-
ily. However, this is not always the case. Specifically in
circumstances wherein at time ¢=¢, the Hamiltonian
h(R, (1)) of a system returns, after an adiabatic excursion,
toits form at z = ¢,, there can arise an additional topological
phase factor

exp i®, , (3
where
@, =i § dR (4, (ROIVa 9, (R)) @)

Here, R, (¢) denotes a time-dependent set of parameters—
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i=1.2,....k—on which the Hamiltonian depends. When
k = 1, we have a simple time-dependent Hamiltonian and

<I>,,_0, (5

in agreement with the naive adiabatic theorem. It is the
existence of such a topological factor which was pointed
out by Berry,' and consequently ®, is called Berry’s phase.

In the next section we formally derive the Berry phase
and discuss its s1gn1ﬁcance In Sec. III we examine a simple
application to a magnetic moment-magnetic field interac-
tion. Finally, in Sec. IV we summarize our results.

I1I. BERRY'’S PHASE DERIVATION
Consider a Hamiltonian

AR (D), i=12..k,

which depends on a set of k& time-dependent parameters
R, (). An example could be dependence on a time-depen-
dent vector field, in which case k = 3 and the parameters
are the three independent components of the field vector.
However, we shall deal here with the general case.

We suppose that the rate of change of the parameters
R, (1) is much slower than a typical orbital frequency
AE (1) so that the adiabatic condition obtains. Then the
adiabatic theorem asserts that a system which begins at
time #; in instantaneous eigenstate ¢, (x,Z;) will evolve al-
most completely into eigenstate ¥, (x,¢,) at time ¢,. Here
we wish to look at the phase factor which accompanies
¥, (x, tf) Writing the general solutlon to the Schridinger
equatlon as ¥(x,t) with

"5; P(x,t) = MR, (O)(x,0), (6)
we define
v(x,t) =y, (x;t)exp( — qu dt'E, (t’))exp iy, (1),
@
and find
P (8) =ifd3x¢’,f(x,t)¢,,(x,t). (8)

Since ¢, achieves its time dependence only from the exis-
tence of the parameters R, (¢) [i.e., ¢, (x,) would be time
independent were R, = const], we may write

¢n (x;t)E'pn(x’Ri(t)), (9)
and
Folt) = ifd3x S R (O S (xR (D) R, (1)
(10)
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With
R(0)
Ry =| (1n
R

as a k-component column vector, we can express the result
in the simplified notation

¥ (2) = i{mR() [Vem;R(2))R(2) . (12)

Thus far, there is nothing new, and the existence of this
phase ¥, (¢) in addition to the usual dynamical phase factor
exp —if dt' E (R; (1)) (13)
¢
has been known for a long time." It was generally assumed
that y, (¢) could be eliminated by redefining the (undeter-
mined) phase of the eigenstate |n; R(¢)). Berry, however,
realized that such a phase is observable when the time evo-
lution brings the parameter vector R(#) back to its starting
point—i.e., R(#;) = R(#,)—whereby the state vector |n;
R(#;))can be interfered with |n; R(z,)). This quantity,
which may be written as

Y. = ifldt R(t)-(n;R(t) WR n R(1))

=f3(§dn-<n;n(t)|an;R(t)> (14)
is called Berry’s phase and is an observable. That ¥, is a
physical parameter can be further emphasized by express-
ing this result in the suggestive notation

A, (R) =i{n;R|Vyn;R), (15)
so that
Vn =§§dR-An(R) (16)

is written in terms of a “vector potential” like quantity. If
we choose to redefine the phase of the eigenstate by an
arbitrary phase ¢(R),

|n;R) s exp i¢(R)|m;R) , 17
then

which is analogous to a gauge transformation. Obviously,
an observable cannot depend upon the choice of gauge, and
it is clear that Berry’s phase abeys this property since, by
Stokes’ theorem (suitably generalized if k #3), we can
write

¥, = J dRA, (R) = J dSV, XA, (R)
qde-VRx[A,,(R) — VR (R)]

= st-v,{ XA, (R), (19)

so that y,, is unchanged.

A physical significance may be ascribed to this “vector
potential” if the parameters R;(¢) are themselves quan-
tized. That is, suppose the full Hamiltonian for some sys-
tem is
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H=P¥2M +p*2m+ V(R, 1), 20)
where
h(R) =p*/2m + V(R, 1) (21)

is the simple time-dependent Hamiltonian of Eq. 6. Then,
writing the full wavefunction as

RO (R()) = [¥(R, 1)), (22)
we find
H|¥(R,1)) =E,(R)|$(R,1))
+ |mR(1)) (P*/2M)y (R)
— Vi |BR())(1/M)Py(R)
— (172M) V4 [mR())y(R) . (23)
Finally, projecting out the |#;R(z)) states and
neglecting off-diagonal matrix elements ({(n;R(?)|

Vi |nR(2)) =0), we find that y(R) obeys a Schrodinger
equation with the effective Hamiltonian

Hg = (1/2M)(P — A)> + U(R) , (24)
where
U(R) =E,(R) — (172M) [ (n; R(2)|V% n; R(2))
+ AL(R(D)] - (25)

This, of course, is simply the Born—-Oppenheimer approach
to a system containing both fast (r, p) and slow (R, P)
degrees of freedom.* We observe that the fast system affects

~ the dynamics of its slow counterpart via the potential ener-

gy U(R) and a “vector potential” A, (R). According to
Eq. (16), Berry’s phase is simply the line integral of this
vector potential which, by Stokes’ theorem, can be rewrit-
ten in terms of an integral

v, =an(R)-ds (26)

over a surface bounded by the curve § d R. Here B, (R) is
a fieldlike quantity

V:XA,(R)=B,(R), (27)
and Berry’s phase becomes the flux of this field through the
surface. The field B(R) will have a nontrivial structure in
the presence of sources, which occur when two or more of

the “fast” eigenvalues |n; R(#))become degenerate for
some value of R(#). This is clear since

7o =i [ dsVox (5RO VanR()
= —Im f dS{VemR(D|X|VemR()).  (28)
Now insert a complete set of intermediate states
(29)

1=3 |mR(®))(mR(®)],

and note that the diagonal contribution vanishes since
(mR(2)|VmR(2))is purely imaginary.® Then, noting®
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(m;R(2)|Vrh |[m;R(2))

(MR |Va;R()) = E _E m#n, (30)
we have
(mR() |V h |m;R(1)) X (m;R() [V b |mR(2))
= — . (31)
B,R)= —~Im > (E, —E, )

The existence of a degeneracy implies an infinity in
B(R) and thus the presence of a field source. The Berry
phase is the flux associated with such sources.

II1. BERRY’S PHASE—AN EXAMPLE

While one could continue to develop this formalism, it is
useful to give an example wherein the formalism can be
applied. Perhaps the simplest is that of a spin-} particle in
an external magnetic field “R(#)” for which the relevant
Hamiltonian is'

h(R(D)) = — (u/2) oR(?)

_ﬁ( Z(t)' X(t)—iY(t)). (32)
X(t) +i¥(2) —Z(1)

[ Note we have written the external magnetic field as R(¢)
s0 as not to be confused with the curl of the Berry potential
which we have denoted by the symbol B(z).] The eigenval-
ues are given, of course, by

E . (R)= —E_(R)
= + (W/2)[X*(t) + YY) + Z¥(1)]'?,

(33)
so that there exists a degeneracy when R = 0. Then since
V:i(R()) = ~ (u/2)0, (34)

we observe that, picking R along the z axis;

-~ 1
B, (Rk) = —1 a —
1 (RK) m{t|o|i) X {L|a|1) 0

]Im(moxlw(ilaylr)

A

=_[ k
4R2(1)
— (tlo, |1 (Vo |1)) = — k2R (1),

(35)

or, in general,

B,(R) = —R/2R%(p), (36)

which corresponds to a “magnetic monopole” of strength }
located at the origin (i.e., at the place of the degeneracy).
The Berry phase is the flux associated with this monopole
through the surface which is circumnavigated in parameter
space and is given by

where AQisthe solld angle subtended by thie closed path as
seen from the origin of parameter space and the 1+ refers to

the direction in which the line mtegratlon is traversed.
This may be verified explicitly by using the representa-

tion’
v cos(8/2) )
(=R
IR sin(6/2)e*
for a spinor along the direction R specified by spherical

(38)
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‘coordinate angles 0 and ¢. Then from Eq. (15) the asso-

ciated A(R) is given by

A, (R) = i(1;R|V4|1;R)

which is the “vector potential” of a magnetic monopole of
strength ! located at R = 0.

Note:
1
VXA(R) = —(sinf 4,
XA(R) Rsm0 849( )
=—ﬁ,—-1—. (40)
2R?

Taking a path in parameter space at fixed 6 from 6, ¢ to
0, ¢ + 2w, we find the Berry phase to be

7 =§Af.dR= iA¢27TR sin @

= +7(l —cos ). 41)
The solid angle swept out by this trajectory is clearly
AQ = f sin 9d6 d¢ 27(1 —cos 8) , (42)
so that

as expected from Eq. (37).

This result has a number of interesting consequences.
One is that the effect can be measured. Thus consider a
beam of neutrons which is split into two components. One
traverses a constant magnetic field R k. The second follows
a magnetic field of the same magnitude, but which slowly
rotates about a cone with semiangle &, as described above,
and returns to its original position. If then the beams are
recombined, the intensity should vary as

I(0) = |1 + ™)
= I, cos’ Ly, = I, cos® im(1 — cos @) . (44)

This experiment Has beén performed and the results are
exactly as predicted.®

A second interesting consequence of Berry’s phase is
that it enables a simple understanding of Dirac’s argument
that magnetic charge must be quantized in inverse units of
electric charge.” Thus consider the surface integral shown
in Fig. 1. One has the choice of employing either the surface
S, or S,. But these must yield the same physics. Hence

fB-ds=f BdS +27p, p=0,+1,... (45)
S, S,
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Fig. 1. When integrating over a surface
bounded by a curve C as shown, one
has the choice of using either surface
S, or S, in order to calculate the rel-
evant flux.

Noting the orientation of the normals, we subtract to yield

fB-dS =2p. (46)
[In the case studied above—Eq. (36)— wehavep = + 1.
However, it is straightforward to show that if one starts
with a system with spin S and projection S, that p = 25,.]
In the simple electromagnetic case of the interaction
between an electric charge and magnetic monopole g this
condition reads'®

47eg = 27p,
i.e.,
®=4p, (47)

which is Dirac’s constraint. Note that Eq. (47) implies that
magnetic charge is quantized in units of 1/2e. Or, turning

the argument around, if there exists a monopole of strength '

g anywhere in the universe, then electric changes must have
values

e=p/lg, p=0,+1,... (48)
This is the only argument of which I am aware that “ex-
plains” the experimental observation of quantization of
electric charge.
. There is one other aspect here which deserves comment
and that is the relation between the Berry potential and
rotational invariance. Specifying an arbitrary rotation by
angle & and axis i, it is well known that the operator

0 = exp(iLsida), withL=RXP, (49)

is the generator of rotations.'! Taking a rotationally invar-
ianit Hamiltonian such as H.; = P?/2M + U(r), we have

OH; O '=(P+8aiiXp)?/2M + U(r) =Hy ,

(50)
which implies
[LHgs]=0. (51)
: )
. 2
OI(P—'A) 0'
M
_ [P—A—idaiX(P—A)—ida(AiXr)X(VXA)]*
2M
, ) L
_(P—A)? sy (P—A)»@XT)X(VXA)
M M

so that the Hamiltonian H = (P — A)?/2M is not invar-
iant. In order to cancel the offending term, we must modify
the rotation operator via

0'~0" =expida i [RX(P—A) —JR]. (62)
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That is, rotational invariance of the Hamiltonian is equiva-
lent to conservation of angular momentum, as required by
Noether’s theorem.'?

Now if the Berry potential A(R) were an ordinary vec-
tor field such that under the infinitesimal rotation

R-R+8aiXR, (52)
we have
AR)-A(R - SaiixR) + SaiXA(R), (53)

then rotational invariance of H ., and hence the conserva-
tion of total angular momentum would be transparent.
Such a transformation property is guaranteed, for example,
by the choice

AR) =RAR). (54)

Obviously, the monopole Berry potential—Eq. (39)—is
not of this form and thus simple rotational invariance does
not obtain. Nevertheless, the physics can still be invariant,
provided that the new vector potential is related to the old
by a gauge transformation'?

AR)->A(R) + Vz¢(R) .
This condition then reads
A(R)-A(R) + baiiXA(R) —SaixXRV,A(R)

(55)

=A(R) +Vz4(R), (56)
ie.,
V:d(R) =8a[iXA(R) —iaXRV,AR)]. (57)
This solution to this equation for our case is
6(R) = — 8a((1/2R)R-ii + fi*RXA) . (58)
[ This is clear since
Ve:¢(R)
- 6a( LA L RaR 4 axA— (ﬁxR),.VRA,.)
2 R 2R .
=6a(— (172R)RX (iXR) + fiXA
— (AXR) X (Vz XA) —fiXRVA). (59)
Using V, XA = R/2R? the result follows. ]
Writing the rotation operator now as
O'=expibanrX(P—A), (60)
we find
(61)
(Then
O"[(P—A)2M]0"'= (P~ A)*/2M, (63)

as desired. The physics behind this change is easily identi-
fied by noting that
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J=RXMR —JR (64)

is then a conserved angular momentum. The first term here
is simply the usual rotational (kinetic) angular momen-
tum. The second is not as familiar, although it too has a
simple origin—it is the angular momentum contained in
the E,B fields of a charge e monopole g system with eg =
Thus place the monopole at the or1g1n of coordinates and
the charge at height a along the z axis. Then

= e(r — ak)/|r — ak]?,
B=gr/P, (65)
and the field angular momentum is found to be

Jbea = _I‘ster(EXB)
47 .

=&f , L 1
47 r (P +a® —2racos 6)%?
X (7 cos F — kr?)

X (7 cos OF — kr?)

1

2
(P + a* — 2ra cos )2 (cos™6 — 1)
1 2
(7 + a* — 2ra cos )2 (cos"6—1)
= —l;ge, . (66)

Thus J is simply the total angular momentum of the system
(rotation plus field) as stated.

Note that in our case the field angular momentum is
found to be J#. This means that a system of a simple electric
charge and monopole is a fermion! This result is well
known, but is easily seen from perspective. Such a phenom-
enon is also found in quantum field theory wherein a sys-
tem of spin-zero fields can be found to have half-integral
angular momentum.'* Such “skyrmions” are currently po-
pular pictures of the structure of the nucleon and are asso-
ciated with the existence of so-called “anomalies,” wherein
classical symmetries are violated upon quantization.'* The

quantum-mechanical example above provides an interest- .

ing and elementary introduction to these fascinating top-
ics. .

While we have above explored the consequences of Ber-
ry’s phase in a single simple system, numerous additional
applications have by now been pointed out. In fact, the first
realization of the need for such “anomalous” phases was
noted long ago by chemists studying molecular structure,
who had emphasized the need to modify the slow Hamilto-
nian with vector potential type terms. ' Subsequent to Ber-
ry’s work, the concept of adiabatic phases has been used in
order to understand effects in various areas of physics, such
as the quantized Hall effect,'’ the spin-statistics properties
of quasiparticle excitations in two-dimensional systems,'®
the rotatlon of photon polarization in helical optical fi-
bers,® etc. Even a classical analog, the Hannay angle, has
been found, which gives a new degree of understanding to
adiabatic classical rotations such as occur in the precession
of the Foucault pendulum.?® In nearly every case, what is
found is not so much something new but rather an elegant
and trenchant perspective on the underlying physics. We
shall not here attempt to discuss any of these additional
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systems. However, a number of useful articles of a sum-
mary nature are available.?!

IV. CONCLUSION

We have in this article examined the interesting result
pointed out by Berry that when a quantum-mechanical sys-
tem is moved adiabatically through a closed path in param-
eter space an additional topological phase can arise in addi-
tion to the expected dynamical phase factor

i
exp —iJ dtE, (1) .
4

The meaning of this additional phase was found to be the
“flux” emerging from the crossing point of the adiabatic
energy levels.

We examined this phenomenon in the specific case of a
simple interaction between a magnetic moment and exter-
nal and adiabatically changing magnetic field. The Berry
vector potential was found to be that for a magnetic mono-
pole—charge interaction, and using this result, we were able

, to rederive Dirac’s famous relation between electric and

magnetic charge as well as some interesting physics asso-
ciated with the angular momentum of such a system. While
both results can be found by other means, the Berry poten-
tial argument is an elegant one and provides connections
between otherwise apparently disparate areas of physics.
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Nonradiating sources: The subtle art of changing light into black
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When a point charge accelerates or moves faster than light in a dielectric medium, it radiates.
However, sources of finite size can be designed whose peculiar structure ensures that they do not
radiate under these conditions. The criterion for absence of radiation of a rigid source in free space
is generalized to a dielectric medium, and applied to either oscillating or Cerenkov sources.

L. INTRODUCTION

“Let there be electricity and magnetism, and there is
light!” says Feynman’s personal version of Genesis'; and,
indeed, when an electron is accelerated, it radiates. Though
as human beings we appreciate this property, as physicists,
we do not: Separating sense from nonsense in the equations
of a radiating electron is an old dream and, as Einstein once
said,the electron is a stranger in electrodynamics.2

Even the classical electron at rest is odd: Since like
charges repel, the Coulomb field tends to make it explode
(unless its “mechanical mass” is negative), and one must
imagine rubber strips such as the “Poincaré stresses” to
hold the charge together. Anyway, the electrostatic energy
of a point charge is infinite.

If the classical point electron can accelerate, the situa-
tion grows worse: While radiating, the particle undergoes a
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radiation reaction that has two parts (in its rest frame).
The first one, which is infinite, can be viewed as a contribu-
tion to the mass, sinceit goes as d °r/dt >. But the second one
cannot be so “renormalized” since it is proportional tod *r/
dt?, and can cause the charge to accelerate itself >* (the so-
called runaway solution).

Although quantum electrodynamics is renormalizable
and powerful tools™® have been devised to hide the infini-
ties under the carpet, it nevertheless cannot yield a finite
energy for the point charge, nor a satisfactory theory of an
extended charge.

The old problem of building a clean model for the classi-
cal electron has motivated a search for charge distributions
that do not radiate.” Such charges could undergo force-free
accelerated motion.®

At present, the interest of such sources seems academic:
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