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Simulation of photonic band gaps in metal rod lattices
for microwave applications

E. I. Smirnova, C. Chen, M. A. Shapiro, J. R. Sirigiri, and R. J. Temkin
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 28 June 2001; accepted for publication 16 October 2001!

We have derived the global band gaps for general two-dimensional~2D! photonic band gap~PBG!
structures formed by square or triangular arrays of metal posts. Such PBG structures have many
promising applications in active and passive devices at microwave, millimeter wave, and higher
frequencies. A coordinate-space, finite-difference code, called the photonic band gap structure
simulator~PBGSS!, was developed to calculate complete dispersion curves for lattices for a series of
values of the ratio of the post radius~r! to the post spacing~a!. The fundamental and higher
frequency global photonic band gaps were determined numerically. These universal curves should
prove useful in PBG cavity design. In addition, for very long wavelengths, where the numerical
methods of thePBGSScode are difficult, dispersion curves were derived for the transverse-magnetic
~TM! mode by an approximate, quasi-static approach. Results of this approach agree well with the
PBGSS code for r /a,0.1. The present results are compared with experimental data for
transverse-electric~TE! and TM mode PBG resonators built at Massachusetts Institute of
Technology~MIT ! and the agreement is found to be very good. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1426247#
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I. INTRODUCTION

In high-power microwave devices, the interaction of
intense electron beam with rf circuit is employed. In high
overmoded resonators of devices such as gyrotrons, the p
lem of mode competition arises. To obtain high-efficien
single-mode excitation of microwaves, the rf circuit must
selective with respect to the operating mode, and the
wanted oscillations must be suppressed. The use of phot
band gap ~PBG! structures,1 and in particular two-
dimensional~2D! PBG structures,2 has been experimentall
shown to be a promising approach to the realization of m
selective circuits.3–8

The intensive PBG structure research originated fr
studying of dielectric lattices.1,2,9–11 Recently, considerable
interest in metallic PBG structures5–8,12–14 has been ex-
pressed. For analysis of metallic PBG cavities formed
single or multiple defects in the PBG structure, finit
element codes such asSUPERFISH15 and High Frequency
Structure Simulator~HFSS!16 are ideally suited. For studie
of wave propagation in the bulk of metallic PBG structure
on the other hand, the plane wave expansion method,12 gen-
eralized Rayleigh expansion method,13 finite-difference time-
domain scheme,14 and the coordinate-space finite-differen
method5 have been used. It is well known12 that, due to the
convergence problem, the plane wave expansion metho
applicable only to the lattices with the size of conducto
much smaller than the lattice period, but at microwave f
quencies the lattices with a large ratio of post radius to
lattice constant are of the main interest.5–8

One of the most important and computationally ch
lenging problems is the calculation of the global photo
band gaps. A number of papers2,10,11 report that the globa
photonic band gaps were determined for dielectric lattic
9600021-8979/2002/91(3)/960/9/$19.00
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An attempt to study global photonic band gaps in meta
lattices was made in Ref. 13, but only the first-order ba
gap of a square lattice was calculated there.

In this paper, we present the results of the numerical
theoretical investigation of the wave propagation in 2D p
fect conductor~metal! lattices. Using the coordinate-spac
finite-difference method, we have developed a code, nam
Photonic Band Gap Structure Simulator~PBGSS!,17 to analyze
the dispersion characteristics for the wave propagation in
bulk of 2D square and triangular PBG structures. T
coordinate-space finite-difference method is used inPBGSS

because of its reliability and high accuracy with fine grid
Extensive numerical simulations were performed to de
mine the fundamental and higher frequency global photo
band gaps for both transverse-electric~TE! and transverse-
magnetic~TM! modes in square and triangular lattices.
our calculation we put the longitudinal wave vector equal
zero that obviously does not affect the generosity of resu
The global band gap charts are extremely useful for the
sign of PBG devices such as metallic PBG cavities with h
mode selectivity. In addition, some theoretical quasistatic
timates for the TM mode dispersion curves in square latti
are proposed, and these estimates are in good agreemen
the PBGSS simulations for the case of the conducting po
size much smaller than the wavelength. Finally, comparis
are made between thePBGSSsimulations and several recen
experiments.7,8

The organization of this article is as follows. In Sec.
we describe the numerical method employed in thePBGSS

code. In Sec. III, we present the results of dispersion cur
and global photonic band gap calculations. In Sec. IV,
comparison is made between thePBGSSsimulations for the
case of the small post-radius and theoretical quasistatic
mates. In Sec. V, we compare the results ofPBGSSsimulation
© 2002 American Institute of Physics
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and several experiments performed recently at Massachu
Institute of Technology~MIT !. Conclusions are presented
Sec. VI.

II. FINITE-DIFFERENCE ALGORITHM DESCRIPTION

Two types of metal lattices are considered, namely
square lattice@Fig. 1~a!# and the triangular lattice@Fig. 1~b!#.
The system of a 2D periodic array of metal cylinders is fu
described by the periodic conductivity profile, which for th
case of a square lattice is

s~x!5s~x'!5H `, ~x2ma!21~y2na!2,r 2,

0, otherwise,
~1!

and for the triangular lattice is given by

s~x!5s~x'!

5H `, Fx2S m1
n

2DaG2

1Fy2
A3

2
naG2

,r 2,

0, otherwise.

~2!

In Eqs.~1! and~2!, x'5xêx1yêy is the transverse displace
ment, r is the radius of the conducting cylinder,a is the
lattice spacing, andm and n are integers. The conductivit
profile satisfies the periodic condition

s~x'1Tmn!5s~x'!, ~3!

with the set of periodicity vectorsTmn defined as

Tmn5H maêx1naêy ~square lattice!,

S m1
n

2Daêx1
A3

2
naêy ~ triangular lattice!.

~4!

FIG. 1. Scheme of PBG structures representing~a! square lattice and
~b! triangular lattice of perfectly conducting cylinders with radiusr and
spacinga.
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A. Formulation of the eigenvalue problem

It is readily shown from Maxwell’s equations that th
wave field in the two-dimensional PBG structures can
decomposed into two independent classes of modes: the
modes and the TM modes. In a TE mode the electric fi
vector is perpendicular to the post-axis and in a TM mo
the magnetic field vector is perpendicular to the post axis.
the field components in the TM~TE! modes can be expresse
through the axial component of the electric~magnetic! field,
which we will further denote byc. Since the system is ho
mogeneous along thez-axis, we can take the Fourier tran
form of c in axial coordinatez and timet and consider

c~x' ,kz ,v!5E E c~x' ,z,t !ei ~kzz2vt ! dz dt,

which we will denote hereafter byc(x') assuming that the
frequencyv and the longitudinal wave numberkz are fixed.
The Helmholtz equation forc(x') follows from Maxwell’s
equations,

¹'
2 c~x'!5S kz

22
v2

c2 Dc~x'!. ~5!

The boundary conditions on the surfacesSof the conducting
posts are

cuS50 ~TM mode!, ~6!

]c

]nU
S

50 ~TE mode!, ~7!

wheren is the normal vector to the post surface.
The discrete translational symmetry of the conductiv

profile allows us to write the fundamental solution of th
Helmholtz equation in Bloch form so that

c~x'1T!5c~x'!eik'•T, ~8!

whereT is any vector ofTmn , k'5kxêx1kyêy is an arbitrary
transverse wave number. Thus we need only solve Eq.~5!
inside the fundamental unit cell defined by

uxu<a/2, uyu<a/2 ~square lattice!, ~9!

Ux2
y

A3
U< a

2
, uyu<

A3

4
a ~ triangular lattice!. ~10!

The following periodic boundary conditions are deduc
from Eq. ~8!:

cS a

2
,yD5eikxacS 2

a

2
,yD

cS x,
a

2D5eikyacS x, 2
a

2D ~square lattice!, ~11!
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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cS a

2
1

A3

3
y,yD 5eikxacS 2

a

2
1

A3

3
y,yD

cS x,
A3

4
aD 5eikxa/21 ikyA3a/2cS x2

a

2
,2

A3

4
aD ~ triangular lattice!, ~12!
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Equation~5! together with boundary conditions~6! and~11!
or ~7! and ~12! define the eigenvalue problem of findingg2

5v2/c22kz
2 as a function ofk' .

The periodicity of the exponent in Eq.~8! means that the
possible valuesk' can be restricted to the irreducible Bri
louin zones of the reciprocal lattices, which for the cases
square and triangular lattices are illustrated in Fig. 2. T
three special points in Fig. 2~a!, G, X, and M, correspond
respectively to k'50, k'5(p/a)êx , and k'5(p/a)(êx
1êy).

The three special points in Fig. 2~b!, G, X, andJ, corre-
spond to k'50, k'5(2p/A3a)êy , and k'5(2p/3a)(êx

1A3êy).

B. Numerical scheme of the eigenvalue computation

To compute the eigenmodes for radio frequency~rf!
wave propagation in the two-dimensional PBG structur
we have developed thePBGSS code.17 The PBGSS code is
based on a real-space finite-difference method. We cove
fundamental unit cell of the square~triangular! lattice by
square ~triangular! mesh with (2N11)3(2N11) mesh
points. Outside the conducting posts, the Helmholtz equa

FIG. 2. Reciprocal lattices and Brillouin zones for~a! square lattice and~b!
triangular lattice~irreducible Brillouin zones for each type of lattice a
shaded!.
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~5! is approximated by the set of linear relations between
valuesc i , j of the functionc(x') at the point (i , j ) of the
mesh~the mesh pointi 5 j 50 corresponds to the origin o
the fundamental cell!. We will refer to the equation

c i 11,j1c i 21,j1c i , j 111c i , j 2124c i , j52g2h2c i , j
~13!

for the square lattice, and

4~c i 11,j1c i 21,j1c i , j 111c i , j 21!

2~c i 11,j 112c i 11,j 212c i 21,j 111c i 21,j 21!216c i , j

523g2h2c i , j ~14!

for the triangular lattice, as ‘‘equation (i , j ). ’’ Here, h
5a/(2N11) is the mesh step, andg25v2/c22kz

2. Al-
though Eqs.~13! and~14! are valid for arbitrary realkz , we
will only present, without loss of generality, numerical r
sults forkz50 in Sec. III. The periodic boundary condition
~11! and ~12! are expressed explicitly as

cN11,j5c2N, je
ikxa,

~square lattice!,
c i ,N115c i ,2Neikya ~15!

cN11,j5c2N, je
ikxa,

~triangular lattice!.
c i ,N115c i ,2Nei ~a/2!~kx1A3ky! ~16!

The mesh points, which fall inside the conducting posts,
excluded from the system of linear equations~13! or ~14!
using boundary conditions in Eqs.~6! or ~7!. The boundary
condition in Eq.~6! is implemented by setting the value o
c i , j50 for the grid point (i , j ) inside of the conducting cyl-
inder. The boundary condition in Eq.~7! is implemented in
the following way: if some point entering the linear equati
( i , j ) falls inside the post, we put the value ofc in this point
equal to c i , j . For example, if the mesh point (i 11,j )
5(5,3) is inside the metal post in a square lattice, then
setc5,35c4,3 in the linear equation (i , j )5(4,3) in Eq.~13!
to obtainc3,31c4,41c4,223c4,352g2h2c4,3. This assures
that the boundary condition in Eq.~7! is satisfied in the limit
h→0. More importantly, we have chosen this simple imp
mentation of the boundary condition in Eq.~7! in order to
preserve the Hermitian nature of the matrix of linear eq
tion ~13! or ~14!. Since we do not take into account the loss
in electrodynamic system, the initial eigenvalue problem
Hermitian, and we have found empirically that the preser
tion of the Hermitian nature improved the convergence of
algorithm. Thus we obtain a closed set of (2N11)22M
linear equations, whereM is the number of the mesh point
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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that fall inside the conducting cylinder. The matrix of th
system is Hermitian and we compute the eigenvaluesg from
a standard Fortran subroutine.

III. RESULTS OF EIGENMODE AND BAND GAPS
CALCULATIONS

In this section, we present the new results ofPBGSScal-
culations of the eigenfrequencies for TE and TM modes
the two-dimensional square and triangular lattices. Initial
sults of thePBGSScalculations were discussed elsewhere18

For all the plots presented we setkz50, i.e.,g5v/c, which
obviously does not affect the generality of the results. In
of the PBGSScalculations, we use the value ofN520. Our
experience shows that the results are nearly identical asN is
further increased.

A. TM modes

Figure 3 is presented to demonstrate the local band
which occurs at theX point ~see Fig. 2! of the Brillouin zone,
as obtained from thePBGSScalculations forr /a50.2. Figure
3~a! shows the first and second TM propagating modes~sim-
ply referred to below as ‘‘modes’’! in the square lattice

FIG. 3. Plots of the normalized frequencyva/2pc versus normalized wave
number for the first and second TM propagating modes as obtained
PBGSScalculations,r /a50.2. The solid curve represents the first TM prop
gating mode, and the dashed curve represents the second TM propa
mode. The two cases correspond to~a! wave propagation in thex-direction
with ky5kz50 through the square lattice, and~b! wave propagation in the
y-direction withkx5kz50 through the triangular lattice.
Downloaded 22 Jan 2002 to 132.250.135.130. Redistribution subject to A
n
-

ll

p,

where the band gap is actually the result of the interaction
two waves withk15(p/a)êx andk252(p/a)êx in the pe-
riodic structure. Figure 3~b! shows the first and second TM
modes in the triangular lattice.

Figure 4 shows the dispersion characteristics~Brillouin
diagrams! for the TM modes as the wave vectork' varies
from the center of the Brillouin zone~G point in Fig. 2!, to
the nearest edge of the Brillouin zone~X point in Fig. 2!, and
to the far edge of the Brillouin zone~M point for the square
lattice andJ point for the triangular lattice!. Two cases cor-
respond to different types of lattices. In Fig. 4,r /a50.2 and
for the square lattice a global band gap between the first
second modes can be seen. For the triangular lattice the
and the second mode are intersecting and there is no b
gap between them. For the TM modes, there is a cutoff
quency that is the zeroth-order band gap.

To determine the global TM band gaps, we perfo
more extensive computations. It is important to perfo
simulations with small grid step to assure the accuracy of
simulation results. For each value ofr /a, we search through
all k' on the boundary of the Brillouin zone and find th
minimum and maximum of each dispersion curve. Then
check if there is a gap between any two adjacent modes,
if the minimum of the higher order mode is above the ma
mum of the lower order mode. The results are shown in F

m

ting

FIG. 4. Plots of the several lowest normalized eigenmodes versus the w
vectork' for TM modes ask' varies from the center of the Brillouin zone
~G point in Fig. 2!, to the nearest edge of the Brillouin zone~X point in Fig.
2!, and to the far edge of the Brillouin zone~M or J point!. Here, r /a
50.2, and the two cases correspond to~a! square lattice and~b! triangular
lattice.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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5. Shown in Fig. 5~a! are the five lowest-order global TM
band gaps for the square lattice. The zeroth-order global
band gap exists below the first mode, that is, there is a cu
frequency for the TM modes. The cutoff frequency exi
even for very small conducting cylinders and goes to z
logarithmically asr /a→0 ~which is illustrated in Fig. 5 with
a dashed curve continuation of the calculated cutoff curv!.
The first-order global TM band gap occurs between the fi
and second lowest modes. There is a threshold for first-o
global TM band gap opening atr /a>0.1. Higher-order glo-
bal TM band gaps occur between the third and fourth, fou
and fifth, and fifth and sixth modes. There is no global ba
gap between the second and third modes.

Shown in Fig. 5~b! there are three lowest-order glob
TM band gaps for the triangular lattice. In Fig. 5~b!, the
zeroth-order global TM band gap exists below the first mo
which is similar to the case of the square lattice. Althou
there is a local band gap atX point between the first and
second modes~as shown in Fig. 3!, these modes are inte
secting atJ point and the global band gap does not occ
between them. The threshold for the occurrence of the fi
order global TM band gap, which is between the second
third modes, isr /a>0.2. The second-order global TM ban
gap occurs between the sixth and seventh modes. We
that the width of each global TM band gap increases as
ratio r /a increases.

FIG. 5. Plots of global frequency band gaps for TM mode as functions
r /a as obtained from PBG calculations for~a! square lattice and~b! trian-
gular lattice. The solid dot represents the operating point of the 17 GHz
accelerator cavity.
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B. TE modes

Figure 6 shows the TE mode local band gap, which
curs at theX point ~see Fig. 2! of the Brillouin zone, as
obtained from thePBGSS calculations. Figure 6~a! demon-
strates the dispersion curves for the first and second
propagating bands in the square lattice. Figure 6~b! shows
the dispersion curves for the first and second TE propaga
bands in the triangular lattice. In contrast to the TM mod
there is no cutoff in the case of a TE mode. The first mo
goes to zero at theG point for both square and triangula
lattices. The first mode at theG point degenerates into th
electrostatic static solution~with zero frequency!, which sat-
isfies the boundary conditions in Eq.~6!.

Figure 7 shows the Brillouin diagrams for the TE mod
as the wave vectork' varies from the center of the Brillouin
zone~G point in Fig. 2!, to the nearest edge of the Brilloui
zone~X point in Fig. 2!, and to the far edge of the Brillouin
zone~M point for the square lattice andJ point for the trian-
gular lattice!. Two cases correspond to the square and tri
gular lattices. In Fig. 7,r /a50.2 and there are no global TE
band gaps for either square or triangular lattices. This is

f

TFIG. 6. Plots of the normalized frequencyva/2pc versus normalized wave
number for the first and second TE propagating modes as obtained
PBGSScalculations,r /a50.2. The solid curve represents the first TM prop
gating mode, and the dashed curve represents the second TM propag
mode. The two cases correspond to:~a! wave propagation in thex-direction
with ky5kz50 through the square lattice, and~b! wave propagation in the
y-direction withkx5kz50 through the triangular lattice.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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ferent from the TM case where the first band gap occ
between the first and second modes forr /a>0.1.

We have also calculated the global TE band gaps in b
types of lattices. The results are shown in Fig. 8. For
square lattice@Fig. 8~a!#, we found that the first global TE
band gap occurs whenr /a.0.3. This is the band gap be
tween the first and second modes, which are tangent at thM
point for lower ratios ofr /a. Unlike the first global TM band
gap, the lower boundary of this band gap decreases
increasingr /a. The higher order band gap opens and th
closes for even lower ratio ofr /a; this gap is between the
sixth and the seventh modes.

For the triangular lattice three lowest global TE ba
gaps are shown in Fig. 8~b!. All of these gaps tend to clos
with increasingr /a except for the lowest one, which occu
between the second and third modes forr /a.0.35. The sec-
ond global TE band gap, which is between the third a
fourth modes, appears for lower ratios ofr /a than those for
the lowest global TE band gap. The third global TE band g
is between the sixth and seventh modes.

The global TE band gaps in the metallic lattice resem
qualitatively the previously reported global TE and TM ba
gaps in dielectric lattices,2,11 which typically close with in-
creasingr /a. But there are two striking differences betwe
the metal band gaps and dielectric band gaps. First, there
zeroth-order global TM band gap in metallic lattices, whi

FIG. 7. Plots of the several lowest normalized eigenmodes versus the
vectork' for TE modes ask' varies from the center of the Brillouin zone~G
point in Fig. 2!, to the nearest edge of the Brillouin zone~X point in Fig. 2!,
and to the far edge of the Brillouin zone~M or J point!. Here,r /a50.2, and
the two cases correspond to~a! square lattice and~b! triangular lattice.
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is a cutoff analogous to that in a conventional waveguide
exists for all values ofr /a, whereas there is no such cutoff i
dielectric lattices for either TE or TM modes. Second, t
width of the global TM band gap in the metallic lattice in
creases with increasingr /a, whereas the global TE and TM
band gaps in dielectric lattices typically close as the ratior /a
increases.

IV. COMPARISON BETWEEN PBGSS SIMULATION AND
QUASI-STATIC APPROXIMATION

While trying to benchmark theoretically thePBGSScal-
culations, we found an explanation of the behavior of t
first and second dispersion curves for the TM mode near
X point in a square lattice in the framework of the qua
static approximation, which we describe in this section.
mentioned earlier, theX point in a square lattice correspond
to a simple case of the wave propagation in thex-direction
with ky5kz50.

Figure 9~a! shows two rows of the posts with a wav
incident perpendicularly. The electric field in the wave
parallel to the posts and excites longitudinal currents
them. The alternating current radiates and so a reflection
pears. The reflections from different rows if phased prope
can cause the total reflection of the wave from the P
array, and that is how the local band gap forms.

ve
FIG. 8. Plots of global frequency band gaps for TE mode as functions ofr /a
as obtained from PBG calculations for~a! square lattice and~b! triangular
lattice. The solid dot represents the operating point of the 140 GHz M
gyrotron cavity.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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Instead of describing the electromagnetic system
terms of the fieldsE andH it is convenient to introduce new
variables: the ‘‘source voltage’’V and ‘‘current’’ I per unit
length of the post. The ‘‘voltage’’ and ‘‘current’’ are mea
sures of the lowest mode electric field parallel to the po
and the lowest mode magnetic field transverse to the po
The voltages and currents obey the transmission line e
tions since the fields themselves obey such equations. F
this point of view one row of the posts can be properly d
scribed by an equivalent two-port circuit, in which the co
ducting cylinders are represented by lumped elements.19 The
equivalent circuit is illustrated in Fig. 9~b!. The following
values of impedancesXa and Xb , valid in the limit
rv/2pc!1 andr /a!1 are given in Ref. 19:

Xa5Z0

V

2p H lnS a

2pr D1 (
m51

` F S m22
V2

4p2D 21/2

2
1

mG J ,

~17!

Xb52pZ0VS r

aD 2

, ~18!

where Z05377 ohm is the impedance of vacuum andV
5va/c is the normalized frequency. Because we conside
lossless system, all the reactances and susceptances in
9~b! are purely imaginary. It should be emphasized that i
only the sign of a reactance or susceptance that dict
whether an inductor or capacitor is chosen. The reactanc
susceptance does not, in general, have the simple frequ
dependence of a lumped-element inductor or capacitor. S
the row of posts has a plane of symmetry, the two capaci
in the circuit can be chosen of equivalent value.

Suppose, we apply a current sourceI 1 at port 1 in Fig.
9~b! and current sourceI 2 at port 2. LetVi j be the voltage at

FIG. 9. Equivalent circuit model for wave propagation in thex-direction in
the square lattice:~a! geometry and~b! equivalent circuit for one row of
posts.
Downloaded 22 Jan 2002 to 132.250.135.130. Redistribution subject to A
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port i due to the sourceI j . The impedance matrixẐ is intro-
duced with the elements representing the various react
between two current sources

Ẑ5S Z11 Z12

Z21 Z22
D , Zi j 5

Vi j

I j
.

Using the Kirchhoff laws we find the elements of matrixẐ

Z115Z2252 iXa1 iXb , ~19!

Z125Z2152 iXa . ~20!

The transmission matrixT̂ relates the voltage and cur
rent at port 2 to the voltage and current at port 1

S V2

I 2
D5T̂S V1

I 1
D .

Matrix T̂ is related toẐ in the following way:

T̂5S Z22

Z12
2

Z11Z222Z12
2

Z12

2
1

Z12

Z11

Z12

D . ~21!

The square lattice, representing a conducting cylinder a
is a periodic sequence of the rows separated by the dist
a, and the equivalent circuit of this array is a periodic cha
of two-port circuits and spacings. The electric and magne
fields and thus the voltage and current vary sinusoidaly al
the spacing and the fields on the right edge of the spacing
related to the voltage and current on the left edge by
spacing transmission matrix

T̂s5S cosV iZ0 sinV

i

Z0
sinV cosV D . ~22!

The transmission matrix of one period of the chain of rows
given by the multiplication of two transmission matrixes:

Â5T̂•T̂s . ~23!

Consider the infinite chain of rows. Let us search for t
eigenmode of such a system with the effective voltage
current changing from one row to another as

V~na!5V~0!einkxa,

I ~na!5I ~0!einkxa.

The voltages and currents at the adjacent rows are conne
through the transmission matrix

S V~a!

I ~a! D5S V~0!

I ~0! Deikxa5ÂS V~0!

I ~0! D . ~24!

Equation ~24! has a nontrivial solution only when
det(Â2Îeikxa)50. This, together with the transmission matr
property detÂ5A11A222A21A1251, finally gives us the ap-
proximate dispersion relation for TM wave propagation
the x-direction in the square lattice of thin conductors
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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cos~kxa!5
A111A22

2
5S 12

Xb

Xa
D cosV

1
1

2 S 2XaXb2Xb
2

XaZ0
1

Z0

Xa
D sinV. ~25!

When the perturbation is absent~i.e., when there are no
metallic posts!, kxa5p, V5p is the solution of Eq.~25!. In
the system with posts, Eq.~25! will give two distinct roots
for V whenkxa5p. The difference between the two root
denoted byDV5V22V1 , gives the width of the first loca
gap at theX point.

For V'p and r /a!1, we rewrite Eqs.~17! and ~18!
approximately as

Xa>Z0

V

2p H lnS a

2pr D1 (
m51

` F 1

Am221/4
2

1

mG J
5Z0

V

2p H lnS a

2pr D10.181J , ~26!

Xb>0. ~27!

For very low ratios ofr /a such that ln(a/2pr )@1, the loga-
rithmic term in Eq.~26! dominates, and Eq.~25! together
with Eqs.~26! and ~27! yields atkxa5p

V15p1OS r 2

a2D ,

V25p1DV, ~28!

DV5
2

ln~a/2pr !10.818
1OS 1

ln~a/2pr ! D
3

.

To benchmark thePBGSScode, we compare the abov
theoretical results to the simulations. Figure 10 shows
dependence of the local TM band gap width at theX point on
the ratior /a in the interval 0,r /a,0.1 for the square lat-
tice. The dotted curve is obtained in the following way: w
plug the expressions~17! and~18! for Xa andXb to Eq.~25!
and then solve it numerically forV for kxa5p and different
r /a. The solid curve is obtained fromPBGSS calculations.
Figure 10 indicates that thePBGSSsimulation results agree

FIG. 10. Comparison between thePBGSScalculations~solid curve! and qua-
sistatic estimates~dashed curve! of the local TM band gap width atk
5(p/a,0,0) for the square lattice.
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with the quasi-static theory within 10%. This is consiste
with the fact that the errors in the approximate expressi
for the impedances~17! and ~18! were estimated in Ref. 19
to be less then 10% in the range 0,r /a,0.1. Thus we con-
clude that the results from thePBGSScalculations are in good
agreement with the analytical result forr /a!1.

V. DESIGN OF PBG CAVITIES FOR ACCELERATOR
AND MICROWAVE GENERATION EXPERIMENTS

Two PBG experiments were conducted recently at M
The first one was an accelerator cavity operating in the
mode,7 and the second one was a gyrotron cavity with a
mode.8 These applications of the PBG cavity are to elimina
competing modes, which appear in conventional acceler
or gyrotron resonators and reduce the efficiency of the bu
acceleration or mode excitation. TheSUPERFISH15 andHFSS16

codes were used for the PBG cavity designs. However,
ther SUPERFISHnor HFSScodes can be used to calculate gl
bal band gaps in PBG cavities and thus cannot serve
proof of the single mode excitation. The new code calcu
ing the bulk PBG structures dispersion characteristics w
needed and thus thePBGSScode was created.

The MIT PBG accelerator cavity is made up of a tria
gular lattice of metal rods and operates in the TM mode at
GHz.7 The PBG accelerator cavity was first proposed in R
6 with the accelerating TM mode formed by a defect in a
square metal lattice. A defect in the 17 GHz MIT accelera
cavity is created by one missing rod in a triangular lattic
The lattice has the post radiusr 50.079 cm and the distanc
between the nearest postsa50.64 cm, which corresponds t
r /a50.123 andva/2pc50.363. The operational point o
the cavity is shown by the solid dot in the Fig. 5~b!. It can be
seen from the picture that the cavity operates in the ze
order band gap~below the cutoff! and there are no othe
band gaps above. This proves that there is only one m
which can be confined in the cavity. The higher frequen
modes excited by the electron bunch in conventional ac
erator~wakefields! are able to leak through the lattice, whic
provides an effective damping mechanism for the wakefie
in the cavity. Figure 11~a! shows the cross-section of th
HFSSmodel of the PBG accelerator cavity. The magnitude
the electric field of the confined mode is shown in color. T
mode structure resembles the structure of the TM010 mode of
a conventional linac pillbox cavity.

The MIT PBG gyrotron resonator cavity is made up o
triangular lattice of 102 copper rods and operates in a
mode at 140 GHz.8 Although the triangular array can hol
121 rods, but the 19 innermost rods were omitted to crea
defect. The lattice parameters are: the post radiusr
50.795 mm and the distance between the nearest posa
52.03 mm, which corresponds tor /a50.39 andva/2pc
50.95. The operational point of the cavity is shown by t
solid dot in Fig. 8~b!. It can be seen from the picture, that th
cavity operates in the middle of the first-order global ba
gap. TheHFSSmodel of the PBG gyrotron cavity is shown i
Fig. 11~b! with the magnitude of the electric field in th
confined mode shown in color. The mode structure resem
the structure of the TE041 mode of a conventional gyrotron
cavity.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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The PBGSScode calculations not only help us with un
derstanding of the former experimental results, but also s
gest some improvements, which can be made in future ca
designs. For example, as it can be seen from Fig. 5~b!, the
post radius in the accelerator cavity at 17 GHz can be
creased without affecting the selectivity properties. The
crease of the post radius can help to solve the problem o
rods cooling, which becomes critical in high intensity rf a
celerators.

VI. CONCLUSIONS

We conducted an extensive computational investiga
of 2D metallic photonic band gap structures with applicat
to the design of vacuum electron devices and rf accelera
A finite-difference code was developed to study the b
wave propagation properties in the PBG structures. T
types of metal post lattices, namely, square and triangu
were considered. We computed the dispersion characteri
for both TE and TM modes and determined the global
and TM band gaps. Striking differences were found betw
the band gap structures in metallic lattices and those in
electric lattices, especially for TM modes.

An attempt was made to check the validity of the calc
lations theoretically. The simplest limit is when the radii
the lattice posts are much smaller than the wavelength

FIG. 11. ~Color! The relative magnitude of the electric field in a mod
confined in PBG cavity as obtained from theHFSS simulations for ~a!
TM010-like mode at 17 GHz and~b! TE041-like mode at 140 GHz.
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the distance between the posts. In this limit the approxim
dispersion relations were derived in the framework of a q
sistatic approach. We compared the approximate disper
curves with the results of thePBGSScalculations and found
good agreement. We also explained the logarithmic beha
of the width of the local band gap at theX point whenr /a
→0. Further development of the quasi-static theory is un
way in order to find an explanation for some other features
the dispersion curves.

Finally, the results of the global band gap calculatio
were compared with two PBG experiments conducted
MIT. The results of the calculations on the global band ga
not only allowed us to understand better the experime
results but provided us with useful information for futu
PBG cavity designs.
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