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Simulation of photonic band gaps in metal rod lattices
for microwave applications
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We have derived the global band gaps for general two-dimens{@balphotonic band gapPBG)
structures formed by square or triangular arrays of metal posts. Such PBG structures have many
promising applications in active and passive devices at microwave, millimeter wave, and higher
frequencies. A coordinate-space, finite-difference code, called the photonic band gap structure
simulator(PBGS9, was developed to calculate complete dispersion curves for lattices for a series of
values of the ratio of the post radiys) to the post spacinga). The fundamental and higher
frequency global photonic band gaps were determined numerically. These universal curves should
prove useful in PBG cavity design. In addition, for very long wavelengths, where the numerical
methods of thesGsscode are difficult, dispersion curves were derived for the transverse-magnetic
(TM) mode by an approximate, quasi-static approach. Results of this approach agree well with the
PBGSS code for r/a<0.1. The present results are compared with experimental data for
transverse-electridTE) and TM mode PBG resonators built at Massachusetts Institute of
Technology(MIT) and the agreement is found to be very good. 2@02 American Institute of
Physics. [DOI: 10.1063/1.1426247

I. INTRODUCTION An attempt to study global photonic band gaps in metallic
lattices was made in Ref. 13, but only the first-order band
In high-power microwave devices, the interaction of angap of a square lattice was calculated there.
intense electron beam with rf circuit is employed. In highly In this paper, we present the results of the numerical and
overmoded resonators of devices such as gyrotrons, the protheoretical investigation of the wave propagation in 2D per-
lem of mode competition arises. To obtain high-efficiency,fect conductor(meta) lattices. Using the coordinate-space
single-mode excitation of microwaves, the rf circuit must befinite-difference method, we have developed a code, named
selective with respect to the operating mode, and the unPhotonic Band Gap Structure Simulatescs9,!’ to analyze
wanted oscillations must be suppressed. The use of photonihe dispersion characteristics for the wave propagation in the
band gap (PBG) structures, and in particular two- bulk of 2D square and triangular PBG structures. The
dimensional(2D) PBG structured,has been experimentally coordinate-space finite-difference method is usedBass
shown to be a promising approach to the realization of mod&ecause of its reliability and high accuracy with fine grids.
selective circuit$8 Extensive numerical simulations were performed to deter-
The intensive PBG structure research originated fronmine the fundamental and higher frequency global photonic
studying of dielectric lattice$?°~* Recently, considerable band gaps for both transverse-elecific€) and transverse-
interest in metallic PBG structure$'>~* has been ex- magnetic(TM) modes in square and triangular lattices. In
pressed. For analysis of metallic PBG cavities formed byour calculation we put the longitudinal wave vector equal to
single or multiple defects in the PBG structure, finite-zero that obviously does not affect the generosity of results.
element codes such asuperFISH® and High Frequency The global band gap charts are extremely useful for the de-
Structure SimulatofHFSS are ideally suited. For studies sign of PBG devices such as metallic PBG cavities with high
of wave propagation in the bulk of metallic PBG structures,mode selectivity. In addition, some theoretical quasistatic es-
on the other hand, the plane wave expansion methgdn-  timates for the TM mode dispersion curves in square lattices
eralized Rayleigh expansion methbtidinite-difference time-  are proposed, and these estimates are in good agreement with
domain schemé& and the coordinate-space finite-differencethe PBGSS simulations for the case of the conducting post
method have been used. It is well knownthat, due to the size much smaller than the wavelength. Finally, comparisons
convergence problem, the plane wave expansion method &e made between tlrsGsssimulations and several recent
applicable only to the lattices with the size of conductorsexperiments:®
much smaller than the lattice period, but at microwave fre-  The organization of this article is as follows. In Sec. I,
guencies the lattices with a large ratio of post radius to theve describe the numerical method employed in teess
lattice constant are of the main interést. code. In Sec. lll, we present the results of dispersion curves
One of the most important and computationally chal-and global photonic band gap calculations. In Sec. IV, the
lenging problems is the calculation of the global photoniccomparison is made between theGsssimulations for the
band gaps. A number of pap&t8!!report that the global case of the small post-radius and theoretical quasistatic esti-
photonic band gaps were determined for dielectric latticesmates. In Sec. V, we compare the resulteBEsssimulation

0021-8979/2002/91(3)/960/9/$19.00 960 © 2002 American Institute of Physics

Downloaded 22 Jan 2002 to 132.250.135.130. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



J. Appl. Phys., Vol. 91, No. 3, 1 February 2002 Smirnova et al. 961

A. Formulation of the eigenvalue problem

It is readily shown from Maxwell's equations that the
wave field in the two-dimensional PBG structures can be
decomposed into two independent classes of modes: the TE
modes and the TM modes. In a TE mode the electric field
vector is perpendicular to the post-axis and in a TM mode
the magnetic field vector is perpendicular to the post axis. All
the field components in the TRTE) modes can be expressed
through the axial component of the electfinagneti¢ field,
which we will further denote byp. Since the system is ho-
mogeneous along theaxis, we can take the Fourier trans-
form of ¢ in axial coordinatez and timet and consider

lp(xj_’ksz):J J (x, ,z,0)e'kZ Y dz dt,

which we will denote hereafter by(x,) assuming that the
frequencyw and the longitudinal wave numbgy are fixed.
The Helmholtz equation fo(x,) follows from Maxwell's

equations,
FIG. 1. Scheme of PBG structures representiag square lattice and w2
b) triangular lattice of perfectly conducting cylinders with radiusand 2 2
i perfecty 9 Vl¢0q>=(kz—z?>w0q>. (5)

i The boundary conditions on the surfac&af the conducting
and several experiments performed recently at Massachuse]ggstS are

Institute of TechnologyMIT). Conclusions are presented in

Sec. VL. #|s=0 (TM mode), (6)

II. FINITE-DIFFERENCE ALGORITHM DESCRIPTION i

. ) — =0 (TE de, 7
Two types of metal lattices are considered, namely the  dnjg ( modg ™

square latticgFig. 1(a)] and the triangular latticg=ig. 1(b)].
The system of a 2D periodic array of metal cylinders is fully\yheren is the normal vector to the post surface.
described by the periodic conductivity profile, which for the The discrete translational symmetry of the conductivity

case of a square lattice is profile allows us to write the fundamental solution of the
w, (x—ma)2+(y—na)?<r? Helmholtz equation in Bloch form so that
X)=0o(X, )= . 1
s =0x) 0, otherwise, @

P(x, +T)=p(x, ek T, (8
and for the triangular lattice is given by

o(X)=a(X,) whereT is any vector ofl ,,, k, =k,&+k,&, is an arbitrary
transverse wave number. Thus we need only solve(E&xg.

2 inside the fundamental unit cell defined by

<r?,

2
+

N n 3

m+ = ——na
2 Y= @
0, otherwise. |x|<al2, |y|<al2 (square lattick (9)

OO, X— a

In Egs.(1) and(2), X, =x&+ Y&, is the transverse displace-

ment, r is the radius of the conducting cylindes, is the _y|_a \/_§ ; ;
lattice spacing, anan and n are integers. The conductivity X J3 = 2’ Ivl= 4 2 (triangular latticg.  (10)
profile satisfies the periodic condition
o(X, + T =0(X,), (3)  The following periodic boundary conditions are deduced
_ N i from Eq.(8):
with the set of periodicity vector$,,, defined as
mag,+nae, (square lattice a . a
€y ey q (/I( _,y) :elkxaw( __'y)
Tmn= ny . \/5 ~ . . 2 2 :
m+ - |ag+ —-nag, (triangular lattice. a a| (square lattick 11
2 2 — aikya _
@ 4*ﬁ‘ey4* 2
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a \3 i a, \3
a — alkya ——t—
W 5+ y,y) ey 513 y,y) (triangular lattice "
| u | ’
w(X, V43a = gll2tikyBaizy | o g,— Tsa

Equation(5) together with boundary conditior{) and (11) (5) is approximated by the set of linear relations between the
or (7) and(12) define the eigenvalue problem of finding values ; ; of the functiony(x,) at the point (,j) of the
= w2/c2—k§ as a function ok, . mesh(the mesh point=j=0 corresponds to the origin of

The periodicity of the exponent in EB) means that the the fundamental cell We will refer to the equation
possible valuek, can be restricted to the irreducible Bril-
louin zones of_ the reciprogal Iattice_s, which fo.r thg cases of Givrytdioajt it o= A= — vh2y
square and triangular lattices are illustrated in Fig. 2. The (13
three special points in Fig.(®, I', X, and M, correspond
respectively tok, =0, k, =(w/a)e,, and k, =(w/a)(g, for the square lattice, and
+8).

eyThe three special points in Ifig(lﬁ, I, X, andJ, COMe~  A(yyyj+ i+ i1t dij-1)
spond tok, =0, k, =(27/\/3a)§,, and k, =(27/3a)(&
+1/38)). (Wit Yirrj—1— Yicrjert dioaj-1) — 16
_ _ _ =—3y’h%y (14

B. Numerical scheme of the eigenvalue computation

To Compute the eigenmodes for radio frequer(d'y for the triangular Iattice, as "equationi,ﬂ)." Here, h

. . . . _ f 2_ 27,2 2

wave propagation in the two-dimensional PBG structures=a/(2N+1) is the mesh step, ang“=w/c“—k;. Al-
we have developed theecss code!” The pecsscode is though Eqs(13) and(14) are valid for arbitrary reak,, we
based on a real-space finite-difference method. We cover th#ill only present, without loss of generality, numerical re-
fundamental unit cell of the squarériangulay lattice by sults fork,=0 in Sec. Ill. The periodic boundary conditions
square (triangula) mesh with (N+1)x (2N+1) mesh (11) and(12) are expressed explicitly as
points. Outside the conducting posts, the Helmholtz equation

= .eikxa’
¢N+1,J_¢ N.j e (square latticg
Yint1= i -nEY 19

Yni1j= N €4,
' v = (triangular lattice.
YN 1= i, - ne @A) (16)

The mesh points, which fall inside the conducting posts, are
excluded from the system of linear equatioid®) or (14)
using boundary conditions in Eq&) or (7). The boundary
condition in Eq.(6) is implemented by setting the value of
; ;=0 for the grid point (,j) inside of the conducting cyl-
inder. The boundary condition in E¢7) is implemented in
the following way: if some point entering the linear equation
(i,]) falls inside the post, we put the value #fin this point
equal to ¢; ;. For example, if the mesh pointi{1,)
=(5,3) is inside the metal post in a square lattice, then we
set s 3= ¢4 3 in the linear equationi(j)=(4,3) in Eq.(13)
to obtainys s+ Wy 4+ a2~ 34 5= — ¥*h? i, 5. This assures
° X J . that the boundary condition in E¢7) is satisfied in the limit
< h— 0. More importantly, we have chosen this simple imple-
a

& > mentation of the boundary condition in E() in order to
r _/ ky preserve the Hermitian nature of the matrix of linear equa-
° tion (13) or (14). Since we do not take into account the losses
in electrodynamic system, the initial eigenvalue problem is
(b) Hermitian, and we have found empirically that the preserva-
FIG. 2. Reciprocal lattices and Brillouin zones fa) square lattice an¢b) tion of the Hermitian nature |mproved the convergence of the

. . 2
triangular lattice(irreducible Brillouin zones for each type of lattice are glgorlthm. Thus we Obté}ln a closed set ofN21) _M.
shadegl linear equations, wher® is the number of the mesh points

4T

3
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'\/g 1%/ a /27t FIG. 4. Plots of the several lowest normalized eigenmodes versus the wave

vectork, for TM modes ak, varies from the center of the Brillouin zone
FIG. 3. Plots of the normalized frequenay/2mrc versus normalized wave (I pointin Fig. 2, to the nearest edge of the Brillouin zof¥¢point in Fig.
number for the first and second TM propagating modes as obtained from), and to the far edge of the Brillouin zor@®! or J poiny. Here,r/a
pBGsscalculationsy/a=0.2. The solid curve represents the first TM propa- = 0.2, and the two cases corresponddpsquare lattice andb) triangular
gating mode, and the dashed curve represents the second TM propagatit@jtice.
mode. The two cases correspondapwave propagation in the-direction
with k,=k,=0 through the square lattice, afig) wave propagation in the

-direction withk,=k,=0 through the triangular lattice. . . .
y o 9 9 where the band gap is actually the result of the interaction of

two waves withk, = (m/a)e, andk,=—(w/a)g, in the pe-
that fall inside the conducting cylinder. The matrix of this fiodic structure. Figure ®) shows the first and second TM

system is Hermitian and we compute the eigenvaluiem ~ Modes in the triangular lattice. S
a standard Fortran subroutine. Figure 4 shows the dispersion characteristBsllouin

diagrams$ for the TM modes as the wave vectlr varies
from the center of the Brillouin zond" point in Fig. 2, to
the nearest edge of the Brillouin zof¢ point in Fig. 2, and
to the far edge of the Brillouin zon@V point for the square

In this section, we present the new resultepEsscal- lattice andJ point for the triangular lattice Two cases cor-
culations of the eigenfrequencies for TE and TM modes inrespond to different types of lattices. In Fig.r4a=0.2 and
the two-dimensional square and triangular lattices. Initial refor the square lattice a global band gap between the first and
sults of thereGsscalculations were discussed elsewh€re. second modes can be seen. For the triangular lattice the first
For all the plots presented we d6t=0, i.e.,y=w/c, which  and the second mode are intersecting and there is no band
obviously does not affect the generality of the results. In allgap between them. For the TM modes, there is a cutoff fre-
of the PBGSScalculations, we use the value Nf=20. Our  quency that is the zeroth-order band gap.

Ill. RESULTS OF EIGENMODE AND BAND GAPS
CALCULATIONS

experience shows that the results are nearly identichl ias To determine the global TM band gaps, we perform
further increased. more extensive computations. It is important to perform

simulations with small grid step to assure the accuracy of the
A. TM modes

simulation results. For each valuedf,, we search through
Figure 3 is presented to demonstrate the local band gapll k, on the boundary of the Brillouin zone and find the
which occurs at th& point (see Fig. 2 of the Brillouin zone, minimum and maximum of each dispersion curve. Then we
as obtained from theBGsscalculations for/a=0.2. Figure  check if there is a gap between any two adjacent modes, i.e.,
3(a) shows the first and second TM propagating ma@és-  if the minimum of the higher order mode is above the maxi-
ply referred to below as “modes”in the square lattice, mum of the lower order mode. The results are shown in Fig.
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FIG. 5. Plots of global frequency band gaps for TM mode as functions of
r/a as obtained from PBG calculations f@) square lattice anb) trian-

gular lattice. The solid dot represents the operating point of the 17 GHz mITTG. 6. Plots of the normalized frequen@a/ch'versus normalized wave
accelerator cavity. number for the first and second TE propagating modes as obtained from

pBGsscalculationsy/a=0.2. The solid curve represents the first TM propa-
gating mode, and the dashed curve represents the second TM propagating
. . ) mode. The two cases correspond (#®:wave propagation in the-direction
5. Shown in Fig. 8a) are the five lowest-order global TM with k,=k,=0 through the square lattice, afi) wave propagation in the

band gaps for the square lattice. The zeroth-order global TM-direction withk,=k,=0 through the triangular lattice.
band gap exists below the first mode, that is, there is a cutoff
frequency for the TM modes. The cutoff frequency exists
even for very small conducting cylinders and goes to zer
logarithmically ag/a—0 (which is illustrated in Fig. 5 with OB TE modes
a dashed curve continuation of the calculated cutoff curve Figure 6 shows the TE mode local band gap, which oc-
The first-order global TM band gap occurs between the firsturs at theX point (see Fig. 2 of the Brillouin zone, as
and second lowest modes. There is a threshold for first-ordeybtained from therBGss calculations. Figure &) demon-
global TM band gap opening ata=0.1. Higher-order glo- strates the dispersion curves for the first and second TE
bal TM band gaps occur between the third and fourth, fourthpropagating bands in the square lattice. Figufie) 8hows
and fifth, and fifth and sixth modes. There is no global bandhe dispersion curves for the first and second TE propagating
gap between the second and third modes. bands in the triangular lattice. In contrast to the TM mode,
Shown in Fig. %b) there are three lowest-order global there is no cutoff in the case of a TE mode. The first mode
TM band gaps for the triangular lattice. In Fig(bh the goes to zero at thé' point for both square and triangular
zeroth-order global TM band gap exists below the first modelattices. The first mode at thE point degenerates into the
which is similar to the case of the square lattice. Althoughelectrostatic static solutiofwith zero frequency which sat-
there is a local band gap at point between the first and isfies the boundary conditions in E@).
second modesgas shown in Fig. B these modes are inter- Figure 7 shows the Brillouin diagrams for the TE modes
secting atJ point and the global band gap does not occuras the wave vectdt, varies from the center of the Brillouin
between them. The threshold for the occurrence of the firsizone(I" point in Fig. 2, to the nearest edge of the Brillouin
order global TM band gap, which is between the second andone(X point in Fig. 2, and to the far edge of the Brillouin
third modes, ig/a=0.2. The second-order global TM band zone(M point for the square lattice antpoint for the trian-
gap occurs between the sixth and seventh modes. We fingular latticg. Two cases correspond to the square and trian-
that the width of each global TM band gap increases as thgular lattices. In Fig. 7r/a=0.2 and there are no global TE
ratio r/a increases. band gaps for either square or triangular lattices. This is dif-
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FIG. 7. Plots of the several lowest normalized eigenmodes versus the wave
vectork, for TE modes a&, varies from the center of the Brillouin zoE FIG. 8. Plots of global frequency band gaps for TE mode as functionsof

point in Fig. 2, to the nearest edge of the Brillouin zof}¢point in Fig. 2, as obtained from PBG calculations f@) square lattice an¢b) triangular
and to the far edge of the Brillouin zori®! or J point). Here,r/a=0.2, and lattice. The solid dot represents the operating point of the 140 GHz MIT
the two cases correspond (@ square lattice an¢b) triangular lattice. gyrotron cavity.

ferent from the TM case where the first band gap occurss a cutoff analogous to that in a conventional waveguide and
between the first and second modesrfta=0.1. exists for all values of/a, whereas there is no such cutoff in
We have also calculated the global TE band gaps in botllielectric lattices for either TE or TM modes. Second, the
types of lattices. The results are shown in Fig. 8. For thewidth of the global TM band gap in the metallic lattice in-
square latticd Fig. 8@)], we found that the first global TE creases with increasinga, whereas the global TE and TM
band gap occurs wherva>0.3. This is the band gap be- band gaps in dielectric lattices typically close as the raftio
tween the first and second modes, which are tangent &fithe increases.
point for lower ratios of /a. Unlike the first global TM band

gap, the lower boundary of this band gap decreases WitR/ COMPARISON BETWEEN pecss SIMULATION AND
increasingr/a. The higher order band gap opens and therbUASl-STATIC APPROXIMATION

closes for even lower ratio af/a; this gap is between the
sixth and the seventh modes. While trying to benchmark theoretically thtrsGsscal-

For the triangular lattice three lowest global TE bandculations, we found an explanation of the behavior of the
gaps are shown in Fig.(8). All of these gaps tend to close first and second dispersion curves for the TM mode near the
with increasingr/a except for the lowest one, which occurs X point in a square lattice in the framework of the quasi-
between the second and third modesrfa>0.35. The sec- static approximation, which we describe in this section. As
ond global TE band gap, which is between the third andnentioned earlier, th¥ point in a square lattice corresponds
fourth modes, appears for lower ratiosr@f than those for to a simple case of the wave propagation in xhdirection
the lowest global TE band gap. The third global TE band gapvith k,=k,=0.
is between the sixth and seventh modes. Figure 9a) shows two rows of the posts with a wave

The global TE band gaps in the metallic lattice resemblencident perpendicularly. The electric field in the wave is
qualitatively the previously reported global TE and TM bandparallel to the posts and excites longitudinal currents in
gaps in dielectric lattices which typically close with in- them. The alternating current radiates and so a reflection ap-
creasingr/a. But there are two striking differences between pears. The reflections from different rows if phased properly
the metal band gaps and dielectric band gaps. First, there iscan cause the total reflection of the wave from the PBG
zeroth-order global TM band gap in metallic lattices, whicharray, and that is how the local band gap forms.
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N porti due to the sourck; . The impedance matri is intro-
(’) C') duced with the elements representing the various reactions
T between two current sources
O O 2_(211 Zn) Vi
= . Nz zZy) TNy
E k I@ O 21 22 |
Ia Using the Kirchhoff laws we find the elements of matzix
% O @ Z11=Zop= — X4+ Xy, (19
v
212: ZZl: - |Xa . (20)
iX, iX, The transmission matrifl relates the voltage and cur-
o} {( {( 0 rent at port 2 to the voltage and current at port 1
AN
Port 1 2 -iX, Port 2 I, I,/
Matrix T is related toZ in the following way:
0 o
Zyp  ZuZy 7,
(b) - Zy, z
T= - (22)
FIG. 9. Equivalent circuit model for wave propagation in #direction in 1 Zy
the square latticeta) geometry andb) equivalent circuit for one row of - Z_12 Z_lz

posts.

The square lattice, representing a conducting cylinder array

is a periodic sequence of the rows separated by the distance
Instead of describing the electromagnetic system irg, and the equivalent circuit of this array is a periodic chain
terms of the field€ andH it is convenient to introduce new of two-port circuits and Spacings_ The electric and magnetic
variables: the “source voltageV and “current” | per unit  fields and thus the voltage and current vary sinusoidaly along

length of the post. The “voltage” and “current” are mea- the spacing and the fields on the right edge of the spacing are

sures of the lowest mode electric field parallel to the postselated to the voltage and current on the left edge by the
and the lowest mode magnetic field transverse to the postgpacing transmission matrix

The voltages and currents obey the transmission line equa-

tions since the fields themselves obey such equations. From cosQ) iZgsinQ)
this point of view one row of the posts can be properly de- -]-S: i (22)
scribed by an equivalent two-port circuit, in which the con- Z—OSInQ cos()

ducting cylinders are represented by lumped elemé&ntae
equivalent circuit is illustrated in Fig.(B). The following  The transmission matrix of one period of the chain of rows is
values of impedancesX, and X,, valid in the limit given by the multiplication of two transmission matrixes:

ro/l2mc<1 andr/a<1 are given in Ref. 19: SN
A=T-T,. (23

o) a *© QZ —-1/2 1
Xazzoﬁ[ In > 2—1 (mz— m) - EH Consider the infinite chain of rows. Let us search for the
m (17) eigenmode of such a system with the effective voltage and
. current changing from one row to another as
r .
Xb:27TZOQ<a) , (18 V(na):V(O)e'”kxa,
where Z,=377ohm is the impedance of vacuum afid I(na)=1(0)e"™,

= walc is the normalized frequency. Because we consider :
@ d Y el &he voltages and currents at the adjacent rows are connected
lossless system, all the reactances and susceptances in F

9(b) are purely imaginary. It should be emphasized that it ist'l%’ough the transmission matrix
:(V(O)) ikxa— A

only the sign of a reactance or susceptance that dictates [V/(a)

whether an inductor or capacitor is chosen. The reactance or | |(a) 1(0) emr=

susceptance does not, in general, have the simple frequency

dependence of a lumped-element inductor or capacitor. Since Equation (24) has a nontrivial solution only when

the row of posts has a plane of symmetry, the two capacitoréet@—le'kxa)TO. This, together with the transmission matrix

in the circuit can be chosen of equivalent value. property deA=A;;A,,—A,,A1o=1, finally gives us the ap-
Suppose, we apply a current soutgeat port 1 in Fig.  proximate dispersion relation for TM wave propagation in

9(b) and current sourck, at port 2. LetV;; be the voltage at the x-direction in the square lattice of thin conductors

V(0)
1(0)

. (24)
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FIG. 10. Comparison between thecsscalculationg(solid curve and qua-
sistatic estimategdashed curveof the local TM band gap width ak
=(l/a,0,0) for the square lattice.

A +HA X
cogk,a)= HT22= ( 1- X—b) cos()
a
12X Xp— X2 Zo\ .
+§ T"'X—a sinQ). (25

When the perturbation is abseine., when there are no

metallic posty k,a=m, Q= is the solution of Eq(25). In
the system with posts, E@25) will give two distinct roots

for ) whenk,a= . The difference between the two roots,

denoted byAQ=0Q,—Q, gives the width of the first local
gap at theX point.

For Q~x andr/a<1, we rewrite Eqs(17) and (18)
approximately as

=7 Q | a i 1 1
a=4oy | Mo | 7 & Jm—1/a m
Z @ | a 0.18 26
=Zoy 1 In| 5] +0. : (26)
Xp=0. (27)

For very low ratios ofr/a such that Iné/27r)>1, the loga-
rithmic term in Eq.(26) dominates, and Eq.25) together
with Egs.(26) and(27) yields atk,a=

r2
Ql:77+o gg),

Q,=m+AQ,

(28)

AQ= @)

1 3
In(a/27r) + 0.818Jr In(a/27-rr)) '
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with the quasi-static theory within 10%. This is consistent
with the fact that the errors in the approximate expressions
for the impedanceél?7) and (18) were estimated in Ref. 19
to be less then 10% in the range<®/a<0.1. Thus we con-
clude that the results from tlsGsscalculations are in good
agreement with the analytical result fofa<<1.

V. DESIGN OF PBG CAVITIES FOR ACCELERATOR
AND MICROWAVE GENERATION EXPERIMENTS

Two PBG experiments were conducted recently at MIT.
The first one was an accelerator cavity operating in the TM
mode’ and the second one was a gyrotron cavity with a TE
mode® These applications of the PBG cavity are to eliminate
competing modes, which appear in conventional accelerator
or gyrotron resonators and reduce the efficiency of the bunch
acceleration or mode excitation. TBePERFISH® andHFsS®
codes were used for the PBG cavity designs. However, nei-
ther SUPERFISHNOr HFSScodes can be used to calculate glo-
bal band gaps in PBG cavities and thus cannot serve as a
proof of the single mode excitation. The new code calculat-
ing the bulk PBG structures dispersion characteristics was
needed and thus theBGsscode was created.

The MIT PBG accelerator cavity is made up of a trian-
gular lattice of metal rods and operates in the TM mode at 17
GHz.” The PBG accelerator cavity was first proposed in Ref.
6 with the accelerating TM mode formed by a defect in a 2D
square metal lattice. A defect in the 17 GHz MIT accelerator
cavity is created by one missing rod in a triangular lattice.
The lattice has the post radius-0.079 cm and the distance
between the nearest posts 0.64 cm, which corresponds to
r/a=0.123 andwa/27¢c=0.363. The operational point of
the cavity is shown by the solid dot in the Figbh It can be
seen from the picture that the cavity operates in the zero-
order band gapbelow the cutoff and there are no other
band gaps above. This proves that there is only one mode,
which can be confined in the cavity. The higher frequency
modes excited by the electron bunch in conventional accel-
erator(wakefields are able to leak through the lattice, which
provides an effective damping mechanism for the wakefields
in the cavity. Figure 1) shows the cross-section of the
HFssmodel of the PBG accelerator cavity. The magnitude of
the electric field of the confined mode is shown in color. The
mode structure resembles the structure of thepvhode of
a conventional linac pillbox cavity.

The MIT PBG gyrotron resonator cavity is made up of a
triangular lattice of 102 copper rods and operates in a TE
mode at 140 GH2.Although the triangular array can hold
121 rods, but the 19 innermost rods were omitted to create a
defect. The lattice parameters are: the post radius
=0.795mm and the distance between the nearest @osts

To benchmark theeBGsscode, we compare the above =2.03mm, which corresponds t0a=0.39 andwa/2nc
theoretical results to the simulations. Figure 10 shows the=0.95. The operational point of the cavity is shown by the

dependence of the local TM band gap width atXhgoint on
the ratior/a in the interval G<r/a<0.1 for the square lat-

solid dot in Fig. 8b). It can be seen from the picture, that the
cavity operates in the middle of the first-order global band

tice. The dotted curve is obtained in the following way: we gap. TheHFrssmodel of the PBG gyrotron cavity is shown in

plug the expressiond7) and(18) for X, andX, to Eq.(25)
and then solve it numerically fdi for k,a= 7 and different
r/a. The solid curve is obtained fromBGSS calculations.

Fig. 11(b) with the magnitude of the electric field in the
confined mode shown in color. The mode structure resembles
the structure of the Tfz; mode of a conventional gyrotron

Figure 10 indicates that thesGsssimulation results agree cavity.
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the distance between the posts. In this limit the approximate
dispersion relations were derived in the framework of a qua-

s gg;g sistatic approach. We compared the approximate dispersion
0.783 curves with the results of thesgsscalculations and found

o D.BEE good agreement. We also explained the logarithmic behavior

o EZESE of the width of the local band gap at thepoint whenr/a

= 0.392 —0. Further development of the quasi-static theory is under

= g-fgg way in order to find an explanation for some other features of

B 0 098 the dispersion curves.

W 2xi1077 Finally, the results of the global band gap calculations
were compared with two PBG experiments conducted at
MIT. The results of the calculations on the global band gaps
not only allowed us to understand better the experimental
results but provided us with useful information for future
PBG cavity designs.
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