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Abstract

In this thesis I present the design and experimental demonstration of the first photonic
band gap (PBG) accelerator at 17.140 GHz. A photonic band gap structure is a one-,
two- or three-dimensional periodic metallic and/or dielectric system (for example,
of rods), which acts like a filter, reflecting rf fields in some frequency range and
allowing rf fields at other frequencies to transmit through. Metal PBG structures are
attractive for the Ku-band accelerators, because they can be employed to suppress
wakefields. Wakefields are unwanted modes affecting the beam propagation or even
destroying the beam. Suppression of wakefields is important. In this thesis, the
theory of metallic PBG structures is explained and the Photonic Band Gap Structure
Simulator (PBGSS) code is presented. PBGSS code was well benchmarked and the
ways to benchmark the code are described. Next, the concept of a PBG resonator
is introduced. PBG resonators were modelled with Ansoft HFSS code, and a single-
mode PBG resonator was designed. The HFSS design of a travelling-wave multi-
cell PBG structure was performed. The multi-cell structure was built, cold-tested
and tuned. Finally, the hot-test PBG accelerator demonstration was performed at
the accelerator laboratory. The PBG accelerating structure was installed inside a
vacuum chamber on the Haimson Research Corporation (HRC) accelerator beam line
and powered with 2 MW from the HRC klystron. The electron bunches were produced
by the HRC accelerator. The electron beam was accelerated by 1.4 MeV inside the
PBG structure.

Thesis Supervisor: Richard J. Temkin
Title: Senior Scientist, Department of Physics
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Chapter 1

Introduction

1.1 Photonic band gap structures

A Photonic band gap (PBG) structure [1, 2] or simply, photonic crystal, represents a

periodic lattice of macroscopic pieces (for example, rods) of dielectric or metal. Pho-

tonic band gap structures can be one-, two- or three-dimensional (see examples in fig-

ure 1-1). A good example of a one-dimensional (1D) PBG structure is a well-known in

optics Bragg filter [3], which is a periodic system of dielectric plates. Two-dimensional

(2D) PBG structures, namely systems of rods, were found to be the most attractive

for accelerator applications. Two types of 2D lattices are the most common: square

lattice and triangular lattice (figure 1-2). Scattering of the electromagnetic waves at

the interfaces of a periodic structure can produce many of the same phenomena for

photons (light modes) as the atomic potential does for the electrons. In particular,

one can design and construct photonic crystals with photonic band gaps, preventing

light of certain frequencies from propagating in certain directions. For example, the

dependence of the reflection coefficient on the wave’s frequency for an electromagnetic

wave incident on a Bragg filter is shown in figure 1-3. The wave is totally reflected not

just for a single frequency but in whole frequency bands. This property allows optical

scientists to control incident waves and filter unwanted frequencies. The range of

frequencies which does not propagate through the periodic structure is called a band

gap.
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Figure 1-1: Examples of one-, two- and three-dimensional photonic band gap struc-
tures.

Similar phenomena are observed in more complicated two- and three-dimensional

(3D) periodic structures. The waves of some frequencies cannot propagate and are

reflected. Moreover, some frequencies are reflected independently of the angle of

incidence. The bands of frequencies reflected independently of the angle of incidence

are called global band gaps. The phenomena of global band gap can afford us a

complete control over the electromagnetic waves propagation in PBG media. In

accelerator physics, the photonic band gap resonators can be employed to achieve

the mode selectivity. A simple PBG resonator schematic is shown in figure 1-4. The

metal rods form a triangular lattice. A single rod is withdrawn from the lattice at

the center. The wave with a frequency inside the band gap will be reflected from a

”PBG wall” and a mode can be confined around the defect. An example of such a

mode is shown in figure 1-5. However only the modes with the frequencies inside the

band gaps can be confined in a PBG resonator.

1.2 Microwave linear accelerators and wakefields

In microwave accelerators, energy is delivered to the beam from an radio-frequency

(rf) electric field. The accelerating mode is characterized by a longitudinal electric

field on beam axis. An example of a resonator mode with the longitudinal electric
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Figure 1-2: Two types of two-dimensional lattices of metal rods: (a) square lattice,
(b) triangular lattice.
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Figure 1-4: The schematic of a 2D PBG resonator.
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Figure 1-5: Electric field pattern of a mode confined in a PBG resonator.

field is the TM01 (transverse-magnetic) mode. The field profile in the TM01 mode is

shown in figure 1-6. The linac uses a sinusoidally varying electric field for acceleration,

which must be synchronous with the beam for sustained energy transfer. This is the

reason why a uniform cylindrical waveguide cannot provide continuous acceleration

of electrons: the phase velocity of an electromagnetic wave in a uniform waveguide

always exceeds the velocity of light, so the synchronism with the beam is not possible.

A structure with more complicated geometry is required to lower the phase velocity

to that of the beam. It was proposed to construct a linac structure of an array of

cylindrical cavities of figure 1-6 with axial beam holes. It can be shown that for this

so-called disk-loaded waveguide structure the phase velocity can be reduced below the

speed of light as required for particle acceleration. The schematic of a disk-loaded

waveguide is shown in figure 1-7.

Acceleration in disk-loaded waveguides works well. However due to the electro-

magnetic interaction of electron bunches with periodic structure new problems arise.

The beam starts to radiate and produce wakefields. These wakefields are unwanted

modes, they give rise to a parasitic energy loss and energy spread in the bunch and

introduce transverse forces that tend to increase the effective beam emittance [4]. The

problem of wakefields was first recognized in Stanford Linear Collider (SLC) [5] and

became a serious issue for the Next Linear Collider (NLC) [6]. It appears that if we
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cylindrical cavity.
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Figure 1-7: The schematic of a disk-loaded waveguide.
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want to contemplate seriously the design of any future collider, we need to understand

the nature of wakefields and find the ways to suppress them efficiently.

1.3 Motivation of the photonic band gap research

for accelerators

For many years accelerator facilities with colliding beams have been the forefront

instruments used to study elementary particle physics at high energies. Both hadron-

hadron and electron-positron colliders have been used to make important observations

and discoveries. The Stanford Linear Collider was conceived and built to study par-

ticle physics at the 100 GeV energy scale and to develop the accelerator physics and

technology necessary for the realization of future high-energy colliders. The next

generation of colliders must open the frontier from multi-hundred GeV to TeV ener-

gies - ten times that of the present generation. More powerful collider facilities will

be required to fully explore this new territory. It is very attractive for accelerator

engineers to improve the energy efficiency of future linear accelerators via increas-

ing the accelerator frequency and going from an S-band (SLC, 2.856 GHz) to an

X-band (NLC, 11.424 GHz) accelerator. To obtain high-efficiency acceleration and

high luminosity of the beam, new accelerating cavities must be invented which will

be selective with respect to the operating mode, and will suppress wakefields. PBG

structures provide us with a simple design of an accelerator cavity that would selec-

tively support the accelerating TM01 mode. Other modes (with different frequencies)

will not be supported and this way the wakefields are efficiently damped. Compared

to such complicated damped-detuned structures as [7], PBG structures may be easier

to design and manufacture. The demonstration of a PBG accelerator is necessary.

1.4 Advances in photonic band gap research

First advances in photonic band gap research date back to 1987 when the pioneering

paper of Yablonovitch [1] was published. The intensive PBG structure research origi-
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nated in studying of dielectric lattices [2, 8, 9]. The dispersion properties of 2D lattices

of dielectric rods were studied and the global photonic band gaps were determined.

The handbooks on the lattices made of the most popular dielectric materials were pub-

lished. However, considerable interest in metallic PBG structures has been expressed

due to their applications at microwaves [10, 11, 12]. For studies of wave propagation

in the bulk of metallic PBG structures, the plane wave expansion method [13] gen-

eralized Rayleigh expansion method [14], finite-difference time-domain scheme [15]

and the coordinate-space finite-difference method [10] have been used. An attempt

to study global photonic band gaps in metallic lattices was made in [14]. However,

it was discovered [13] that due to a convergence problem, the plane wave expansion

method is applicable only to the lattices with the size of conductors small compared

to the lattice period. At microwave frequencies the lattices with a large ratio of rod

radius to the lattice constant are of the main interest [10, 11, 12]. So the elabo-

ration of the coordinate-space finite-difference calculations was necessary. Only the

first-order band gap of a square lattice of metallic rods was calculated in [14]. More

extensive computations of band gaps were needed.

Dielectric PBG resonators were extensively studied in [16]. An idea to construct

a dielectric and later a metallic PBG resonator and use it as an accelerator cell

originated with the authors of Refs.[17, 10]. Dispersion properties of a square lat-

tice of alumina ceramics and metal rods were studied in [17, 10]. PBG resonators

were modelled and the accelerating mode was discovered. Single mode confinement

was not proven. However the wakefields excitation was modelled and the wakefield

spectrum was found rare compared to pillbox resonators [18]. Single-cell supercon-

ductive PBG resonators were constructed and successfully cold-tested [19]. In spite

of the impressive work performed by the authors of [19, 10, 17, 18] there are cer-

tain drawbacks in their research. First, they focused on studying and manufacturing

the resonators based on the square lattice of rods. Square lattice has quadrupole

symmetry. We have shown that it introduces a significant transverse energy gradi-

ent in the beam. We proposed to use the triangular lattice [11], which has a higher

sextuple symmetry and provides acceptable transverse uniformity in the accelerator.
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Second, the complete band gap picture for the square lattice of metal rods was never

derived in [19, 10, 17, 18], therefore the authors were unable to prove a single-mode

confinement in their PBG resonators. Third, a real multi-cell PBG accelerator was

never constructed and the acceleration in PBG structures was never demonstrated.

The biggest achievement of the research of [19, 10, 17, 18] is the construction of a

superconductive PBG cell at 2.858 GHz. The construction of PBG resonators at

this low frequency is mechanically easy and the demonstration of a superconductive

PBG accelerator is important, since the wakefields present a serious issue for the

superconductive accelerators.

1.5 Thesis outline

The PBG accelerator design and testing presented in this thesis can be logically

divided into several steps. First, metallic 2D PBG structures must be studied and

the global band gap diagrams must be derived. Next, based on the global band

gap diagrams a single-mode PBG resonator must be designed, fabricated and tested.

The higher-order modes (HOM) suppression must be experimentally demonstrated.

Finally, a disk-loaded PBG waveguide structure must be designed, built, tuned and

tested.

The theory of metal PBG structures and computation of band gaps is presented

in Chapter 2 of this thesis. The Photonic Band Gap Structure Simulator (PBGSS)

code was developed by this author for computing of global band gaps. Chapter 3

deals with the theoretical benchmarking of the PBGSS code. Chapter 4 describes the

design of a single-mode PBG resonator and the cold-tests demonstrating the HOM

suppression. In Chapter 5 the design of a disk-loaded PBG accelerator is presented

and extensive computer simulations leading to the design are described. Chapter 6

explains the fabrication and cold-testing of a PBG accelerator: the tuning algorithms

and the results. In Chapter 7 the hot test demonstration of the PBG accelerator is

described. In Chapter 8, the conclusion, I will discuss the possible improvements to

the PBG accelerator design and additional tests needed to demonstrate that a PBG
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accelerator is a serious candidate for the future high-energy collider structure.
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Chapter 2

Numerical simulation of dispersion

properties of PBG structures

2.1 Introduction

In this Chapter I will address an important and computationally challenging problem

of computation of the global photonic band gaps in 2D metallic PBG structures.

First, I will describe the general theory of 2D metallic PBG structures representing

square and triangular lattices of metal rods. Then, I will introduce a coordinate-space

finite-difference code called Photonic Band Gap Structure Simulator (PBGSS). The

PBGSS code was developed by this author and was specially aimed at calculation

of the global band gaps. First, Brillouin diagrams for the TM and the TE waves in

square and triangular lattices were calculated. Next, an extensive calculation was

performed to calculate the global band gaps for the lattices with different radii of

the rods. Examples of Brillouin diagrams and computed global band gap diagrams

are presented in the thesis. The operating frequencies of pre-existing PBG resonators

[11, 12] are plotted over the newly computed band gap pictures.
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2.2 Formulation of the Eigenvalue Problem

Two types of lattices of metal rods are considered in this thesis, namely the square

lattice (figure 1-2(a)) and the triangular lattice (figure 1-2 (b)).

The conductivity profile in the system of a 2D periodic array of metal rods satisfies

the periodic condition

σ
(
�x⊥ + �Tmn

)
= σ (�x⊥) (2.1)

with the set of periodicity vectors defined as

�Tmn =


mbêx + nbêy, square lattice

(
m + n

2

)
bêx +

√
3

2
nbêy, triangular lattice

, (2.2)

where �x⊥ = xêx + yêy is the transverse coordinate, b is the lattice spacing, m and n

and are integers.

It is readily shown from Maxwell’s equations that the wave field in the two-

dimensional PBG structures can be decomposed into two independent classes of

modes: the transverse electric (TE) modes and the transverse magnetic (TM) modes.

In a TE mode the electric field vector is perpendicular to the rod axis and in a TM

mode the magnetic field vector is perpendicular to the rod axis. All the field com-

ponents in the TM (TE) modes can be expressed through the axial component of

the electric (magnetic) field, which we will further denote by ψ. Since the system is

homogeneous along the z-axis, we can Fourier transform ψ in axial coordinate z and

time t and consider

ψ (�x⊥, kz, ω) =

∫∫
ψ (�x⊥, z, t) ei(kzz−ωt)dzdt, (2.3)

which we will denote hereafter by ψ (�x⊥) assuming that the frequency and the lon-

gitudinal wave number are fixed. The Helmholtz equation for ψ (�x⊥) follows from

Maxwell’s equations,

�∇2

⊥ψ (�x⊥) =

(
k2

z −
ω2

c2

)
ψ (�x⊥) . (2.4)
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The boundary conditions on the surfaces S of the conducting posts are

ψ|S = 0, (TM mode), (2.5)

∂ψ

∂ �n

∣∣∣∣
S

= 0, (TE mode), (2.6)

where �n is the normal vector to the post surface.

The discrete translational symmetry of the conductivity profile allows us to write

the fundamental solution of the Helmholtz equation in the Bloch form,

ψ
(
�x⊥ + �T

)
= ψ (�x⊥) ei�k⊥·�T , (2.7)

where �T is any vector of �Tmn, �k⊥ = kxêx+kyêy is an arbitrary transverse wave number.

Thus we need only solve Eq. (2.4) inside the fundamental unit cell defined by

|x| ≤ b/2, |y| ≤ b/2, (square lattice),

∣∣∣x − y√
3

∣∣∣ ≤ b/2, |y| ≤
√

3
4

b, (triangular lattice).

(2.8)

The following periodic boundary conditions are deduced from Eq. (2.7)
ψ

(
b
2
, y

)
= eikxbψ

(− b
2
, y

)
ψ

(
x, b

2

)
= eikybψ

(
x,− b

2

) , (square lattice), (2.9)


ψ

(
b
2

+
√

3
3

y, y
)

= eikxbψ
(
− b

2
+

√
3

3
y, y

)

ψ
(
x,

√
3b
4

)
= eikxb/2+iky

√
3b/2ψ

(
x − b

2
,−

√
3b
4

) , (triangular lattice). (2.10)

Equation (2.4) together with boundary conditions (2.5) or (2.6) and (2.9) or (2.10)

define the eigenvalue problem of finding κ2 = ω2/c2 −k2
z for each given perpendicular

wave vector �k⊥.
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Figure 2-1: Reciprocal lattices and Brillouin zones for (a) square lattice and (b)
triangular lattice (irreducible Brillouin zones for each type of lattice are shaded).
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The periodicity of the exponent in Eq. (2.7) means that the possible values �k⊥ can

be restricted to the irreducible Brillouin zones of the reciprocal lattices, which for the

cases of square and triangular lattices are illustrated in figure 2-1. The three special

points in figure 2-1(a) Γ , X and M correspond respectively to �k⊥ = 0, �k⊥ = (π/b)�ex

and �k⊥ = (π/b) (êx + êy). The three special points in figure 2-1(b) Γ, X and J

correspond to �k⊥ = 0, �k⊥ =
(
2π/

√
3b

)
êx and �k⊥ = (2π/3b)

(
êx +

√
3êy

)
.

2.3 Numerical Scheme of the Eigenvalue Compu-

tation

To compute the eigenmodes for rf wave propagation in the two-dimensional PBG

structures, we have developed the PBGSS code [20]. The PBGSS code is based on a

real-space finite difference method. We cover the fundamental unit cell of the square

(triangular) lattice by square (triangular) mesh with (2N + 1)×(2N + 1) mesh points.

Outside the conducting posts, the Helmholtz equation (2.4) is approximated by a set

of linear relations between the values ψi,j of the function ψ (�x⊥) at the point (i, j)

of the mesh (the mesh point i = j = 0 corresponds to the origin of the fundamental

cell). We will refer to the equation

ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1 − 4ψi,j = −κ2h2ψi,j (2.11)

for the square lattice, and

4
(
ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1

)
− (

ψi+1,j+1 − ψi+1,j−1 − ψi−1,j+1 + ψi−1,j−1

) − 16ψi,j = −3κ2h2ψi,j (2.12)
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for the triangular lattice, as “equation (i, j)” . Here, h = b/ (2N + 1) is the mesh

step. The periodic boundary conditions (2.9) and (2.10) are expressed explicitly as
ψN+1,j = eikxbψ−N,j

ψi,N+1 = eikybψi,−N

, (square lattice), (2.13)


ψN+1,j = eikxbψ−N,j

ψi,N+1 = eikxb/2+iky

√
3b/2ψi,−N

, (triangular lattice). (2.14)

The mesh points, which fall inside the conducting posts, are excluded from the system

of linear equations (2.11) or (2.12) by using boundary conditions (2.5) or (2.6). The

boundary condition (2.5) is implemented by setting the value of ψi,j = 0 for the

grid point (i, j) inside of the conducting cylinder. The boundary condition (2.6) is

implemented in the following way: if some point entering the linear equation (i, j) falls

inside the post we put the value of ψ in this point equal to ψi,j. We have chosen the

simplest implementation of the boundary conditions in Eq. (2.6) in order to preserve

the Hermitian nature of the matrix of linear equations (2.11) or (2.12). Since we

do not take into account the losses in electrodynamic system, the initial eigenvalue

problem is Hermitian, and we have found empirically that the preservation of the

Hermitian nature improved the convergence of the algorithm. Thus we obtain a

closed set of (2N + 1)2 − M linear equations, where M is the number of the mesh

points that fall inside the conducting cylinder. The matrix of this system is Hermitian

and we compute its eigenvalues κ using a standard Fortran subroutine.

2.4 Results of eigenmodes and band gaps calcula-

tions

In this section, the results of the PBGSS calculations of the eigenfrequencies for the

TE and the TM modes in the two-dimensional square and triangular lattices are
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presented. For all the plots we set kz = 0, i.e., κ = ω/c, which obviously does not

affect the generality of the results. In all the PBGSS calculations, we use the value

of N = 20. Our experience shows that the results are nearly identical as N is further

increased.

2.4.1 The TM modes

Figure 2-2 shows the dispersion characteristics (Brillouin diagrams) for the TM modes

as the wave vector �k⊥ varies from the center of the Brillouin zone (Γ point in figure

2-1), to the nearest edge of the Brillouin zone (X point in figure 2-1), and to the

far edge of the Brillouin zone (M point for the square lattice and J point for the

triangular lattice). Two cases correspond to different types of lattices. In figure 2-2,

a/b = 0.2 and for the square lattice a global band gap between the first and second

modes can be seen. For the triangular lattice the first and the second mode are

intersecting and there is no band gap between them. For the TM modes, there is a

cut-off frequency that is the zeroth-order band gap.

To determine the global TM band gaps, we perform more extensive computations.

It is important to perform simulations with small grid step to assure the accuracy

of the simulation results. For each value of a/b, we search through all �k⊥ on the

boundary of the Brillouin zone and find the minimum and maximum of each dispersion

curve. Then we check if there is a gap between any two adjacent modes, i.e., if the

minimum of the higher order mode is above the maximum of the lower order mode.

The results are shown in figure 2-3. Shown in figure 2-3(a) are the five lowest-order

global TM band gaps for the square lattice. The zeroth-order global TM band gap

exists below the first mode, that is, there is a cutoff frequency for the TM modes.

The cutoff frequency exists even for very small conducting cylinders and goes to zero

logarithmically as a/b → 0 (which is illustrated in figure 2-3 with a dashed curve

continuation of the calculated cutoff curve). The first-order global TM band gap

occurs between the first and second lowest modes. There is a threshold for first-order

global TM band gap opening at a/b ∼= 0.1. Higher-order global TM band gaps occur

between the third and fourth, fourth and fifth, and fifth and sixth modes. There is
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Figure 2-2: Plot of the several lowest normalized eigenmodes versus the wave vector
�k⊥ for the TM modes as �k⊥ varies from the center of the Brillouin zone (Γ point in
figure 2-1 ), to the nearest edge of the Brillouin zone (X point in figure 2-1 ), and
to the far edge of the Brillouin zone (M or J point ). Here a/b = 0.2 and two cases
correspond to (a) square lattice and (b) triangular lattice.
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Figure 2-3: Plots of global band gaps for the TM mode as functions of a/b as obtained
from PBGSS calculations for (a) square lattice and (b) triangular lattice. The solid
dot represents the operating point of the 17 GHz MIT accelerator cavity.
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no global band gap between the second and third modes.

Shown in figure 2-3(b) there are three lowest-order global TM band gaps for the

triangular lattice. In figure 2-3(b), the zeroth-order global TM band gap exists below

the first mode, which is similar to the case of the square lattice. Though there is

a local band gap at X point between the first and second modes, these modes are

intersecting at J point and the global band gap does not occur between them. The

threshold for the occurrence of the first-order global TM band gap, which is between

the second and third modes, is a/b ∼= 0.2 The second-order global TM band gap occurs

between the sixth and seventh modes. We find that the width of each global TM band

gap increases as the ratio a/b increases. The solid dot in this figure represents the

operating point of the 17 GHz MIT accelerator cavity (see [11]).

2.4.2 The TE modes

Figure 2-4 shows the Brillouin diagrams for the TE modes as the wave vector �k⊥

varies from the center of the Brillouin zone (Γ point in figure 2-1), to the nearest edge

of the Brillouin zone (X point in figure 2-1), and to the far edge of the Brillouin zone

(M point for the square lattice and J point for the triangular lattice). Two cases

correspond to the square and triangular lattices. In figure 2-4 a/b = 0.2, and there are

no global TE band gaps for either square or triangular lattices. This is different from

the TM case where the first band gap occurs between the first and second modes for

a/b ≥ 0.1. In contrast to the TM mode, there is no cutoff in the case of a TE mode.

The first mode goes to zero at the Γ point for both square and triangular lattices.

The first mode at the Γ point degenerates into the electrostatic solution (with zero

frequency), which satisfies the boundary conditions (2.6).

We have also calculated the global TE band gaps in both types of lattices. The

results are shown in figure 2-5. For the square lattice (figure 2-5(a)), we found that

the first global TE band gap occurs when a/b > 0.3. This is the band gap between

the first and second modes, which are tangent at the M point for lower ratios of a/b.

Unlike the first global TM band gap, the lower boundary of this band gap decreases

with increasing a/b. The higher order band gap opens and then closes for even lower
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Figure 2-4: Plots of the several lowest normalized eigenmodes versus the wave vector
�k⊥ for the TE modes as �k⊥ varies from the center of the Brillouin zone (Γ point in
figure 2-1 ), to the nearest edge of the Brillouin zone (X point in figure 2-1 ), and
to the far edge of the Brillouin zone (M or J point ). Here a/b = 0.2 and two cases
correspond to (a) square lattice and (b) triangular lattice.
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Figure 2-5: Plots of global band gaps for the TE mode as functions of a/b as obtained
from PBGSS calculations for (a) square lattice and (b) triangular lattice. The solid
dot represents the operating point of the 140 GHz MIT gyrotron cavity.
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ratio of a/b, this gap is between the sixth and the seventh modes.

For the triangular lattice three lowest global TE band gaps are shown in figure

2-5(b). All of these gaps tend to close with increasing a/b except for the lowest one,

which occurs between the second and third modes for a/b > 0.35. The second global

TE band gap, which is between the third and fourth modes, appears for lower ratios

of a/b than those for the lowest global TE band gap. The third global TE band gap

is between the sixth and seventh modes. The solid dot in this figure represents the

operating point of the 140 GHz MIT gyrotron cavity (see [12]).

The global TE band gaps in the metallic lattice resemble qualitatively the pre-

viously reported global TE and TM band gaps in dielectric lattices [8, 2], which

typically close with increasing a/b. But there are two striking differences between the

metal band gaps and dielectric band gaps. First, there is a zeroth-order global TM

band gap in metallic lattices, which is a cutoff analogous to that in a conventional

waveguide and exists for all values of a/b, whereas there is no such cutoff in dielectric

lattices for either TE or TM modes. Second, the width of the global TM band gap

in the metallic lattice increases with increasing a/b, whereas the global TE and TM

band gaps in dielectric lattices typically close as the ratio a/b increases.
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Chapter 3

Asymptotic analysis of dispersion

characteristics in metallic PBG

structures

3.1 Introduction

The PBGSS code [20] calculates the Brillouin diagrams and global band gaps in

2D metal PBG structures. It is important to ensure the validity of the PBGSS

calculations, because the whole design of the PBG resonators in the following chapters

relies on the PBGSS results. That is why we developed an asymptotic analysis,

which allows us to derive the Brillouin diagrams theoretically in quasistatic limit,

benchmarks the PBGSS code and also improves our understanding of the physics. The

asymptotic analysis of the TM and TE modes propagating in square and triangular

lattices of metal rods is presented in this chapter. The limit is considered when the

rod radius, a, is much smaller than the wavelength, λ, and the distance between the

rods, b (quasistatic limit). In this approximation, we can separate two regions in

the 2D lattice with the qualitatively different behavior of electromagnetic waves. The

near-field region is the one that immediately surrounds the rod. In this region the field

changes at the scale of the rod radius and we can apply an approximate (quasistatic
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[14]) approach to calculate self-consistently the sources (charges and currents) in the

metallic rods due to the electromagnetic waves in the lattice. The region beyond the

near-field region is the far-field region, where the field changes at the scale of the

wavelength. According to Bloch’s theorem, the electromagnetic field in the lattice

can be decomposed into a set of plane waves with the wave vectors equal to multiples

of the reciprocal lattice vectors. The currents, calculated self-consistently in the near-

field region, are shown to produce the coupling of several plane waves at the metal

rods. The coupling perturbs the plane-wave dispersion relations in the lattice and

produces the dispersion characteristics, which are different for the TM and TE waves.

Thus, the form of the dispersion curves is determined by both, the lattice symmetries,

and the plane-wave coupling at the metal rods.

In this Chapter the results of the quasistatic calculation of the TM and TE dis-

persion characteristics are presented. The quasistatic results are compared to those

obtained previously using the PBGSS code [20]and a good agreement is found.

3.2 Electromagnetic wave propagation in PBG struc-

tures

Similarly to Chapter 2, two lattices of long, perfectly conducting rods are considered,

namely, the square lattice and the triangular lattice. The Helmholtz equation (2.4)

for the wave function follows from the Maxwell equations and is valid for every unit

cell of the lattice. Now let ρ (�x⊥, kz, ω) and �J (�x⊥, kz, ω) be the charge and current

densities induced by the field at the surfaces of the conducting rods. The Helmholtz

equation (A.4) can be generalized for the entire space (vacuum and conducting rods),

if the charges and currents are included. The generalized Helmholtz equation is

�∇2

⊥ψ (�x⊥) + κ2ψ (�x⊥) = f (�x⊥) , (3.1)
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where κ2 = ω2/c2 − k2
z , and f (�x⊥) is a function, related to the currents and charges

f (�x⊥) =

 4πikzρ (�x⊥) − 4πiω
c2

Jz (�x⊥) (TM case),

−4π
(

1
c
�∇× �J

)
z

(TE case).
(3.2)

Bloch’s theorem allows us to expand ψ (�x⊥) in a Fourier series,

ψ (�x⊥) = ei�k⊥·�x⊥
∑
m,n

ψm,nei �Gm,n·�x⊥ (3.3)

with �k⊥ being an arbitrary wave vector perpendicular to the rods and �Gm,n being

vectors of the reciprocal lattice[21]:

�Gm,n =


2π
b
êxm + 2π

b
êyn, square lattice,

(
2π
b
êx − 2π√

3b
êy

)
m + 4π√

3b
êyn, triangular lattice.

(3.4)

Physically, the Fourier series in Eq. (3.3) corresponds to an expansion of the

electromagnetic field into a set of orthogonal plane waves. Only the plane waves with

certain wave numbers can exist in the periodic lattice. With the aid of Eq. (3.3), Eq.

(3.1) can be rewritten as

∑
m,n

(
κ2 −

(
�k⊥ + �Gm,n

)2
)

ψm,ne
i�k⊥·�x⊥+i �Gm,n·�x⊥ = f(�x⊥). (3.5)

Multiplying Eq. (3.5) by e−i�k⊥·�x⊥−i �Gm,n·�x⊥ and integrating over the elementary cell

area, A, yields

(
κ2 −

(
�k⊥ + �Gm,n

)2
)

ψm,n =
1

A

∫
elementary cell

f(�x⊥)e−i �Gm,n·�x⊥−i�k⊥·�x⊥d2�x⊥. (3.6)

3.3 Plain wave approximation

The simplest approximation to solve the system of equations (3.6) can be made using

the assumption that there is no interaction between the rods and the electromagnetic

41



waves, i.e., f(�x⊥) = 0. This is called the ”plane-wave approximation” [2, 22]. The

eigenfrequencies obtained in the framework of this approximation are simply

(ω

c

)
m,n

=
∣∣∣�k⊥ + �Gm,n

∣∣∣ . (3.7)

The sets of reciprocal lattice eigenvectors �Gm,n corresponding to the several lowest∣∣∣�k⊥ + �Gm,n

∣∣∣′s is shown in Tables 3.1 and 3.2 for square and triangular lattices and

different �k⊥ on the edge of the Brillouin zone.

The plots of four lowest eigenfrequencies in square and triangular lattices obtained

in the framework of plane wave approximations are shown in Figures 3-1(a) and 3-1(b)

with dashed lines. For comparison the calculated dispersion curves for TE modes in

square and triangular lattices for a/b = 0.1 are shown with solid lines. The strong

resemblance between the two sets of dispersion curves can be seen. However, the

dispersion curves given by plane wave approximation (Eq. (3.7)) are the consequence

of the crystal symmetries only. They are independent of the nature of the interactions

in the periodic structure and are the same for all photonic crystals with the same

geometry. There is also the resemblance between the plane wave approximation

curves and those for the TM modes for small ratios of a/b. But the comparison with

the TE mode dispersion curves is more impressive, since, as it will be shown below,

the interaction of the plane waves on metal posts in TE mode is smaller than in TM

mode for the same ratio of a/b.

The dispersion curves in the plane-wave approximation for both the square and

triangular lattices are also plotted in Ref. [22].
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Table 3.1: The plane waves in square lattice listed ac-

cording to their
∣∣∣�k⊥ + �G−m,−n

∣∣∣ for the �k⊥ on the edge of

the Brillouin zone.

Γ− point, �k⊥ = 0

b
2π

∣∣∣�k⊥ + �G−m,−n

∣∣∣ 0 1

(m,n) (0, 0)

(0, 1)

(1, 0)

(−1, 0)

(0,−1)

∆− point, �k⊥ = 2π
b

(δ, 0) , 0 < δ < 1/2

b
2π

∣∣∣�k⊥ + �G−m,−n

∣∣∣ δ 1 − δ
√

δ2 + 1

(m,n) (0, 0) (1, 0)
(0, 1)

(0,−1)

X− point, �k⊥ = π
b
(1, 0)

b
2π

∣∣∣�k⊥ + �G−m,−n

∣∣∣ 1/2
√

5/2

(m,n)
(0, 0)

(1, 0)

(0, 1)

(0,−1)

(1, 1)

(1,−1)

Z− point, �k⊥ = 2π
b

(1/2, δ) , 0 < δ < 1/2
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b
2π

∣∣∣�k⊥ + �G−m,−n

∣∣∣ √
δ2 + 1/4

√
(1 − δ)2 + 1/4

(m,n)
(0, 0)

(1, 0)

(0, 1)

(1, 1)

M− point, �k⊥ = π
b
(1, 1)

b
2π

∣∣∣�k⊥ + �G−m,−n

∣∣∣ √
2/2

(m,n)

(0, 0)

(1, 0)

(0, 1)

(1, 1)

Σ− point, �k⊥ = 2π
b

(δ, δ) , 0 < δ < 1/2

b
2π

∣∣∣�k⊥ + �G−m,−n

∣∣∣ √
2δ

√
(1 − δ)2 + δ2

√
(1 + δ)2 + δ2

(m,n) (0, 0)
(0, 1)

(1, 0)

(0,−1)

(−1, 0)
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Table 3.2: The plane waves in triangular lattice listed

according to their
∣∣∣�k⊥ + �G−m,−n

∣∣∣ for the �k⊥ on the edge

of the Brillouin zone.

Γ− point, �k⊥ = 0

b
2π

∣∣∣�k⊥ + �G−m,−n

∣∣∣ 0 2/
√

3

(m,n) (0, 0)

(1, 0)

(1, 1)

(0, 1)

(0,−1)

(−1,−1)

(−1, 0)

Σ− point, �k⊥ = 2π
b

(0, δ) , 0 < δ < 1/
√

3

b
2π

∣∣∣�k⊥ + �G−m,−n

∣∣∣ δ
(
2/
√

3 − δ
) √

(1−√
3δ)

2

3
+ 1

(m,n) (0, 0) (0, 1)
(1, 1)

(−1, 0)

X− point, �k⊥ = 2π
b

(
0, 1/

√
3
)

b
2π

∣∣∣�k⊥ + �G−m,−n

∣∣∣ 1/
√

3 1

(m,n)
(0, 0)

(0, 1)

(1, 1)

(−1, 0)

T ′− point, �k⊥ = 2π
b

(
δ, 1/

√
3
)
, 0 < δ < 1/3
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b
2π

∣∣∣�k⊥ + �G−m,−n

∣∣∣ √
1
3

+ δ2 (1 − δ) (1 + δ)

(m,n)
(0, 0)

(0, 1)
(1, 1) (−1, 0)

J− point, �k⊥ = 2π
b

(
1/3, 1/

√
3
)

b
2π

∣∣∣�k⊥ + �G−m,−n

∣∣∣ 2/3 4/3

(m,n)

(0, 0)

(1, 1)

(0, 1)

(−1, 0)

(1, 0)

(1, 2)

T− point, �k⊥ = 2π
b

(
δ,
√

3δ
)
, 0 < δ < 1/3

b
2π

∣∣∣�k⊥ + �G−m,−n

∣∣∣ 2δ

√
(2−3δ)2

3
+ δ2

√
(1 − δ)2 + (1+3δ)2

3

(m,n) (0, 0)
(0, 1)

(1, 1)

(1, 0)

(−1, 0)

3.4 Quasistatic approximation for thin conducting

rods

The plane-wave approximation is a zeroth-order analysis. In this section, we consider

a first-order approximation for f(�x⊥), which describes the interactions between the

electromagnetic waves and conducting rods in Eqs. (3.6). The first-order approxi-

mation holds in the limit when the rods are small compared to the wavelength, i.e.,

κa � 1 (quasistatic limit) and to the distance between the rods, i.e., a/b � 1. In

this limit, approximations can be made to the wave equation (3.1), and the source
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Figure 3-1: Dispersion curves as obtained in the framework of plane waves approxi-
mation (dashed lines) and for the TE modes in a lattice with a/b = 0.1 (solid lines):
(a) square lattice, and (b) triangular lattice.
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Tm,n m+1,nT

r = x  - Tm,n

κr ~ 1

Near-field region Far-field region

a a

Figure 3-2: Illustration of the near- and far-field regions in the quasistatic approxi-
mation.

f(�x⊥) can be self-consistently related to the wave function ψ(�x⊥).

Assume that the center of the rod (m,n) is located at �x⊥ = �Tm,n. We introduce

the notation �r = �x⊥− �Tm,n. There are two regions surrounding the rod (m,n), where

the behavior of ψ(m,n)(�x⊥) is qualitatively different [23]: near-field region and far-

field region, as shown in figure 3-2. In the near-field region where κr � 1, the wave

function ψ(m,n) changes rapidly, i.e.,

∣∣∣�∇2
ψ(m,n)

near

∣∣∣ ∼ ψ(m,n)
near /a2 	 κ2ψ(m,n)

near . (3.8)

In the far-field region where κr � 1, the wave-function ψ(m,n) changes slowly, i.e.,

∣∣∣�∇2
ψ

(m,n)
far

∣∣∣ ∼ κ2ψ
(m,n)
far . (3.9)

The near- and the far-field solutions must match at the boundary of the two regions,

ψ(m,n)
near

∣∣∣
r∼1/κ

∼ ψ
(m,n)
far

∣∣∣
r∼1/κ

. (3.10)

In the remainder of this section, we use the near- and the far-field solutions to derive

approximate self-consistent expressions for the sources f(�x⊥) and solve the system of

Eqs. (3.6). We now consider the TM and TE modes separately.
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3.4.1 The TM case

Outside the conducting rods we have f(�x⊥) = 0. Taking into account Eq. (3.8), we

write Eq. (3.1) in the near-field region in the electrostatic approximation as

�∇2

⊥ψ(m,n)
near = 0. (3.11)

For the TM case the boundary condition at the rod is given by

ψ(m,n)
near

∣∣∣
r=a

= 0. (3.12)

The general solution of the Laplace Eq. (3.11) in 2D is given by

ψ(m,n)
near = u0 + v0 ln r +

∞∑
l=1

(
ulr

l +
vl

rl

)
(pl cos lθ + ql sin lθ) . (3.13)

Here ul, vl, pl, ql are arbitrary constants. It is sufficient to keep only the first two

terms in Eq. (3.13) to be able to satisfy the boundary conditions in Eqs. (3.10) and

(3.12). The solution satisfying the boundary conditions is

ψ(m,n)
near = ψ

(m,n)
far

(
1 − ln κr

ln κa

)
. (3.14)

Using the solution in Eq. (3.14) we can calculate the source in the rod (m,n)

creating this field. We obtain

f (m,n) (�r) = �∇2

⊥ψ(m,n)
near

∼= −ψ
(m,n)
far

ln κa
�∇2

⊥ ln κr

= − 2π

ln κa
ψ

(m,n)
far δ (�r) . (3.15)

Here f (m,n) (�r) is the source in the rod (m,n). In the vicinity of the rod (m,n) with

the source in a single rod included the equation for ψ becomes

�∇2

⊥ψ + κ2ψ = − 2π

ln κa
ψ

(m,n)
far δ (�r) . (3.16)
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The far-field solutions of different rods must match: ψ
(m,n)
far ≡ ψ (�x⊥). For a periodic

system of conducting rods, we must sum over all the rods to calculate the total sources

and obtain the following wave equation:

�∇2

⊥ψ (�x⊥) + κ2ψ (�x⊥) = f (�x⊥)

= − 2π

ln κa

∑
m,n

ψ
(m,n)
far δ

(
�x⊥ − �Tm,n

)
(3.17)

= − 2π

ln κa

∑
m,n

ψ (�x⊥) δ
(
�x⊥ − �Tm,n

)
.

Equation (3.6) along with from Eq. (3.17) becomes

(
κ2 −

(
�k⊥ + �Gm,n

)2
)

ψm,n = − 2π

A ln κa

∑
m′,n′

ψm′,n′ . (3.18)

The eigenvalues of the linear system in Eqs. (3.18) can now be found by diagonalizing

the infinite matrix

M =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

�k2
⊥ − α

A
− α

A
. . . − α

A
. . .

− α
A

(
�k⊥ + �G0,1

)2

− α
A

. . . − α
A

. . .

. . . . . . . . . . . . . . .

− α
A

− α
A

. . .
(
�k⊥ + �Gm,n

)2

− α
A

. . .

. . . . . . . . . . . . . . .

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
, (3.19)

where α = 2π/ ln κa. Because the coefficient α depends on the eigenfrequency κ, the

matrix M must be diagonalized iteratively for each eigenvalue.

The eigenvalues of the infinite matrix M can be calculated approximately as the

eigenvalues of a truncated matrix with a finite rank. This corresponds to approxi-

mating ψ with a finite number of lowest terms of the Fourier representation in Eq.

(3.3). The number of Fourier harmonics in the representation needed to achieve the

desired accuracy increases with increasing a/b.

For small a/b the truncation of the Fourier representation in Eq. (3.3) gives a

simple physical picture of the interactions of a finite number of plane waves at the
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conducting rods of the lattice. For a/b → 0 the interactions basically become binary,

that is, each plane wave interacts primarily with another plane wave, which has the

wave vector of the same magnitude. For example, the binary interaction of plane

waves can explain the behavior of the lowest local band gap width at the X points

of the square and triangular lattices. We consider the X point (�k⊥ = (π/b) êx) of

the square lattice and restrict ourselves to the interaction of the two plane waves

with the lowest values of
∣∣∣�k⊥ + �Gm,n

∣∣∣. These waves correspond to (m1,n1) = (0, 0)

and (m2,n2) = (−1, 0) with
∣∣∣�k⊥ + �Gm,n

∣∣∣ = π/b for both. The truncated matrix M̃ ,

describing the interaction of the two waves at the X point, is simply

M̃ =

∥∥∥∥∥∥∥∥∥
π2

b2
− α

b2
− α

b2

− α
b2

π2

b2
− α

b2

∥∥∥∥∥∥∥∥∥ . (3.20)

The eigenvalues of M̃ in Eq. (3.20) are

κ2
1 =

π2

b2

(
1 − 2α

π2

)
,

κ2
2 =

π2

b2
. (3.21)

Recall that α is a function of κ itself, so the equation for κ1 must be solved

iteratively. To the lowest order, α = α0 = 2π/ ln (πa/b), and the full width of the

local band gap at the X point is given by

∆

(
ωb

c

)
= b (κ1 − κ2) =

α0

π
=

2

ln (πa/b)
(3.22)

for small a/b. This logarithmic dependence agrees well with the numerical calculations

using the PBGSS code [20].

Similarly, considering the interaction of two lowest plane waves at the X point

of the triangular lattice (�k⊥ =
(
2π/

√
3b

)
êy), we find that the full width of the local
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band gap at the X point of the triangular lattice is given by

∆

(
ωb

c

)
=

α0

π
=

2

ln
(
2πa/

√
3b

) (3.23)

for small a/b.

In the same manner, we numerically calculate the entire dispersion characteristics

in the square and triangular lattices by including many plane-wave interactions. For

a/b → 0 only a limited number of the plane waves is needed to achieve a good

approximation of ψ. It is reasonable to start the iterative process of solving the

matrix M with the initial value for κ being its plane-wave value κ0 in a given point

of the �k⊥ space. As the eigenvalues of M [α (κ0)] are found, the initial guesses for

κ are corrected and new α’s are calculated. Then, the matrix M is diagonalized

again with new α’s. The iterative process has been performed using a computer.

Results of these calculations are summarized in figure 3-3(a) and figure 3-4(a). In

figure 3-3(a) the results are shown for the TM mode in a square lattice with a/b =

0.05. The quasistatically calculated eigenvalues are plotted with dots. Solid curves

show the dispersion characteristics obtained from the PBGSS calculations. Five to

twelve lowest vectors of the reciprocal lattice, depending on the symmetry of the

particular
−→
k ⊥ point, are taken into account, and the four lowest eigenmodes are

plotted. Similarly, in figure 3-4(a), the results are shown for the TM mode in a

triangular lattice with a/b = 0.05. As in figure 3-3(a), the eigenvalues calculated

with the quasistatic approximation are plotted with dots, whereas the solid curves

show the dispersion characteristics obtained from the PBGSS calculations. Six to

twelve of the lowest vectors of the reciprocal lattice are taken into account, and the

four lowest eigenfrequencies are plotted. The three special points in figure 3-3(a),

Γ, X, and M , correspond to �k⊥ = 0, �k⊥ = (π/b) êx, and �k⊥ = (π/b) (êx + êy),

respectively. The three special points in figure 3-4(a), Γ, X, and J , correspond to

�k⊥ = 0, �k⊥ =
(
2π/

√
3b

)
êx, and �k⊥ = (2π/3b)

(
êx +

√
3êy

)
. As seen in both figure

3-3(a) and figure 3-4(a), there is a good agreement between the PBGSS calculations

and the quasistatic approximation.
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Figure 3-3: Dispersion characteristics in the triangular lattice as calculated with the
PBGSS code (solid curves) and the quasistatic approximation (dots) for (a) the TM
modes with a/b = 0.05 and (b) the TE modes with a/b = 0.1.
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Figure 3-4: Dispersion characteristics in the triangular lattice as calculated with the
PBGSS code (solid curves) and the quasistatic approximation (dots) for (a) the TM
modes with a/b = 0.05 and (b) the TE modes with a/b = 0.1.
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3.4.2 The TE case

As in the TM case, the Laplace equation is valid for ψ in a near-field field region

around the rod (m,n) for the TE wave, i.e.,

�∇2

⊥ψ(m,n)
near = 0. (3.24)

For the TE case ψ stands for the longitudinal component of the magnetic field. The

boundary condition for ψ at r = a is

∂ψ(m,n)
near

∂r

∣∣∣∣∣
r=a

= 0. (3.25)

It is convenient to rewrite the boundary condition at κr ∼ 1 given by Eq. (3.10) in

the form (
�r · �∇⊥ψ(m,n)

near

)∣∣∣
r∼1/κ

∼
(
�r · �∇⊥ψ

(m,n)
far

)∣∣∣
r∼1/κ

. (3.26)

It is sufficient to keep only three terms in the general solution of Laplace’s equation

given by Eq. (3.13) in order to satisfy the boundary conditions in Eqs. (3.25) and

(3.26). The solution satisfying the boundary conditions is

ψ(m,n)
near = u0 +

(
�r · �∇⊥ψ

(m,n)
far

)(
1 +

a2

r2

)
, (3.27)

where u0 is a constant, and use was made of the relation

∣∣∣�∇⊥ψ
(m,n)
far

∣∣∣ (
r +

a2

r

)
cos θ =

(
�r · �∇⊥ψ

(m,n)
far

) (
1 +

a2

r2

)
. (3.28)

Using the solution in Eq. (3.27), we can find that the source in the rod (m,n) creating

this field is

f (m,n) (�r) = �∇2

⊥ψ(m,n)
near

∼=
(
�r · �∇⊥ψ

(m,n)
far

)
�∇2

⊥
a2

r2

= 2πa2�∇⊥ψ
(m,n)
far · �∇⊥δ (�r) . (3.29)
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The equation for ψ in the vicinity of the rod (m,n) with the source in a single rod

included is

�∇2

⊥ψ + κ2ψ = 2πa2
⊥�∇ψ

(m,n)
far · �∇⊥δ (�r) . (3.30)

For a periodic system of conducting rods the far-field solutions of different rods

must match: ψ
(m,n)
far ≡ ψ (�x⊥). In equation for ψ (�x⊥) we sum over the contributions

from all the rods to calculate the total sources. This yields

�∇2

⊥ψ (�x⊥) + κ2ψ (�x⊥) = f (�x⊥)

= 2πa2
∑
m,n

�∇⊥ψ
(m,n)
far · �∇⊥δ

(
�x⊥ −−→

T m,n

)
(3.31)

= 2πa2
∑
m,n

�∇⊥ψ (�x⊥) · �∇⊥δ
(
�x⊥ −−→

T m,n

)
.

Equation (3.6) with f (�x⊥) as in Eq. (3.31) becomes

(
κ2 −

(
�k⊥ + �Gm,n

)2
)

ψm,n = −2πa2

A

∑
m′,n′

ψm′,n′

(
�k⊥ + �Gm′,n′

)
·
(
�k⊥ + �Gm,n

)
.

(3.32)

The eigenvalues of the system can now be found by diagonalizing the infinite matrix

M =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

�k2
⊥ . . . −α

(
�k⊥ + �Gm,n

)
· �k⊥ . . .

−α�k⊥ ·
(
�k⊥ + �G0,1

)
. . . −α

(
�k⊥ + �Gm,n

)
·
(
�k⊥ + �G0,1

)
. . .

. . . . . . . . . . . .

−α�k⊥ ·
(
�k⊥ + �Gm,n

)
. . .

(
�k⊥ + �Gm,n

)2

. . .

. . . . . . . . . . . .

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
, (3.33)

where α = 2πa2/A. Note that unlike in the TM case, the coefficient is independent

of the eigenvalues κ.

The eigenvalues of the infinite matrix M can be calculated approximately as the

eigenvalues of a truncated matrix with a finite rank. Thus, for a/b → 0, we can

explain the behavior of the lowest local band gap width for the TE modes at the

X points of square and triangular lattices. Consider the lowest binary interaction of
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plane waves at the X point. For the square lattice, the X point corresponds to �k⊥ =

(π/b) êx. The two plane waves with the lowest
∣∣∣�k⊥ + �Gm,n

∣∣∣’s have (m1,n1) = (0, 0)

and (m2,n2) = (−1, 0) and
∣∣∣�k⊥ + �Gm,n

∣∣∣ = π/b. The truncated matrix M̃ , describing

the interaction of the two waves at the X point is

M̃ =

∥∥∥∥∥∥∥∥∥
(

π
b

)2
α

(
π
b

)2

α
(

π
b

)2 (
π
b

)2

∥∥∥∥∥∥∥∥∥ . (3.34)

The eigenvalues of M̃ are

κ2
1,2 =

(π

b

)2

(1 ± α) . (3.35)

For small a/b, the full width of the local band gap at the X point scales as

∆

(
ωb

c

)
= b (κ1 − κ2) = πα = 2

(πa

b

)2

. (3.36)

This agrees well with the numerical calculations using the PBGSS code. Similarly,

considering the interaction of the two lowest plane waves at the X point of the

triangular lattice (�k⊥ =
(
2π/

√
3b

)
êy), we find that the full width of the local band

gap at the X point of the triangular lattice is given by

∆

(
ωb

c

)
=

2√
3
πα =

8

3

(πa

b

)2

. (3.37)

We calculate numerically the entire TE dispersion characteristics in both square

and triangular lattices by including multiple plane-wave interactions at the metal

rods. As illustrated in Figs. 3-3(b) and 3-4(b) for a/b → 0, the approximation is

good even for a small number of Fourier components. In figure 3-3(b), the results of

the quasistatic calculations are shown with dots for the TE mode in a square lattice

of rods with a/b = 0.1. Solid curves show the dispersion characteristics obtained

from the PBGSS calculations. Five to twelve of the lowest vectors in the reciprocal

lattice (depending on the symmetry of the particular �k⊥ point) are taken into account,

and four lowest eigenmodes are plotted. Similarly, in figure 3-4(b) the results of the
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quasistatic calculations are shown with dots for the TE mode in a triangular lattice

of rods with a/b = 0.1. Solid curves show the dispersion characteristics obtained

from the PBGSS calculations. Six to twelve of the lowest vectors of the reciprocal

lattice were taken into account, and the four lowest eigenmodes are plotted. The three

special points in figure 3-3(b), Γ, X, and M , correspond to �k⊥ = 0, �k⊥ = (π/b) êx,

and �k⊥ = (π/b) (êx + êy) respectively. The three special points in figure 3-4(b), Γ, X,

and J , correspond to �k⊥ = 0, �k⊥ =
(
2π/

√
3b

)
êx, and �k⊥ = (2π/3b)

(
êx +

√
3êy

)
.

For the TE case, the agreement between the quasistatic and the PBGSS calcu-

lations is even better than for the TM case. This is because the interactions of the

waves are determined by the small parameters αTE = 2πa2/A (with A ∼ b2) for the

TE case and αTM = 2π/ ln κa (with κ ∼ 1/b) for the TM case. For the same value of

a/b, αTE is much smaller than αTM . Thus the quasistatic theory approximates the

dispersion characteristics for the TE case much better than those for the TM case

with the same value of a/b.
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Chapter 4

Study of two-dimensional PBG

resonators

4.1 Introduction

Up to now we were only dealing with infinite periodic systems of rods. We found the

global band gaps for the triangular lattice of metal rods. No modes were allowed with

frequencies inside the band gaps. However, by perturbing a single or several lattice

sites we can permit a single or a set of closely spaced modes that have frequencies in

the gap. The perturbation in two dimensions can be created by removing a single rod

or replacing it with another one which has a size or shape different from the original.

The wave with a frequency inside the band gap cannot propagate into the bulk of the

PBG structure, so, if conditions for the resonance are satisfied, then the mode of this

frequency can be localized around the defect.

Unlike in a traditional pillbox resonator only the modes with frequencies inside the

band gap can be confined in a PBG cavity. Other frequencies will leak out through the

PBG wall. Consequently the spectrum of eigenmodes in a PBG resonator is quite rare.

If a PBG resonator could be designed that would selectively confine an accelerating

(TM01−like ) mode, this resonator would be a good candidate for an accelerator cell

[11, 10]. Recall that in a traditional accelerator cell (e.g. a pillbox cavity) in addition

to the accelerating mode, there exist many HOM, which can be excited by a beam
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passing through the cavity. The excited modes, called “wakefields” induce unwanted

transverse motion of electrons and emittance growth in consequent bunches. The

advantage of the PBG accelerating cavity would be in efficient suppression of the

higher-frequency, higher-order mode wakefields.

The main object of our investigation will be the simplest possible two-dimensional

metallic PBG resonator, which is formed by one missing rod in a triangular lattice

(figure 1-4). We assume that the rods are sandwiched between metal plates, which

are so closely spaced that we have kz = 0 propagation for the range of frequencies of

the interest and only TM modes can exist in such structure. In the past, many codes

were developed for calculating the modes confined in defects in dielectric lattices [2].

However, for analysis of metallic PBG cavities formed by single or multiple defects in

the PBG structure, finite-element codes such as SUPERFISH [24] and High Frequency

Structure Simulator (HFSS) [25] are ideally suited. So we did not have to develop

a separate code to study metal PBG cavities. Although both, SUPERFISH and

HFSS codes, can only calculate the eigenmodes of finite electromagnetic structures,

these are actually the only possible structures to be built. We restricted ourselves

to considering only three rows of metal rods surrounded by a cylindrical metal wall.

The wall radius Rwall is of the order of 3.5 b, where b is the lattice spacing. This PBG

resonator geometry is shown in figure 1-4. We found that the mode with a frequency

in the band gap was very well confined in a PBG structure with only three rows of

rods.

This chapter will deal with the design of a single-mode PBG resonator, the con-

struction of PBG resonators and the proof-of-principle cold tests. In cold tests, we

demonstrated the TM01−like mode mode confinement in a PBG resonator and the

suppression of the HOM. Also we demonstrated a high Q PBG resonator at 11 GHz.

4.2 Eigenmodes of a PBG resonator

The SUPERFISH and the HFSS codes were applied to compute the eigenmodes of

a PBG resonator shown in figure 1-4. The resonators with different ratios of the
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Figure 4-1: The eigenfrequencies of the TM modes in PBG cavity formed by one rod
removed from the triangular lattice. The eigenfrequencies are plotted versus the ratio
of a/b. Black solid lines show the band gap boundaries. Color solid lines represent
the frequencies of modes of a pillbox cavity with the radius R = b − a.

rod’s radii, a, to the spacing between the rods, b, were modelled. The computed

eigenfrequencies for the TM modes are plotted in figure 4-1. The same band gap

picture as in figure 2-3(b) is shown on the ωb/c versus a/b diagram. The frequencies

of the defect modes are plotted over the band gap picture with color hollow and

filled circles. Because of the presence of the metal wall behind the rows of rods,

the appearance of the mode can actually be predicted for the smaller ratios of a/b

than when the mode is confined by the lattice. Hollow circles in the figure represent

the frequencies of the modes until they are really confined and filled circles show

the frequencies of the confined modes. The solid color lines on the picture show the

eigenfrequencies of the pillbox cavity with the radius R = b− a. As the radius of the

rods increases the effective radius of the PBG cavity goes down and the frequencies

of the eigenmodes increase.

We noted from the Figure 4-1 that for some values of the rod’s radii (0.1 < a/b <
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TM    mode01

Figure 4-2: A comparison of the electric field patterns in the TM01−like mode in a
PBG resonator and the TM01 mode in a pillbox resonator

0.2) only a single lowest order mode is confined by a PBG structure. This frequency

range is shaded in figure 4-1. The structure of the confined mode resembles the

structure of the TM01 mode in a pillbox resonator (figure 4-2), thus we named it

the TM01− like mode. The TM01− like mode can be employed as an accelerating

mode in a PBG accelerator cell. A metal wall placed at the periphery can however

confine higher-order modes with the dipole structure (figure 4-3(a)). For a/b > 0.2

the PBG structure confines higher-order the TM11− like mode (figure 4-3(b)), and

is not anymore attractive for accelerators, because, the TM11 mode is a dangerous

wake. Alongside with the longitudinal component, the electric field in the TM11 mode

has the transverse component, and thus, the dipole mode is primarily responsible for

kicking the electron beam off axis.

The question which still must be answered is if the dipole mode confined by the

metal wall is a dangerous wake mode. The intuitive answer is “no” because this mode

is spread over the big volume of the cavity. The quantitative answer can be given by

employing the concept of “wake potential”, which is the characteristic of the wakefield

“danger” for a beam.
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Figure 4-3: Modes of PBG resonators with different ratios of a/b: (a) a/b = 0.15,
the TM01 mode confined by PBG structure, the TM11 mode confined by the outside
wall; (b) a/b = 0.30, the TM01 and the TM11 modes confined by PBG structure.
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Figure 4-4: An exciting charge Q′ moving parallel to the z− axis at the transverse
position �r′. A test charge Q moving parallel to the z− axis at transverse position �r
and longitudinal position s behind Q′.

4.3 Wake potentials

There are two types of wake potentials, which scientists do define [4]. Both of them

describe the effect of the field excited by one charge Q′ moving through the cavity

on the test charge Q entering the cavity and separated from the first charge by a

distance s. The charges are moving along the parallel paths (take those paths to be

parallel to the ẑ-axis). The transverse coordinate of the first charge is �r′ and of the

second charge is �r (see figure 4-4).

The delta-function longitudinal wake potential is defined as the total voltage, lost

by a test charge following at v = c at a distance s on the parallel path, divided by

Q′. Thus

Wz (�r′, �r, s) = − 1

Q′

∫ L

0

Er′
z (�r, z, t = (s + z) /c) dz, (4.1)

where Er′
z (�r, z, t) is the z-component of the electric field due to the exciting charge,

L is the length of the cavity. Note, that since a signal cannot travel faster than

the speed of light Wz = 0 for s < 0 (causality). The usefulness of this definition is

that Wz can be used as a Green’s function for computing the voltage loss within an

ultrarelativistic bunch of arbitrary shape.

The delta-function transverse wake potential is defined as the transverse momen-

tum kick experienced by a test charge Q following the first charge Q′ at v = c at a
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distance s on the parallel path, divided by Q′. Thus

�W⊥ (�r′, �r, s) =
1

Q′

∫ L

0

[
�Er′
⊥ (�r, z, t) +

(
�v × �Br′ (�r, z, t)

)
⊥

]
t=(z+s)/c

dz. (4.2)

where �E⊥ +
(
�v × �B

)
⊥

is the perpendicular component of the Lorenz force affecting

the test charge due to the fields created by the first charge. Note, that �W⊥ is a vector

with both x and y components.

It is shown in [4] and also reproduced in Appendix A, that in the cavity with

translational symmetry the following expressions are valid for Wz and �W⊥ :

Wz (�r′, �r, s) =
∑

λ

1

2Uλ

Vλ (�r) V ∗
λ (�r′) cos

ωλs

c


0, s < 0

1
2
, s = 0

1, s > 0

, (4.3)

�W⊥ (�r′, �r, s) =
∑

λ

c

2Uλωλ

V ∗
λ (�r′)

(
�∇⊥Vλ (�r)

)
sin

(ωλs

c

) 
0, s ≤ 0

1, s > 0

, (4.4)

where the sum is taken over all the eigenmodes of the cavity numbered with an index

λ, and ωλ is the frequency of mode λ, Uλ is the energy stored in the mode λ,

Vλ (�r) =

∫ L

0

dz exp (−iωλz/c) Eλz (�r, z) , (4.5)

�Eλ is the electric field in mode λ. For the short cavity ωλL/c � 1 Vλ (�r) � Eλz (�r) L.

In case of a real accelerator cavity with finite conductivity the fields excited by

the first charge decay with time. Thus the impact of these fields on the test charge

will be smaller than that given by (4.3) and (4.4). The correction is introduced to

the definition of wakefield potentials for the case of the cavity with finite conductivity

[26]:

Wz (�r′, �r, s > 0) =
∑

λ

1

2Uλ

Vλ (�r) V ∗
λ (�r′) cos

ωλs

c
e
− ωλs

2cQλ , (4.6)
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�W⊥ (�r′, �r, s > 0) =
∑

λ

c

2Uλωλ

V ∗
λ (�r′)

(
�∇⊥Vλ (�r)

)
sin

(ωλs

c

)
e
− ωλs

2cQλ , (4.7)

where Qλ is the quality factor of the mode λ.

4.4 The dipole mode suppression in a PBG cavity

Even if the PBG structure is finite and surrounded by a metal wall, the cavity still

has lower wakefields, than the conventional pillbox cavity. The reason for this is

that the HOMs of a PBG cavity are not confined inside of the lattice defect, but

rather are be spread out over the volume. The number of these eigenmodes per some

frequency interval is proportional to the square of the radius of the metal wall R2
wall

and increases as we add the additional rows of rods. Meanwhile, the energy, stored

in each mode is also proportional to R2
wall and the characteristic scale of a mode

|Ezλ| /
∣∣∣�∇⊥Ezλ

∣∣∣ is proportional to Rwall. Thus as long as only the accelerating mode

is confined by the PBG structure, the overall transverse wake field potentials of the

PBG cavity will scale as W⊥ ∝ 1/Rwall. Among all the higher order modes, only

the number proportional to Rwall will have zero angular field variation and non-zero

electric field on the beam axis. Only this modes contribute to the longitudinal wake

potential. Thus the longitudinal wake potential will also scale with the cavity radius

as Wz ∝ 1/Rwall.

However, when a higher order mode is nearly confined by PBG structure (as it

happens for the TM11− like mode in a defect of a triangular lattice with a/b ∼ 0.2)

the above scaling is not correct at the presence of the wall at the periphery. And we

cannot say that the PBG cavity with just three rows of rods will have low wakefields

up to the the rods radii a = 0.2b. The figure 4-5 shows the TM11-like mode in PBG

cavities with different ratios of a/b. It can be seen from the picture, that though the

TM11-like mode is not confined by the PBG lattice for a/b < 0.2, the metal wall still

pushes the mode inside the defect.

Meanwhile it is strongly desirable to have the biggest possible ratio of a/b. The

bigger a/b is, the lower are the peak fields in the cavity and the lower are losses and
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Figure 4-5: The TM11-like mode with vertex polarization in PBG cavity with trian-
gular lattice and three rows of rods for different ratios of a/b.

Figure 4-6: The direction of x̂− and ŷ−axes and characteristic �r in evaluation of the
wake potential for the TM11 mode.

the higher is the ohmic quality factor Qw and the higher is the breakdown limit. So

it is important to know how big can the rods be without having strong wakefields

in the cavity. Consider the part of the perpendicular wake potential related to the

TM11-mode. The maximum wake potential due to the TM11 mode will be achieved

for the distance between the charges s = πc
2ω11

and is equal to

�W 11
⊥ (�r′, �r) =

c

2U11ω11

V ∗
11 (�r′)

(
�∇⊥V11 (�r)

)
. (4.8)

To make an estimate for the value of W 11
⊥ we need to choose some characteristic

values for the charge offsets from the axis. Recall, that a real accelerator structure
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Figure 4-7: The wake potential per unit length w11
⊥ due to the TM11− like mode in a

PBG cavity with three rows of rods as a function of the ratio a/b. The straight line
denotes the value of w11

⊥ in a pillbox cavity.

consists of a stack of cavities set between the disks with the beam holes (irises),

inserted on axis (see figure 1-7). The maximum possible offset of the beam from

the axis is therefore the axis radius airis. So it looks reasonable to evaluate �W 11
⊥

at |�r′| = |�r| = airis. Consider a short cavity so that we can assume that V11 (�r) ≈
Ez11 (�r) L. The contours of the electric field in the TM11-like mode are shown in figure

4-6, and the field grows the most quickly in direction of x̂− axis. So let evaluate

�W 11
⊥ at �r′ = �r = x̂airis. The Ez11 increases linearly from the center of the cavity in

x̂−direction, so we can write approximately that

�∇⊥Ez11 (x̂airis.) ≈ Ez11 (x̂airis.)

airis.

x̂, (4.9)

and so the wake potential due to TM11 mode per unit length is equal to

�w11
⊥ =

cE2
z11 (x̂airis.)

2u11ω11airis.

x̂, (4.10)

where u11 is the energy stored in the TM11−like mode per unit length of the cavity.

The figure 4-7 shows the results of SUPERFISH [24] calculations of w11
⊥ according
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to the formula (4.10) for PBG cavities with three rows of rods and different ratios of

a/b. The straight line in the picture shows the value of w11
⊥ in a pillbox cavity. It can

be seen, that w11
⊥ in a PBG cavity is always smaller than w11

⊥ in a pillbox cavity. But

if we want to achieve a really good suppression of the wakefields, we need to keep the

ratio of a/b as low as 0.15.

The wakefields in PBG cavity with a/b = 0.15 can be suppressed further, if a

lossy material is placed at the periphery of the cavity or the metal wall is completely

removed. Then the modes, which are not confined by the lattice, will have much

lower Q−factors, than the accelerating mode. And the wake potentials given by (4.6)

and (4.7) will be small. This will be realized in the experiment.

4.5 First PBG resonators fabrication and the proof-

of-principal cold test

In order to verify experimentally the mode confinement and HOM suppression in

PBG resonators, we constructed two PBG resonators for cold testing (figure 4-8).

The resonators were fabricated using the brass cylinders closed at each end by brass

circular plates. PBG structures were formed by brass rods fitted into arrays of holes

at the endplates. A single rod was missing from the center of a PBG structure

to form a PBG resonator. The parameters of resonators are summarized in Table

4.1. In Cavity 1, only the TM01 mode was confined by the PBG structure and in

the Cavity 2 the TM01 and the TM11 modes were confined. Cavities 1 and 2 were

designed so that the frequencies of the TM01 modes were the same. WR62 waveguides

were employed to feed rf power into the cavities, and the same size waveguides were

connected symmetrically on the opposite sides.

To couple the power into a PBG resonator several rods in front of the waveguides

were removed. Several coupling schemes were tried. The coupling scheme finally used

in the experiment is shown in figure 4-9. The removed rods are shown in figure 4-9

with hollow circles. PBG structure rods are shown with filled circles. We measured
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Cavity 1

Cavity 2

Figure 4-8: PBG resonators built for the cold test.
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the S12 (transmission) elements of the scattering matrix using the HP8510 vector

network analyzer. First, we did not place an absorber at the metal walls of the

cavities and thus the eigenmodes of the PBG resonator as well as the eigenmodes of

the metal wall resonator were confined. The coupling curves for two resonators are

shown in figure 4-10 (higher graphs). Then we placed the eccosorb at the periphery of

the cavities, which reduced by a factor of 10 the Q−factors of the modes not confined

by the PBG structure as well as increased the frequencies of these modes (figure 4-10,

lower graphs). Only the TM01 mode at 11 GHz survived in Cavity 1. Both, the TM01

mode at 11 GHz and the TM11 mode at 17 GHz, survived in Cavity 2 because of

thicker rods and wider band gap. These results agree with the cavities design. We

also measured the S11 (reflection) elements of the scattering matrices and derived

from those that the ohmic Q−factors for the TM01 modes in both cavities were about

2000.

Table 4.1: The parameters of two PBG cavities con-

structed for the cold test.

Parameter Cavity 1 Cavity 2

Lattice vector 1.06 cm 1.35 cm

Rod radius 0.16 cm 0.4 cm

a/b 0.15 0.3

Cavity radius 3.81 cm 4.83 cm

Eigenfrequency of the TM01 mode 11 GHz 11 GHz

Eigenfrequency of the TM11 mode 15.28 GHz 17.34 GHz

Cavity length 0.787 cm 0.787 cm

4.6 High Q PBG resonator fabrication and testing

Although the first cold tests successfully demonstrated the confinement of modes in

PBG resonators, we observed a big discrepancy between the measured Q-factors of
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Figure 4-9: Coupling scheme for the PBG resonator. PBG structure rods are shown
with filled circles. Missing rods are shown with hollow circles.
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Figure 4-10: Cold test measurements of the transmission coefficient S12 for the brass
resonators Cavity 1 and Cavity 2.
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Figure 4-11: Brazed PBG resonator.

the resonators’ modes and the theoretically calculated Qw of 5500. We suggested

that the reason for low Qw was the poor contact between the rods and the end plates.

The currents going from the rods onto the plates were broken at the gaps in between

rods and plates and big losses occurred. To improve the connection between rods

and plates and decrease losses the the rods were brazed into the plates. A new PBG

resonator with the dimensions of Cavity 1 was fabricated. Brass is not suitable for

brazing, thus the rods and the plates were now machined of high purity oxygen-free

Class 1 copper. Communication Power Industries (CPI) [27] engineers put brazing

material in the gaps between the rods and the plates and then heated the structure

in a hydrogen furnace. The brazing material melted and good electrical connection

was made. The brazed resonator (figure 4-11) was cold-tested. The reflection, S11,

curve for the brazed resonator is shown in Figure 4-12. The TM01-mode Q− factor of

5000 was calculated from the S11-curve. This is in excellent agreement with theory.

In addition to brazing, one more improvement was made to the resonator design.

Half of the outer wall was removed to obtain the HOM damping. The other half of

the wall had to stay in place for the coupling. Since the measured Q was high we

concluded that the removal of the wall did not affect the TM01 mode confinement.

This is in agreement with theory. Removing a part of the wall also allowed us to tune

the frequency of the the TM01 mode by deforming the rods of the inner row. A fishing
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Figure 4-12: Cold test measurements of the reflection coefficient, S11, for the brazed
PBG resonator.

line was wrapped around the inner row rod and pulled, the rod was slightly bent. As

a result of the deformation, the frequency of the TM01 mode was tuned from 11.010

GHz to 11.000 GHz.
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Chapter 5

Design of a travelling wave PBG

accelerator

5.1 Introduction

In the previous chapter we demonstrated several PBG resonators and proved the mode

confinement in PBG structures and HOM damping. Next, we want to demonstrate

the acceleration in a PBG structure. The accelerating structure will be a disk-loaded

PBG waveguide of the form shown in figure 5-1. The six-cell structure consists of

two coupling cells (with waveguides) and four travelling wave (TW) cells. We would

like to construct a disk-loaded PBG waveguide, couple power into it and accelerate

the electrons. The available power is at the frequency of 17.137 GHz and is produced

by the Haimson Research Corporation (HRC) klystron [28]. The 10 MeV electron

beam is produced by the HRC accelerator [29] and will enter the PBG accelerator

at the speed of light c. The electromagnetic wave must be in resonance with the

electron beam and thus must have the phase velocity equal to c. The complete design

of the travelling wave PBG accelerator must determine the following parameters: the

rod radii a, the spacing between the rods b, the cell length L, the optimal phase

shift per cell ϕ, the iris thickness t, the iris opening diameter 2d (see figure 5-1). In

addition, the coupler cell must be designed separately. The coupling scheme (number

of removed rods) must be chosen first. Next, the radii of the rods and the spacing
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Figure 5-1: Disk-loaded PBG waveguide.

between the rods must be determined separately for the coupling cell.

The cell length L, the optimal phase shift per cell φ, the iris thickness t, and

the iris opening diameter 2d are determined by the following designer’s goal. One

would like to have a structure with high shunt impedance, low losses, short filling

time and the beam hole big enough to accept the beam and do not produce short-

range wakefields [30]. Short-range wakefields are the terraherz radiation produced due

to the beam interaction with the close metallic surface of the irises. Although the

problem of short-range wakefields is crucial for real-world high brightness accelerator,

in our experiment it would not arise due to low electron bunch charge in the HRC

accelerator [29]. Thus the short-range wakefields are of no concern in our design.

The shunt impedance is the measure of the efficiency of the accelerator structure.

It is defined as the square of the energy gained by an electron for unit RF power

dissipation in the structure:

Rs =

(∫ L

0
Ez (r = 0, s) cos ω s

c
ds

)2

Pw

, (5.1)

where Ez (r = 0, s) is the z− component of the on-axis electric field amplitude in

accelerator at the longitudinal point s, ω is the accelerating wave frequency, and Pw
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is the Ohmic loss power in the accelerator structure. The shunt impedance is usually

normalized to the the structure quality factor Qw = ωW/Pw :

[
Rs

Qw

]
=

(∫ L

0
Ez (r = 0, s) cos ω s

c
ds

)2

ωW
, (5.2)

where W is the power stored in a single accelerator cell.
[

Rs

Qw

]
is a measure of

geometric accelerating properties of the structure, independent of the cell’s material

properties and the frequency. The ratio of
[

Rs

Qw

]
is the best characteristics of the

accelerating properties of the cavity.

First, let us choose the optimal phase shift per cell φ. The resonance condition

for the electron and the wave requires that

ωL

c
= φ. (5.3)

To increase the efficiency of the acceleration, one must maximize the shunt impedance

per unit length, Rs/L. The shunt impedance of the individual cavities is improved by

increasing the length of the cavities, i.e. increasing φ (see [5]). However, the radio of

Rs/L has an optimal value. For small iris thickness t � L, the value of φ maximizing

the shunt impedance per unit length was found to be around 2π/3 [5]. The cell’s

length is then determined by the relationship (5.3).

Next, let us determine the optimal iris thickness t and the iris opening diameter

2d. Decreasing the iris opening increases the cell’s shunt impedance. However in our

case the dimension of the iris opening is limited from below by the radius of the

electron beam which is about 1 mm. A thicker iris has higher mechanical strength

and lower probability of breakdown, but decreases the shunt impedance. Increasing

the iris thickness and decreasing the opening decreases the group velocity of the wave

and increases filling time. Shorter portion of the klystron pulse is then available for

the acceleration of electrons. We determined that the dimensions of the Stanford

Linear Collider [5] scaled to 17.137 GHz will work well for our experiment. We

chose d = 2.16 mm and t = 1.14 mm. We estimated that the structure with these
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dimensions will accelerate the electron beam by approximately 1 MeV if fed by 2 MW

of power available from the klystron. This energy increase in a 10 MeV electron beam

is easy to measure with a spectrometer.

Finally, the rod radii a and the spacing between the rods b must be adjusted to

bring the cell’s frequency to 17.137 GHz. Each parameter can be varied to change

the frequency. However, it is desirable to keep the ratio a/b ≈ 0.15 for good HOM

damping and higher Qw. The exact values of a and b are different for the coupler cells

and for the TW cells. First, a and b of the coupler cell were chosen through tuning

the coupler cell’s dimensions for the optimal coupling. Next, the spacing between the

rods b was fixed the same for all the cells and the radii of the rods inside the TW

cells were determined to tune the frequency.

5.2 Coupling into a travelling wave structure: prop-

erties and tuning algorithms

This section describes different algorithms of the coupler tuning and explains which

tuning algorithm works the best in our case. Coupling into a travelling wave structure

is more complicated than coupling into a resonator. A resonator confines a mode of

a particular frequency. Only this frequency can be coupled into the resonator. The

coupling iris diameter is varied to achieve zero reflection from the resonator. This is

called ”critical coupling”. The travelling wave structure is different: it has a bandpass

and resonates at the whole band of frequencies (see Appendix B). If a coupler is

attached to the travelling wave structure, the coupling curve will have a minimum

at some frequency ω = ωm, which can be different from the desirable frequency ω0.

To achieve the critical coupling two conditions must be satisfied: the minimum of

the reflection must be zero and must be achieved at ω = ω0. These two conditions

cannot be satisfied with varying just one parameter of the coupler. In addition to

the coupling iris diameter the diameter of the coupling (first) cell must be modified

to achieve the critical coupling. Thus, the tuning algorithm must be invented, which
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will help us to choose the correct values for the coupling iris diameter and the size of

the coupling cell.

The HFSS code was applied for the coupler design. The first computational algo-

rithm, which we tried, was proposed by Ng and Ko [31]. This algorithm is described

in details in Appendix C. The algorithm works well for the pillbox couplers. However

the design of PBG coupler is more complicated and requires more computations. In

PBG coupler design the drawbacks of the Ng and Ko methods start to arise. The

drawbacks are the following:

• The reflection from Ng and Ko structure is not directly related to the reflection

from the coupler (see figure C-4). The calculated reflection is a result of two

coupler interference.

• There is no convergence criteria in the method.

• The convergence of HFSS computations slows as the reflection coefficient ap-

proaches zero.

An alternative algorithm was proposed by Kroll [32]. This algorithm allows to

compute the reflection from a single coupler and thus does not have the above draw-

backs. The idea of the method is the following. Assume we have an accelerator

structure of N 	 1 identical cells. At the end of the structure there is some reflection

(from the coupler). The field profile in the structure then allows us to calculate the

reflection from the coupler.

Away from the coupler all evanescent bands are absent. The Floquet theorem

must be valid and the two travelling waves (the forward and the reverse) must exist

E (z) = Ea (z)
[
e−jϕ(z) + R ejϕ(z)

]
, (5.4)

Ea (z ± L) = Ea (z) , ϕ (z ± L) = ϕ (z) ± φ,

where R is the reflection from the coupler, φ is the phase advance per cell (in our
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case φ = 1200), and z is the coordinate along the accelerator. Then E (z + L) = Ea (z)
[
e−jϕ(z)−jφ + R ejϕ(z)+jφ

]
E (z − L) = Ea (z)

[
e−jϕ(z)+jφ + R ejϕ(z)−jφ

] . (5.5)

Introduce  F+ (z) = E(z+L)
E(z)

= e−jϕ(z)−jφ+R ejϕ(z)+jφ

e−jϕ(z)+R ejϕ(z)

F− (z) = E(z−L)
E(z)

= e−jϕ(z)+jφ+R ejϕ(z)−jφ

e−jϕ(z)+R ejϕ(z)

, (5.6)

Σ (z) = F+ (z) + F− (z) =
2e−jϕ(z) cos φ + 2R ejϕ(z) cos φ

e−jϕ(z) + R ejϕ(z)
= 2 cos φ,

φ = arc cos (Σ/2) , which means that Σ must be independent of z. Independence Σ

of z yields the convergence criteria for the Kroll’s method. The adaptive HFSS mesh

must be refined until the solution has Σ, which independent of z, or φ ≡ 1200. Next

introduce

∆ (z) = F+ (z) − F− (z) =
−2je−jϕ(z) sin φ + 2jR ejϕ(z) sin φ

e−jϕ(z) + R ejϕ(z)
,

R e2jϕ(z) =
2 sin φ − j∆ (z)

2 sin φ + j∆ (z)
, (5.7)

|R| =

∣∣∣∣2 sin φ − j∆ (z)

2 sin φ + j∆ (z)

∣∣∣∣ .

The reflection from the coupler can be computed from the field profile, calculated

with HFSS, using the equations 5.7.

The Kroll’s algorithm was first tried for the pillbox coupler design (see Appendix

D) and then employed for the PBG coupler design.

5.3 PBG coupler design with Kroll’s method

I chose the geometry of figure 5-2 to start the HFSS simulations of the coupler. The

goal of the simulation was to tune the PBG coupler, so that no reflection occurs from

the structure consisting of PBG cells. To speed up the calculation, I tried to replace
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Figure 5-2: HFSS modelling geometry for the PBG coupler tuning with Kroll’s
method.

Figure 5-3: Coupling scheme for the PBG coupler of a travelling wave PBG acceler-
ator.

the PBG TW cells with pillbox cells.

At first, I discovered that a pillbox cell has slightly higher group velocity than the

PBG cell with the same irises. However, in simulations I needed a pillbox cell which

would have the same dispersion as my PBG cell. To achieve this, I made the irises of

a pillbox cell 0.04 mm thicker than the irises of my PBG cell. I chose the coupling

scheme of figure 5-3 for my coupling PBG cell. Then I made the following definitions

for the boundaries:

• A port was created at the cell #1. The TM01 mode of a cylindrical waveguide

was excited through the port.
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• The matching load was placed at the end of the waveguide of the coupler cell

#6.

• H-boundary was defined at the symmetry plane.

• E-boundary was defined everywhere else.

The port was excited at 17.137 GHz. The TM01 mode at cell #1 would couple with

some reflection into a travelling wave 2π/3 mode in the following cells. In cells #3

and #4 the Kroll’s formulaes (5.6) and (5.7) are approximately valid. The reflection

coefficient was calculated from the field profile in cells #3 and #4 using the equations

(5.7). The parameters of the coupler cell, the rod’s radii a and the distance between

the rods b, were then varied to minimize the reflection coefficient. A C++ subprogram

was written for this optimization. The C++ subprogram followed the flow chart of

figure 5-4.

The optimization program ran for approximately 24 hours. The coupler was tuned

to the low reflection of |R| = 0.012. The coupler parameters were found as following:

the rod radius a = 1.05 mm, the distance between the rods b = 6.97 mm.

The magnitude of the electric field in a tuned structure is shown in color in figure

5-5. Figure 5-6 shows the on-axis distribution of the electric field magnitude. The field

profile looks flat, which means that the coupler is tuned. The reflection coefficient,

calculated using the equations (5.7) in different points of the structure on-axis is

shown in figure 5-7. The phase shift per cell, calculated using the equations (5.6)

in different points of the structure on-axis is shown in figure 5-8. The calculated

reflection is almost independent of the point, where it is calculated. The phase shift

per cell is very close to 1200 in all the points in cells #3 and #4. This means that

the solution converged well and the calculation is correct.

Tolerances, that is, the dependence of |R| on a and b, were also calculated. This

dependence is shown in figure 5-9. It can be seen from the picture that the coupler,

which has either rods dimensions or the spacing between the rods different from the

original by 0.001′′ will have |R| ∼ 0.6. This means that the tuning of the coupler will

be needed after fabrication.
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Figure 5-4: Flow chart for the C++ optimization subroutine for the PBG coupler
design.

Figure 5-5: Electric field magnitude in a structure with a tuned PBG coupler.
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Figure 5-6: The magnitude of electric field on axis of the structure with a tuned PBG
coupler.

0.0

0.1

0.2

0.3

0.4

0           1            2           3           4            5           6

|R
|

cell number

Figure 5-7: The reflection coefficient calculated according to (5.7) in different points
of the TW structure.
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Figure 5-8: The phase shift per cell calculated according to (5.6) in different points
of the TW structure.
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Figure 5-9: The dependence of the reflection from the coupler on the deviation of the
rods radius a and the spacing between the rods b from the optimized dimensions.

85



(a) (b)

Figure 5-10: The WR62 waveguide to PBG coupler taper (a). Electric field profile in
the taper (b).

To complete the design of the coupler, the taper must be made which would

increase the size of the coupling waveguide to the size of a standard WR62 waveguide.

Generally, each slow taper has low reflection. However, if the taper length is chosen

resonant, then the reflection will be minimized. The taper was designed with HFSS.

The resonant length of the taper was found to be 5.22 cm. The reflection from a

resonant taper was less than 1%. The drawing of the taper and distribution of the

electric field in the taper is shown in figure 5-10.

5.4 PBG TW cell design and summary of acceler-

ator dimensions and characteristics

The complete design of a TW PBG accelerator is now lacking only the TW cell design.

We have already determined the cell length and the iris dimensions. We choose the

distance between the rods to be the same throughout the structure: in coupler cells

and in TW cells. The radii of the rods had to be calculated in order to bring the

TW cell’s frequency to 17.137 GHz. A 300 slice of a single PBG cell was modelled

with HFSS (figure 5-11). 1200 phase shift was defined between the upper and the
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Figure 5-11: The magnitude of electric field for a 2π/3 mode in a PBG cell.
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Figure 5-12: The dependence of the TW cell frequency on the deviation of the rods
radius a and the spacing between the rods b from the optimized dimensions.
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Figure 5-13: The electric field magnitude and phase distribution on axis of a 2π/3
PBG cell.

lower surfaces of the cell. It was found that for the rods radii a = 1.04 mm, the cell’s

frequency was correct. The ratio of a/b in the newly designed cell was found to be

0.155. This means that the wakefields in this cell are suppressed. The electric field

profile for the 2π/3 mode in a 300 PBG slice is shown in figure 5-11. Figure 5-13

shows the electric field magnitude and phase for the 2π/3 mode on axis of the TW

cell. The tolerances were also calculated. The cell’s frequency changes as the cell’s

dimensions vary from the optimized values. The dependence of the cell’s frequency on

the dimensional variance is shown in figure 5-12. It can be seen from the graph that

0.001′′ deviation in rod radius or in the spacing produces almost 100 MHz frequency

shift. Thus, the cell tuning will be required after fabrication.

The dimensions of the travelling wave PBG accelerator are summarized in table

5.1. Table 5.2 summarizes the accelerator characteristics of a disk-loaded PBG waveg-

uide and compares them to the characteristics of a disk-loaded cylindrical waveguide.

In table 5.2, rs is the shunt impedance normalized to the cell length, rs = Rs/L and

gradient is the measure of the effective electric field for given power

G =

∫ L

0
Ez (r = 0, s) cos ω s

c
ds

L
, (5.8)

G ∝ √
P , where P is the input power coming from the klystron. Although the
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PBG disk-loaded structure has lower ohmic Q-factor and consequently, lower shunt

impedance, the ratio of [rs/Qw] is the same for the PBG and cylindrical disk-loaded

waveguides. This means that the accelerating characteristics of the PBG waveguide

are similar to those of a cylindrical waveguide. Also, since the PBG disk-loaded

waveguide has slightly lower group velocity for the 2π/3 mode than the cylindrical

disk-loaded waveguide, the gradient for the PBG structure will be slightly higher for

the same input power.

Table 5.1: The dimensions of TW PBG accelerator at

17.137 GHz.

Rod radius (TW cell / coupler cell), a 1.04 mm/ 1.05 mm

Spacing between the rods, b 6.97 mm

a/b 0.155

Cavity length, L 5.83 mm

Phase advance per cell 2π/3

Iris radius, d 2.16 mm

Iris thickness, t 1.14 mm

Frequency (TM01 mode) 17.137 GHz

Table 5.2: Accelerator characteristics: PBG disk-loaded

structure vs. disk-loaded cylindrical waveguide.

PBG disk-loaded structure Disk-loaded cylindrical waveguide

Frequency 17.137 GHz 17.137 GHz

Qw 4188 5618

rs 98 MΩ/m 139 MΩ/m

[rs/Qw] 23.4 kΩ/m 24.7 kΩ/m

Group velocity 0.013c 0.014c

Gradient 25.2
√

P [MW] MV/m 25.1
√

P [MW] MV/m
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Chapter 6

Cold test of a TW PBG accelerator

6.1 Introduction

When we had a complete design of a TW PBG accelerator, it was time to proceed

with the PBG accelerator construction and testing. The drawings of the structure

parts were made by this author with the Autodesk Inventor (figure 6-1) and sub-

mitted to the machine shop. We needed to construct a high Q structure with the

correct frequency of the 2π/3 mode, correct coupling curve and correct field profile.

Although we found that brazing was a successful method of fabrication for a high Q

single-cell PBG resonator, it turned out to be a technical challenge to braze a multi-

cell structure. Alternative methods had to be considered. Next, it was expected

that the conventional machining with the tolerance of 0.001′′ would not be able to

produce the structure with the correct frequency, and consequently, correct coupling

and correct field profiles. Tuning was needed. Conventional process of tuning an ac-

celerator section consists of applying an external mechanical pressure which imparts

a permanent deformation to the inside wall of the cavity with a frequency different

from the design value. For a PBG structure, only the deformation of the inner rods

could produce significant frequency shift. However, the inner rods were hard to reach

for applying significant mechanical pressure. Also, the diameter of a rod was compa-

rable to the distance between the iris plates. Thus, the deformation of rods without

braking the structure was complicated. We had to develop a new tuning method for
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Figure 6-1: Autodesk Inventor drawing of a PBG structure.

the PBG accelerator.

6.2 Computation of the correct coupling curves

and field profiles

I applied HFSS to compute the correct coupling curves and the field profiles for a

6-cell accelerator. Two PBG couplers and four TW pillbox cells shown in figure

6-2 were modelled. The pillbox cells dimensions were adjusted so that they would

have the same dispersion as the PBG cells. The walls of the structure were made

conductive with the conductance σ = 3 · 107 (Ω · m)−1 , which is slightly less than the

ideal conductance of copper (σideal = 5.8 · 107 (Ω · m)−1). The S11 and S12 coupling

curves were computed and plotted (see figure 6-3). It can be seen from the figure,

that the S11 coupling curve has six distinct dips, which correspond to six eigenmodes

of the structure. The eigenmodes have different phase shifts over the length of the

structure. The phase shifts and the eigenmode frequencies are summarized in table
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Figure 6-2: The HFSS model of a 6-cell PBG accelerator. The electric field magnitude
is shown in color.

6.1. Mode 4 is the one closest to the accelerating 2π/3 mode. I also computed the

correct profiles of the electric field on axis of the structure for each eigenmode. The

field profiles are plotted in figure 6-4.

Table 6.1: The eigenmodes of a 6-cell PBG accelerator.

mode 1 mode 2 mode 3 mode 4 mode 5 mode 6

Phase shift per 6 cells 0 π 2π 3π 4π 5π

Frequency, GHz 17.004 17.043 17.090 17.130 17.177 17.218

6.3 Fabrication of the TW PBG accelerator

As it was mentioned above, brazing of a 6-cell PBG accelerator turned out to be

complicated. Therefore, our first attempt was to build a PBG accelerator without

brazing, just with bolting the parts together. The rods and plates were machined out
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Figure 6-3: Coupling curves for a 6-cell PBG accelerator computed with HFSS.
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Figure 6-4: Electric field profiles for the eigenmodes of a 6-cell PBG accelerator (HFSS
computation).
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Figure 6-5: Fabricated parts of a 6-cell PBG accelerator.

of class 1 oxygen free electronic (OFE) copper (figure 6-5). The plates were placed

in slots of the side pieces and the whole structure was bolted together as shown in

figure 6-1. We were hoping that the conductivity of the OFE copper was high enough

so that we would be able to obtain the structure with reasonably high Q without

brazing. The structure was then cold-tested with the HP8720 network analyzer. The

coupling curve was measured. I found that the measured transmission was very low.

The reflection (S11) curve is shown in figure 6-6. The S11 curve in the figure has

only three dips. This means that the losses in the structure are so high that the

field was not able to penetrate beyond the third cell of the structure. The bead

pull measurements proved that there was no field in the cells beyond the third cell.

The field in the third cell had low amplitude. It was concluded that the attempt to

construct a bolted PBG accelerator was unsuccessful.

The new idea of a PBG accelerator fabrication was electroforming. Electroforming

is a process when the rods and the plates are grown together as a single copper struc-

ture. Then good electrical connections between rods and plates in the structure would

be automatically ensured. The electroforming was performed by Custom Microwave,

Inc [33]. The aluminum mandrels with holes in place of the rods were fabricated first.
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Figure 6-6: The S11 coupling curve for the bolted 6-cell PBG accelerator.

Figure 6-7: Electroformed PBG accelerator structure.
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Then the mandrels were placed into copper solution. Copper ions were deposited on

the mandrels and PBG cells consisting of the rods and two half-plates were formed.

Aluminum was then etched away. The cells were put together and soldered. Copper

was flashed over the whole structure to cover the solder joints. The waveguides were

bolted to the structure. Side pieces were bolted for additional mechanical strength.

The electroformed structure is shown in figure 6-7.

6.4 First cold test results and conclusions

First, the coupling curves for the new structure were measured with the HP8720

network analyzer. The coupling curves are shown in figure 6-8. Coupling into both

waveguides was measured. Two coupling curves S11 and S22 are slightly different

due to losses in the structure. The coupling curves are shown in both, linear and

logarithmical, formats. The measured curves closely resemble the computed curves

of figure 6-3. The comparison of the measured and theoretical reflection curves is

shown in figure 6-9. Six dips are present in the reflection coefficient measurement.

This means that six standing waves are present in the structure and all six cells

resonate. The shape of the coupling curves is slightly different from the computed

shape. This implies that the couplers need tuning. The frequencies of the dips in

the coupling curves are summarized in table 6.2. For comparison, the computed

frequencies of the dips and the frequency discrepancies are shown. It can be seen

from the table that the measured eigenfrequencies are about 20 MHz higher than the

computed eigenfrequencies. This implies that the radii of the rods are larger than

needed.

The next test performed was the so-called “bead pull” measurement of the field

profile in the eigenmodes. The “bead pull” testing method is described in [34] and

is based on Slater perturbation theorem [35]. According to Slater’s theorem, the

resonant frequency of a cavity shifts when a small dielectric volume is placed inside

the cavity. The frequency shift is proportional to the square electric field magnitude
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Figure 6-8: The coupling curves for the electroformed 6-cell PBG accelerator in linear
and logarythm formats.
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Figure 6-9: The comparison between the theoretical S11 curve for the 6-cell PBG
accelerator and the measured S11 curve for the electroformed structure in linear
format.

Figure 6-10: Beadpull test stand.
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Figure 6-11: Field profiles of the eigenmodes of the electroformed PBG accelerator.
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at the perturbation point E2:

∆ω

ω
=

3Vpert

4W

ε − 1

ε + 2
E2, (6.1)

where Vpert is the volume of the perturbing object, ε is its dielectric permittivity, W

is the energy stored in the resonator. If the resonator is powered from a port, the

phase of the reflected signal behaves linearly with frequency in the vicinity of the

resonance. When the resonant frequency shifts, the phase of the reflected signal (or

of the signal transmitted through another port) at the resonance frequency changes

linearly, proportionally to the frequency shift. This allows us to calculate the electric

field at different points of the structure based on the measurement of the resonant

frequency shifts or transmission phase shifts.

The measurement was performed as follows. A 1/32′′ diameter nylon (ε ∼ 3)

bead was mounted on a thin 2-pound fishing line. The line with the bead was pulled

though the structure with a motor (figure 6-10). An HP8720 network analyzer was

switched into the time-domain mode with a 10 s sweep time. The phase shift of the

signal transmitted through the structure was recorded as the bead travelled through

the structure on axis. The network analyzer trace was then saved with a Labview

program, written by this author. The data was analyzed and the field profile was

derived for each resonant mode. The field profiles are plotted in figure 6-11. The field

profiles look similar to those computed theoretically (figure 6-4), but still are slightly

different. This again implies that the structure coupler must be tuned. There might

also be discrepancies between different TW cells frequencies.

Table 6.2: The eigenmodes of an electroformed 6-cell

PBG accelerator vs. theoretically computed eigenmodes.

mode 1 mode 2 mode 3 mode 4 mode 5 mode 6

Frequency (measured), GHz 17.026 17.062 17.106 17.146 17.201 17.248

Frequency (theory), GHz 17.004 17.043 17.090 17.130 17.177 17.218

Frequency mismatch, MHz 22 19 26 16 24 30
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Figure 6-12: Cell frequency measurement with two coaxial antenna.

The following technique was applied to measure the TW cells frequency discrep-

ancies. Two 0.140′′ semi-rigid coax cables were placed at the middle of PBG cells as

shown in figure 6-12. The cell in between two antennas was excited and the frequency

of maximum transmission was measured. An amplifier was used to obtain a stronger

signal. The eigenfrequencies of the cells #2 though #5 were measured this way. The

results are summarized in table 6.3. The frequencies of cells #2, #3 and #4 were

found to be very close, while the cell #5 was 10 MHz lower in frequency than its

neighbor cells. Unfortunately, the two-antenna method does not allow us to measure

the frequencies of the coupler cell. Also, one cannot say how the frequency measured

with the antenna is related to the frequency of the 2π/3 mode of the structure. The

method allowing to determine the coupler cell frequency and the frequency mismatch

for the TW cells is described in the next section.

Table 6.3: The eigenfrequencies of TW cells of electro-

formed structure measured with two coaxial cables.

Cell number 2 3 4 5

Frequency, GHz 17.138 17.138 17.136 17.127
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Figure 6-13: The special test stand with a copper plunger for the coupler cell testing
with Kyhl’s method.

6.5 PBG coupler testing with Kyhl’s method

Kyhl’s method of impedance matching when a rectangular waveguide is connected

to the TW periodic structure is best described in [36]. The method allows to deter-

mine by how much the dimensions of the coupling cell and the coupling opening are

different from the ideal matching dimensions. First, I will describe the measurement

procedure and next, I will explain the theoretical basics for the method. To start the

measurements, a special copper plunger must be manufactured and installed to move

straight along the structure axis (see figure 6-13).

At the beginning, the plunger must be moved down so that the coupling cell

is detuned. The phase of the reflection in this case is almost independent of the

frequency. The value of the phase must be recorded. Then the plunger is retracted

to the following cavity. The phase of the reflection must now be determined for the
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following frequencies:

• The computed frequency of the 2π/3 mode f2π/3.

• The computed frequency of the π/2 mode fπ/2.

• The arithmetic mean of the above frequencies fave.

If the size of the coupler cell is correct, then the phase of the reflection at fave will

be different from the phase of the reflection when the plunger is in the coupling cell

by 1800. If this is not true, then the diameter of the coupling cell must be adjusted to

bring the phase of the reflection to the correct value. Next, if the coupling opening

dimension is correct, then four reflection points will fall on the Smith chart as shown

in figure 6-14 (a). If the reflection points fall as shown in figure 6-14 (b), then the

structure is undercoupled. The coupling hole must be increased to achieve critical

coupling. If the reflection points fall as shown in figure 6-14 (c), then the structure

is overcoupled. The coupling hole must be decreased to achieve critical coupling.

The theoretical basics for this method is the following. The electrical properties

of the accelerator structure operating in the lowest passband are fully described by its

equivalent circuit. The equivalent circuit for a low bandwidth accelerator structure

is derived in Appendix B and shown in figure B-6. Assume, we have some input

coupling network, which provides critical coupling into 2π/3 mode of the structure.

This means that the admittance of the coupling network is equal to the infinite

structure admittance at 2π/3 mode (see Eq. (B.28)):

jYin = jY∞

(
2π

3

)
=

Yc

2
√

3
. (6.2)

Placing a detuning plunger in a coupling cavity has an effect of disconnecting the

whole network from its first capacitive section (figure 6-15). The reflection from this

section is equal to

R1 =
jYin − jYc/2

jYin + jYc/2
=

1 − j
√

3

1 + j
√

3
= exp

(
−j

2π

3

)
. (6.3)
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Figure 6-14: Smith chart plot for reflections from the copper plunger: (a) critically
coupled structure, (b) undercoupled structure, (c) overcoupled structure.
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Figure 6-15: Equivalent circuit for the accelerator structure with coupler cell detuned
with plunger.

IN

Arm disconnected

C/2
C C

Figure 6-16: Equivalent circuit for the accelerator structure with second cell detuned
with plunger.
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Figure 6-17: Phase of the reflection from detuning plunger vs. frequency: (a) plunger
in a second cell, (b) plunger in a third cell.

Placing a detuning plunger in a second cavity disconnects the network from the

coupling scheme section (figure 6-16). Using the definitions of Appendix B, we com-

pute that the reflection from the plunger now will be

R2 =
jYin − jYc

(
1
2

+ 1
1−YcXser

)
jYin + jYc

(
1
2

+ 1
1−YcXser

) =
1 − j

√
3
(
1 + 2

1−YcXser

)
1 + j

√
3
(
1 + 2

1−YcXser

) . (6.4)

Knowing that Xser is linear with frequency, we can plot the dependence of the phase

of R2 on the frequency (figure 6-17(a)). In particular, for the frequencies of the π/2

-mode, 2π/3-mode and the average frequency we have

R2

(π

2

)
= exp

(
j
2π

3

)
,

R2

(
2π

3

)
= 1,

R2 (ave) = exp
(
j
π

3

)
.

Thus the reflection from a plunger detuning the first cell of a periodic structure with

a correctly tuned coupler will follow the Smith chart of figure 6-14 (a).

When the coupler is tuned right, Kyhl’s method allows us to check the correct

frequency of the first TW cell (second cavity). To do this, the plunger must be

retracted to the third cavity and the dependence of the phase of the reflection R3 on

frequency must be measured. The dependence of the phase of R3 on frequency for the
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correctly tuned TW cell is shown in figure 6-17(b). The phase of R3 at 2π/3 mode is

different from the phase of R2 at 2π/3 mode by 2400. If the difference between two

phases is not 2400 then the second cavity does not have the right frequency and must

be tuned.

Two couplers of the electroformed PBG structure were tested with Kyhl’s method.

fave was measured and compared to the computed value of 17.108 GHz. One coupler

(cell #6) was found to be correct. The second coupler was found to be about 20 MHz

higher in frequency than it should be.

6.6 PBG structure etching

To correct the frequency of the cells it was proposed to etch the rods, which would

make the rods smaller, effective PBG resonator diameter bigger and the frequency

of the cells lower. Based on the measurement results and HFSS computations, the

machine shop order for etching was made. It is summarized in table 6.4.

Table 6.4: Etching order for tuning of a 6-cell PBG ac-

celerator.

Cell number Etch in diameter

1 0.0004′′

2 0.0004′′

3 0.0004′′

4 0.0004′′

5 0.0002′′

6 do not etch (mask)

The etching was performed at the Material Science and Technology group at Los

Alamos National Laboratory (LANL). The structure was mounted on a stainless steel

rod, about 12 inches in length. The rod was wrapped with heat shrink tubing and

tape to a diameter that provided a press fit into the beam hole of the structure and
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Figure 6-18: PBG structure with cells #5 and #6 masked with wax.

then was inserted into the beam hole. This served both to mask the beam hole and

as a handle for the dipping operation. Jack-o-lantern candles were melted in a beaker

on a hot plate and served as a masking material. This wax was found to be suitably

resistant to chemical attack by the acid solution. Acid solution was mixed as follows:

100 ml nitric acid, 275 ml phosphoric acid, 125 ml acetic acid. This solution is usually

used at 65C to polish copper and removes about 0.0005′′ per minute from each side.

The candle wax, however melted at 50C, so the acid bath was used at 45C instead.

At 45C, the acid mixture removes 0.0001′′ per minute from each side of copper rods.

First, the structure was dipped into the molten wax just enough to cover cell #6.

The dip was repeated several times and cooled to room temperature between dips

so that a thick layer of wax could form. The entire structure was then dipped into

the 45C acid mixture for one minute for removal of 0.0001′′ per surface or 0.0002′′

from the diameter of the rods. Next, the structure was rinsed in deionized water and

blow-dried with nitrogen. After that the structure was dipped again in wax - this

time enough to cover cells #5 and #6, repeated and cooled for a thick coat. Figure

6-18 shows the structure with cells #5 and #6 masked. The entire structure was
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dipped in 45C acid mixture for one more minute, rinsed with deionized water and

blow-dried with nitrogen.

The wax was removed with a detergent cleaner in an ultrasonic tank at 70C. The

structure was rinsed with deionized water and dipped in chromic acid solution for

final cleaning of tarnish spots from previous steps. Finally, it was rinsed in deionized

water and blow dried again. The etching was successfully completed.

6.7 Cold test results for the etched structure

The same tests as described above were performed again to test the etched PBG

accelerator. New transmission and reflection curves are shown in figure 6-19. The

comparison of the S11 transmission curve to the S11 curve computed with HFSS is

shown in figure 6-20. Very good agreement is observed between two curves. The

only difference is the increased dispersion of the measured curve. The reason for the

increased dispersion is the etching process. While the etching decreased the diameter

of the rods it also decreased the plate thickness and thus increased the dispersion.

In the Conclusion chapter, I will discuss what modification could be made to the

tuning method to be able to compensate the change of the dispersion. Slight increase

in the dispersion of the structure due to etching should not affect significantly the

acceleration properties of the structure. The future accelerating mode, Mode 4, was

found to be at 17.135 GHz in air, which means that it will be at around 17.140 GHz

in vacuum.

Field profiles for the structure eigenmodes were again measured with the beadpull.

Figure 6-21 shows the field profiles. Mode 4, which is the most important for us, now

has the flat field profile. This result is correct and agrees with the computation.

Eigenfrequencies of the four TW cells were measured with two coax cables. The

results are summarized in table 6.5. It can be seen from the table that now the TW

cells are almost identical.
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Figure 6-19: The coupling curves for the etched 6-cell PBG accelerator in linear and
logarithm formats.
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Figure 6-20: The comparison between the theoretical S11 curve for the 6-cell PBG
accelerator and the measured S11 curve for the etched structure in linear format.
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Figure 6-21: Field profiles of the eigenmodes of the etched PBG accelerator.
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Table 6.5: The eigenfrequencies of TW cells of etched

structure measured with two coaxial cables.

Cell number 2 3 4 5

Frequency, GHz 17.120 17.118 17.117 17.119

Two couplers of the etched PBG structure were again tested with Kyhl method.

fave was measured for both couplers. First coupler (cell #1) had fave = 17.109 GHz.

The second coupler (cell #6) had fave = 17.108 GHz. The phase of the reflection

from the plunger at different frequencies was also measured. For cell #1 I obtained:

φπ/2 − φave = 680,

φave − φ2π/3 = 640.
(6.5)

For cell #6:

φπ/2 − φave = 670,

φave − φ2π/3 = 670.
(6.6)

Taking into account that the phase length of the coupling waveguide is about 90 bigger

for the π/2 - mode frequency than for the average frequency and also 90 bigger for the

the average frequency than for the 2π/3 - mode frequency, the critical coupling phase

difference must be 690. This implies that the structure is 20 − 30 overcoupled. This is

just a slight overcoupling. Therefore, it can be concluded that the PBG accelerator

was tuned successfully.

6.8 Temperature dependence of the structure eigen-

frequencies

Powering the accelerator structure with several MW of rf may lead to the structure

heating due to Ohmic losses. Therefore it is important to know how the accelerating

mode frequency will behave with temperature. A special oven was used to measure

the temperature dependence (see figure 6-22). The structure was placed inside the
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Figure 6-22: PBG structure inside the heating oven.

oven and heated slowly at about 50C/hour. This ensured the uniform temperature

throughout the structure. The frequencies of Mode 4 and Mode 6 were recorded with

the network analyzer. The data is summarized in table 6.6. The data shows that the

eigenmode frequencies decrease with temperature at the rate of about 1 MHz per 50

C.

Table 6.6: Temperature dependence of the structure

eigenmode frequencies.

t, 0C 26 31 36 41 46

Frequency (Mode 4), GHz 17.135 17.134 17.133 17.132 17.131

Frequency (Mode 6), GHz 17.233 17.231 17.230 17.229 17.228

To estimate the temperature rise due to microwave heating of the PBG accelerator

structure the following formula can be applied [37] :

∆T = RsH
2
wall

√
tpulse

πρcvk
,
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where Rs is the structure shunt impedance, Hwall is the maximum magnetic field

on the wall, tpulse is the microwave pulse length, ρ = 8900 kg
m3 is the copper density,

cv = 385.39 J
kg0C

is the specific heat per unit mass of the copper, k = 380 W
0C·m is the

thermal conductivity of copper. For the PBG accelerator with the average gradient of

30 MV/m and 100 ns pulse the temperature rise will not exceed 10 0C, which means

that the frequency shift for the accelerating mode will not exceed 2 MHz.
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Chapter 7

Hot test of a TW PBG accelerator

7.1 Introduction

The goal of the hot test experiment was to demonstrate the acceleration of a real

electron beam by a 6-cell PBG accelerator structure. The PBG structure was installed

on a 17 GHz MIT linac beamline [29] (see layout in figure 7-1 and the photograph

in figure 7-2). A power splitter was installed at the Haimson Research Corporation

(HRC) klystron [28] output arm. 10 MW of power was produced by the klystron and

split into two parts. The bigger power was used to feed the linac, while the smaller

part, about 3 MW were transported in a 12 feet long WR62 waveguide to the PBG

accelerator. Approximately 2 MW reached the PBG chamber, which would be enough

to produce the accelerating gradient of 35 MV/m and accelerate the linac electron

beam by more than 1 MeV. The energy gain is measured by the HRC spectrometer.

The schematic of the test components is shown in figure 7-3.

This chapter describes the hot test experiment. First, the major system compo-

nents of the 17 GHz accelerator experiment will be introduced. The high power 17

GHz klystron, linac and linac beamline will be discussed. Next, the PBG vacuum

chamber, high power feed and spectrometer will be described. Finally, experimental

results will be explained.
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Figure 7-1: 17 GHz linac beamline layout with PBG chamber installed.

7.2 17 GHz accelerator experiment components

7.2.1 The klystron

The Haimson Research Corporation relativistic klystron amplifier supplies the power

for the accelerator and the PBG structure. The klystron is designed to produce up

to 25 MW (saturated gain up to 70 dB) of RF power at 17.132-17.142 GHz for pulse

lengths up to 1 µs. It consists of the input RF cavity, followed by a gain section and

then followed by a travelling wave output section. The klystron beam is supplied

by a pierce electron gun which is built by Thomson Co. and is able to produce the

current up to 100 A [38]. The drive for the klystron is provided by a travelling wave

tube amplifier (TWTA) with 1-10W of output power. The TWTA is driven with the

HP6871B synthesizer, which produces 1µW to 10 mW of power at 2-18 GHz. Due

to the absence of a circulator at the output, the klystron was rarely operated at the

maximum power. In the PBG experiment, the synthesizer was typically operated at

about 1 mW, which results in about 10 MW of output klystron power.
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Figure 7-2: MIT 17 GHz acceleration laboratory photograph.
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Figure 7-3: The schematic of the PBG accelerator hot test components.

The klystron output is connected into a four-port hybrid coupler designed by

HRC. Dual WR-62 output waveguides are connected and the power is then directed

into two separate arms. Power levels ratio between the arms can be varied. One arm

is directed towards the linac and the second arm goes to the PBG experiment. The

forward and reflected power on both arms is measured by using 65 dB directional

couplers combined with additional attenuator chains terminated by Schottky diode

detectors. The diode responses were calibrated at 17.140 GHz with the HP6871B

synthesizer and with the HP4323B power meter.

7.2.2 The linac

The 2π/3 mode 17.136 GHz linac is a quasi-constant gradient disk-loaded structure

consisting of 94 cells with 15 different cell types. The linac provides accelerating

gradients up to 45 MV/m, depending on the input RF power, and outputs a 10-20

MeV electron beam. The structure has a group velocity in the range of 0.0196 ÷
0.0474c which results in 58 ns filling time [29]. The linac beam is generated in a DC

(Pierce) electron gun at the energy of 0.55 MeV with a normalized RMS emittance
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of 1.8 π mm-mrad and transported to the chopper-prebuncher section. The chopper

cavity produces bunches with the charge of 0.01 nC which are 1000 long (with 3600

corresponding to one rf period at 17 GHz), the prebuncher cavity provides a 10:1

charge compression and reduces 50 keV energy spread in the bunch to less than 10

keV and compresses the bunch length to 150 (out of 3600). The 150 bunch is imputed

into the main accelerator, where it is further compressed by another factor of 15 to 10.

This corresponds to 180 fs bunch length [39]. The bunches come out in long bunch

trains, one bunch per rf period.

7.2.3 The linac beamline

The linac beamline layout is shown in figure 7-1. At 0.5 m beyond the linac on the

beamline, a focusing solenoid is installed. The solenoid produces magnetic fields up

to 0.6 Tesla, which provide the minimum beam spot size of about 1 mm. Vertical and

horizontal steering coils are located after the lens. Focusing solenoid and steering

coils provide means to control the beam for the input to the experiments. Two bunch-

length measurement experiments are installed further down the beamline. The first

experiment is the MIT Smith-Purcell radiation experiment [40, 41] and the second

experiment is the HRC bunch length measurement experiment [42]. PBG chamber

and the HRC spectrometer were installed on the beamline last (figure 7-2). The HRC

spectrometer ends with a Faraday cup (FC) which provides means for measuring the

beam current.

7.3 PBG experiment components

7.3.1 PBG chamber

The PBG structure was installed on inside a vacuum chamber (see figure 7-4). The

structure coupling waveguides were attached to the upper flange of the vacuum cham-

ber with screws (figure 7-5). Two WR62 waveguides were welded into the upper flange

for the microwave coupling. The microwave power from the klystron would be cou-
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Figure 7-4: The PBG structure installed inside the vacuum chamber (Autocad draw-
ing).

pled into the PBG accelerator though one of the waveguides. The load was installed

on the second waveguide to absorb the power which passed though the structure. A

stainless steal collimator was installed at the entrance to the PBG chamber. The

collimator had a small (3.5 mm diameter) hole which would only allow the on-axis

electron beam though. The collimator would prevent the electron beam from hitting

and destroying the copper plates of the PBG accelerator. The PBG chamber was

installed at the end of the linac beamline (figure 7-6). The collimator hole, the PBG

structure beam hole and the Faraday cup at the end of the chamber were pre-aligned

with a flash light.
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Figure 7-5: The PBG structure attached to the flange of the vacuum chamber.

Figure 7-6: The PBG chamber installed on the linac beamline.
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Figure 7-7: PBG accelerator coupling waveguide and high power load.

7.3.2 PBG structure power feed

Microwave power from the klystron was transported to the PBG structure by the

means of a 12-feet-long WR62 waveguide (figure 7-7). The coupled and reflected

power is measured at the klystron end of the waveguide with two 65 dB directional

couplers combined with Schottky diode detectors. Some power becomes lost when

transported to the PBG accelerator. Typical losses in OFE copper WR62 waveguide

at 17 GHz are 0.5 dB (about 11%) per 10 feet, but higher losses occur at the waveguide

bends. Measurement of the reflected power during breakdowns while we were doing

the initial processing indicated that about 25% of power was actually lost in the

waveguide.

A dielectric window installed in the waveguide separated the PBG accelerator

section from the klystron section. Thus, installation and maintenance of the PBG

accelerator chamber was possible without breaking the klystron vacuum. Finally, a

phase shifter was installed on the waveguide allowing for different phase shifts between

microwaves in the linac and the PBG accelerator. Optimal acceleration of the beam in

the PBG structure is observed when the beam and the power enter the PBG structure
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in correct phase. Power transmitted through the PBG structure was dumped into a

load (figure 7-7).

Microwave power is coupled into the linac and the PBG structure at 100 ns pulses

with a repetition rate of 1 Hz. The timing of the events in the system is shown in

table 7.1. It takes longer for the microwave power to reach the PBG structure than

for the speed-of-light electron beam. However, the filling time of linac is much longer

than the filling time of the PBG structure, which is 10 ns. Thus, by the time the

linac is filled and the electron beam starts coming through, the PBG structure also

fills to accelerate the beam.

Table 7.1: Timing in the PBG accelerator experiment.

Time Event

t=0 Linac and PBG accelerator powered

t=30 ns Microwave power reaches PBG accelerator

t=40 ns PBG accelerator fills

t=50 ns Electron beam exits the linac

t=58 ns Linac fills

t=60 ns Electron beam enters the PBG accelerator

t=100 ns Microwave pulse ends in linac

t=110 ns Electron beam ceases in PBG accelerator

t=130 ns Microwave pulse ends in PBG accelerator

7.3.3 The spectrometer

The HRC magnetic spectrometer (figure 7-8) was employed for the beam energy

measurements. The physical principles of the spectrometer are the following. The

main component of the spectrometer is the solenoid magnet. The electron beam

entering the spectrometer is bent by the magnetic field of the solenoid. The magnetic

field is confined within the solenoid volume, where the field is almost uniform. The

magnitude of the magnetic field is proportional to the solenoidal current. The bending
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radius for the electron beam is given by the following formula

rbend =
p⊥c

eB
≈mc2�p⊥c

Ebeam

eB
∝ Ebeam

Isol

, (7.1)

where Ebeam is the beam energy, Isol is the solenoidal current. The stronger is the

solenoidal current, the higher energy beam will be bent by exactly 300 over the width

of the solenoid. After the solenoid the electron beam is detected by two Faraday cups:

the first is straight on the beam line and the second one is at a 300 bend (see the

photograph in figure 7-8 and the schematic in figure 7-9). When the solenoidal current

is off, the current in the first Faraday cup is maximum. When the solenoidal current

is turned on, the signal is the first Faraday cup is low. The value of the solenoidal

current, when the signal at the second Faraday cup is maximum, is proportional to

the beam energy. The spectrometer was calibrated and the dependence of the beam

energy on the solenoidal current, for which signal is present at the second Faraday

cup, was plotted (figure 7-10). For beam energies less than 25 MeV, this dependence

is linear and can be approximated by the following formula

E[MeV] = 1.4I[A]. (7.2)

7.4 PBG accelerator experiment results

Beam transport through PBG accelerator was optimized by adjusting the current

in vertical and horizontal steering magnets and focusing solenoid. The Faraday cup

signal at the end of the line was maximized. A typical FC signal corresponding to

∼ 80 mA of current in plotted in figure 7-11.

The PBG accelerator structure was conditioned to couple 2 MW of microwave

power at 17.140 GHz for 100 ns. The conditioning time was 1 week. According to

the HFSS computations (see Table 5.2), the average accelerating gradient inside the

PBG structure achieved for 2MW of input power must be around 35 MV/m. The

typical forward and reflected signals for coupling into PBG structure are shown in
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Figure 7-8: The photograph of spectrometer.

Figure 7-9: The schematic of spectrometer.

125



0.0

5.0

10.0

15.0

20.0

25.0

12.0 15.00.0 3.0 6.0 9.0

Spectrometer coil current, A

B
ea

m
 e

ne
rg

y,
 M

eV

Figure 7-10: Energy of the electron beam entering 30-degree-bend Faraday cup versus
spectrometer coil current.

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

1.00

0.0 40.0 80.0 120.0 160.0 200.0

Time (ns)

F
C

 s
ig

na
l (

V
)

Figure 7-11: Typical Faraday cup signal.
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Figure 7-12: Typical PBG forward and reflected signals for 2 MW 100 ns pulse.

figure 7-12. Since the filling time of the PBG structure is of the order of the forward

pulse rise time, the amplitude of the reflected signal is low.

The spectrometer coil current was varied in order to measure the beam energy.

First, the current was increased slowly, until some signal was seen on the 30-degree-

bend Faraday cup (FC2). Different shapes of the 30-degree-bend FC signals are

shown in figure 7-13. At the beginning and at the end of electron pulse the linac is

not completely filled. Therefore, those parts of electron beam have lower energy, and

are seen on the FC2 for lower values of the spectrometer coil current. In the middle of

the electron beam pulse (2.81-2.82 µs in figure 7-13) the linac is filled and the beam

has high energy and appears on FC2 at high coil current. When the length of the

microwave pulse is increased beyond 100 ns the duration of high energy beam part

also increases.

Next, we studied the energy spectrum of the electron beam in the middle of the

pulse (2.815 µs). The FC2 current at t = 2.815µs is plotted in figure 7-14 as a function

of the spectrometer coil current, which is proportional to the beam energy. The FC2

current value was averaged over 10 shots to reduce the contribution of the shot-to-

shot jitter. It can be seen from the figure 7-14 and the spectrometer calibration that

the rms energy variation in the middle of the beam is about 0.5 MeV. When high
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Figure 7-13: Typical 30-degree-bend Faraday cup signals for different values of the
spectrometer coil current: I1 < I2 < I3 < I4.

power is coupled into PBG structure, the beam is accelerated. The beam energy

increases and the maximum of the FC2 signal shifts towards a higher spectrometer

current (figure 7-14). The contribution of the PBG accelerator to the beam energy

can be calculated by formula 7.2.

Using the above procedure the electron beam energy was measured for different

phase shifts between the linac and the PBG accelerator and for different input powers

in the PBG accelerator. The dependence of the electron beam energy on the phase

shift between the linac and PBG accelerator is shown in figure 7-15. The PBG input

power was approximately 1 MW. The linac beam was initially at 9.4 MeV. The beam

was accelerated or decelerated by 1 MeV depending on the phase shift between linac

and PBG. The dependence of the beam energy on the gradient (proportional to the

square root of the input power) inside PBG structure is shown in figure 7-16. The

experimental points in figure 7-16 are connected with a straight line, which is the

least squares regression line for the data. In this measurement, the beam exited the

linac with the energy of 16.5 MeV. The phase shift between the linac and the PBG

was kept 00 for the maximum acceleration. Different powers were injected into the
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Figure 7-14: 30-degree-bend Faraday cup current in the middle of the electron beam
versus spectrometer coil current for different input powers into PBG accelerator.

PBG structure. The electron beam energy was measured for each input power. Based

on the HFSS computations, for 2 MW of the input power the accelerating gradients

in the PBG structure were expected to be about 35 MV/m. The total length of the

PBG accelerator is about 4 mm. Thus the electron energy gain of about 1.4 MeV was

expected. A maximum electron beam acceleration inside the PBG structure of about

1.4 MeV was measured for the input power of 2 MW, which is in excellent agreement

with the prediction.
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Figure 7-15: Measured electron beam energy versus phase shift between the linac and
the PBG accelerator. Input power into PBG accelerator is 1 MW.
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Chapter 8

Summary

8.1 Conclusion

This thesis research focused on demonstration of a first travelling wave linear photonic

band gap accelerator. The unique advantage of the PBG accelerator over the con-

ventional disk-loaded accelerator is in the efficient long-range wakefields suppression.

Suppression of wakefields would allow scientists to extend the operating frequencies

of future linear colliders to higher frequencies without sacrificing the beam quality.

The higher-frequency energy-efficient linear colliders would be able to reach the ever-

higher multi-TeV energies and to probe beyond the established picture of particle

physics.

The first complete theory of metal photonic band gap structures was developed

by the author of this thesis. The band gap pictures for 2D lattices of metallic rods

were derived and plotted. Next, 2D PBG resonators were studied and the design of

a resonator which would completely suppress the wakefields was presented. Numer-

ous 2D PBG resonators were successfully constructed and tested. Two goals were

achieved: the theory of 2D metallic PBG structures and the simulations were bench-

marked, and single-mode confinement in a PBG resonator was proven. Engineering

efforts were undertaken to successfully demonstrate a high Q PBG resonator. Rods

and plates of the resonator were machined of high-purity oxygen-free copper. The

rods were brazed into the plates which provided good electrical contact between the
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parts of the structure. Measurements of the brazed structure yielded a very high Qw

of 5000, which is in an excellent agreement with the computed number of 5300.

The first ever design of a travelling-wave PBG accelerator structure was performed.

The PBG structure consisting of two coupler cell and four travelling wave (TW) cells,

which suppressed the wakefields, was modelled successfully with the commercial soft-

ware package called ”High Frequency Structure Simulator (HFSS)”. The new PBG

coupler had a mode symmetry, which was much better than that available in most

conventional couplers. New computational techniques for PBG couplers design were

developed. Travelling wave cells were designed without the outer metal wall and with

the ratio of the radius of the rods to the spacing between the rods a/b = 0.155. This

design provided the excellent suppression of higher-order modes. A total of two TW

PBG structures were constructed and cold-tested. The first structure was bolted

together and although it proved the correctness of computational design, was domi-

nated by high ohmic losses. Therefore, a second structure was built by electroforming

methods to reduce ohmic losses. Electroforming proved to be a good technique for

fabrication of multi-cell PBG structures and provided us with a first working PBG

accelerating structure with low losses. Initially, the electroformed structure was found

to resonate at higher frequency than it was designed for. Etching was applied to tune

the dimensions of the rods in the PBG accelerator structure which then decreased the

resonant frequency to the desired value. Final cold test results for the tuned structure

were in perfect agreement with the computations.

To complete this thesis work, the acceleration of an electron beam inside the PBG

accelerator was experimentally demonstrated at the MIT accelerator laboratory. The

PBG structure was installed on the MIT linac beamline and powered with 2MW of

microwaves at 17.140 GHz from the klystron. The structure was successfully con-

ditioned to eliminate electrical breakdowns. The linac electron beam was injected

into the PBG structure and accelerated by 1.4 MeV, consistent with the expected

accelerating gradients of about 35 MV/m.
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8.2 Future directions

Future plans for the linear PBG accelerator research program is the demonstration

of a structure, which could be a candidate for a future linear collider section. The

following problems must be addressed.

• The wakefields suppression in a multi-cell structure. While we experimentally

demonstrated the suppression of wakefields in PBG resonators, the demonstra-

tion of the wakefields suppression in a travelling wave structure is desirable. The

suppression of wakefields by the factor of 100 is needed. One way to demon-

strate the wakefield suppression is to conduct a hot test, where two beams pass

through the structure: the first beam excites the structure, and the second

beam witnesses the wakefields. An example of such experiment is the ASSET

in Stanford Linear Accelerator Center (SLAC) (see, for example [43, 44]). To

conduct this experiment, the beams with higher charges than those available at

MIT are needed. Also, a longer accelerator section than just six cells is required

to excite detectable wakefields. The construction of a long PBG accelerator is

a big effort. The tuning of a long section has to be performed with the highest

possible accuracy. Otherwise, there will be no resonant interaction between the

structure and the electron beam. Alternative ideas of wakefield testing (such as

the wire method [45]) might also be explored.

• The electrical breakdown problem. When high power is coupled into the struc-

ture and high surface gradients are achieved, the problem of electrical break-

down arise. The surface gradients are higher when smaller scales are present in

the structure. The smallest scales in a PBG accelerator are the diameters of the

rods and the irises. By increasing the iris thickness and iris opening diameter,

the shunt impedance of the structure decreases. Thus, a longer structure must

be build to achieve strong acceleration. The diameter of the rods might be in-

creased in two ways. The first idea is to increase only the diameter of the inner

row rods. Then, the PBG structure of the outer rows of rods would not confine

the wakefields, while the inner row rods will have higher breakdown threshold.
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Extensive study of the mode spectrum of such resonators must be performed in

order to determine how big the inner rods can be without having the wakefields

confined. An alternative idea of increasing the diameter of the rods is to study

PBG lattices which are different from the square or the triangular lattices that

were explored by the author of this thesis. Different lattices might have different

band gap diagrams. Thicker rods do not necessarily lead to the appearance of

higher order band gaps and HOM confinement in other lattices.

• The cooling problem. Ohmic losses inevitably lead to heating of the copper

structure. The heating is stronger when more power is coupled into the struc-

ture, or when the microwave pulse is longer and the repetition rate is higher.

The heating causes changes in the structure dimension, detunes the accelerator

and in time may lead to the distraction of the structure. In conventional linacs,

water cooling is usually employed. Cold water is flowing in pipes surrounding

the accelerator and cools the hot walls. In a PBG accelerator the inner row of

rods would be heated most of all. Cooling with water flowing along the outside

wall of the structure would not be efficient. One idea of making the cooling

work is to manufacture the inner row rods hollow and pass water inside the

copper rods. Electroforming is a natural way of manufacturing hollow rods.

• The cost problem. Although the fabrication and tuning of multi-cell PBG struc-

ture were successful, the processes of electroforming and etching were rather

costly. Engineering efforts must be undertaken in order to develop the cheapest

possible processes for electroforming and etching. For example, one may con-

sider electroforming separate cells and cold-testing the cell stack under mechan-

ical pressure without soldering the cells. If the cells are separate, it would be

easier to etch individual cells and costly masking will not be needed. Mechanical

and electrical engineering knowledge must be employed in order to determine

what pressure should be applied to the stack of the cells in order to achieve

good electrical contact between the cells, and if the strength of individual cells

is sufficient to withstand the pressure.
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• The dispersion problem. One drawback of applying etching to tune the structure

was discovered in the cold tests. In addition to changing the diameters of the

rods the etching decreased the plate thickness, thus increasing the dispersion.

Increased dispersion did not change the performance of a 6-cell accelerator.

But a longer structure would not be able to maintain the resonance between

the beam and the electromagnetic wave, if its dispersion was incorrect. In

my opinion, the dispersion problem could be resolved if electroforming was

used to tune the structure. I would suggest to electroform the structure with

undersized rods first, then cold-test it and make a conclusion about how much

the dimensions of the cells differ from the correct dimensions. Then I would

electroform more copper onto the rods (and, inevitably, the plates) to tune

the frequencies of the cells. This would make the structure dispersion more

narrow. However, now the size of beam hole can be increased slightly by wire-

EDM. Bigger beam hole will compensate for the ticker plates and increase the

dispersion.

An alternative direction of research is the study of dielectric PBG resonators.

Dielectrics are really attractive for high frequency accelerators, because of lower losses

at high frequencies and higher breakdown limits. The theory of 2D dielectric PBG

lattices is well developed. However, manufacturing of dielectric PBG resonators at X-

and K-bands has not yet been studied. In addition, in a dielectric PBG structure it

is possible to confine a higher order (for example, TM02) accelerating mode without

having lower order wakefield modes confined [46]. Therefore, it is possible to go to

higher frequencies without going to smaller accelerating structures which are hard to

manufacture, tune and cool.
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Appendix A

Wake fields excitation by a point

charge

A.1 Introduction

In this appendix the expressions for the wake potentials are re-derived. The expres-

sions were initially published by Bane et al. in [4]. First, the witness charge following

the first charge along the same path will be considered. Then the generalization

for the case of parallel paths will be performed for the special case of cavity with

translational symmetry. Finally the Panofsky-Wenzel theorem will be derived.

A.2 Normal mode expansion of fields in the cavity

A closed, empty cavity with perfectly conducting walls is considered. An exciting

particle with charge Q traverses the cavity at velocity v = c. The cavity axis is

arranged so that the charge enters the cavity at z = 0 at time t = 0, follows along

the z-axis and leaves at z = L. The test charge follows the same path at the distance

s behind the exciting charge (see figure A-1)

The calculations are based on the following Maxwell equations, written in mks
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Figure A-1: The cavity and two charges entering along the same path: the first charge
is exciting the cavity and the second charge is the test charge

units:

�∇× �B = µ0
�j +

1

c2

∂ �E

∂t
, (A.1)

�∇ · �E =
ρ

ε0

. (A.2)

The electric field �E (�x, t) and magnetic induction �B (�x, t) can be written in terms of

a vector potential �A (�x, t) and a scalar potential Φ (�x, t) as

�B = �∇× �A, �E = −∂ �A

∂t
− �∇Φ. (A.3)

Plug the potentials to the Maxwell equation and use the Coulomb gauge (�∇· �A = 0).

This yields

�∇2 �A − 1

c2

∂2 �A

∂t2
− 1

c2

∂

∂t
�∇Φ = −µ0

�j. (A.4)

The vector potential can be expanded into the set of �aλ (�x)

�A (�x, t) =
∑

λ

qλ (t)�aλ (�x) , (A.5)

where �aλ (�x) satisfy the following equation and boundary conditions on the metallic
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surface of the cavity:

�∇2
�aλ +

ω2
λ

c2
�aλ = 0, (A.6)

�aλ × n̂|S = 0. (A.7)

To satisfy the Coulomb gauge for the vector potential it is also required that

�∇ · �aλ = 0. (A.8)

Similarly, we expand the scalar potential as

Φ (�x, t) =
∑

λ

rλ (t) φλ (�x) , (A.9)

where φλ (�x) satisfy the following equation and boundary conditions on the metallic

surface of the cavity:

�∇2
φλ +

Ω2
λ

c2
φλ = 0, (A.10)

φλ|S = 0. (A.11)

The set of equations (A.6),(A.7) and (A.8) ( (A.10) and (A.11) ) defines the

Strum-Liouville problem which has the solution representing a set of eigenvalues ωλ

(Ωλ) with a consequent set of eigenfunctions �aλ (φλ). The eigenvectors �aλ (φλ) are

orthogonal and the set of eigenvectors is complete, thus they can be used to compose

any �A (�x, t) (Φ (�x, t)) at any particular instant of time. Note, that in general ωλ �= Ωλ.

Any series

�E = −
∑

λ

(
∂ qλ (t)

∂t
�aλ + rλ (t) �∇φλ (�x)

)
(A.12)

will automatically satisfy the metallic boundary condition:

�E × n̂
∣∣∣
S

= −
∑

λ

(
∂ qλ (t)

∂t
�aλ × n̂|S + rλ (t) �∇φλ (�x) × n̂

∣∣∣
S

)
= 0.
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Substituting the series for �A and Φ into Eq. (A.4) gives

∑
λ

(
qλ

�∇2
�aλ − �aλ

1

c2

∂2qλ

∂t2
− 1

c2

∂

∂t
rλ

�∇φλ

)
= −µ0

�j, (A.13)

which using the Eqs (A.6) and (A.10) can be rewritten as

∑
λ

(
�aλ

(
qλω

2
λ + q̈λ

)
+ ṙλ

�∇φλ

)
= µ0c

2�j. (A.14)

In the next equation of the paper the summation over λ is omitted, which is

incorrect. Dotting Eq.(A.14) with �aλ′ and integrating over the cavity volume V gives

∑
λ

((
qλω

2
λ + q̈λ

) ∫
V

�aλ · �aλ′dV + ṙλ

∫
V

�∇φλ · �aλ′dV

)
= µ0c

2

∫
V

�j · �aλ′dV. (A.15)

The second integral of Eq.(A.15) can be written as

∫
V

�∇φλ · �aλ′dV =

∫
S

φλ�aλ′ · d�S −
∫

V

φλ

(
�∇ · �aλ′

)
dV

The first integral on the right vanished since φλ = 0 on the boundary, the second

term vanishes because of the gauge (A.8). Normalize �aλ as

∫
V

�aλ · �aλ′dV =
2Uλ

ε0

δλλ′ . (A.17)

Note, that ε0µ0c
2 = 1. The equation (A.15) becomes simply

q̈λ + qλω
2
λ =

1

2Uλ

∫
V

�j · �aλdV. (A.18)

Note, that whenever there is no current in the cavity the qλ vary sinusoidally at

frequencies ωλ

qλ = Cλ cos (ωλt + θλ) .
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In this case �A is written as

�A (�x, t) =
∑

λ

Cλ�aλ (�x) cos (ωλt + θλ) , (A.19)

which means, that �aλ (�x) are the eigenmodes of the empty cavity and corresponding

ωλ are the resonant frequencies.

Similarly, beginning with the Maxwell equation (A.2) and plugging the expression

of �E through the potentials (A.3) we get

�∇ ·
(

∂ �A

∂t
+ �∇Φ

)
= − ρ

ε0

. (A.20)

Using the expansions (A.5) and (A.9) yields

∑
λ

(
∂qλ

∂t
�∇ · �aλ + rλ (t) �∇2

φλ (�x)

)
= − ρ

ε0

. (A.21)

Dotting Eq.(A.21) with φλ′ and integrating over the cavity volume V gives

∑
λ

(
∂qλ

∂t

∫
V

(
�∇ · �aλ

)
φλ′dV + rλ (t)

∫
V

�∇2
φλ (�x) φ

λ
′dV

)
= − 1

ε0

∫
V

ρφλ′dV. (A.22)

The first integral in Eq.(A.22) vanishes because of the gauge (A.8), the second integral

can be rewritten as

∫
V

�∇2
φλ (�x) φλ′dV =

∫
S

φλ′ �∇φλ (�x) · d�S −
∫

V

�∇φλ (�x) · �∇φλ′dV. (A.23)

The first integral in (A.23) is zero due to the boundary conditions (A.11). Let the φλ

are normalized by ∫
V

�∇φλ (�x) · �∇φλ′dV =
2Tλ

ε0

δλλ′ . (A.24)

Thus the equation (A.22) becomes

rλ (t) =
1

2Tλ

∫
V

ρφλdV. (A.25)
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Whenever there are no charges in the cavity, all the rλ (and thus also Φ) are zero.

Given the homogeneous solutions �aλ, φλ and the sources �j, ρ we can solve for the

qλ, rλ form Eqs (A.18) and (A.25). These in turn allow us to solve for �E and �B by

the way of Eqs. (A.3), (A.5), and (A.9). So the magnetic induction and the electric

field are given by

�B =
∑

λ

qλ (t)
(

�∇× �aλ (�x)
)

, (A.26)

�E = −
∑

λ

(
q̇λ (t)�aλ (�x) + rλ (t) �∇φλ (�x)

)
. (A.27)

The energy, stored in the cavity is given by

E =
1

2

∫
V

(
ε0E

2 + B2/µ0

)
dV (A.28)

=
1

2

∑
λ,λ′

ε0

(
q̇λ (t) q̇λ′ (t)

∫
V

�aλ (�x) · �aλ′ (�x) dV

+2q̇λ (t) rλ′ (t)

∫
V

�aλ (�x) · �∇φλ (�x) dV + rλ (t) rλ′ (t)

∫
V

�∇φλ (�x) · �∇φλ′ (�x) dV

)
+

1

2

∑
λ,λ′

qλ (t) qλ′ (t)

∫
V

(
�∇× �aλ (�x)

)
·
(

�∇× �aλ′ (�x)
)

/µ0 dV.

We proved above, that
∫

V
�aλ (�x) · �∇φλ (�x) dV = 0. Using the normalization conditions

(A.17) and (A.24) we rewrite the expression for stored energy as

E =
∑

λ

(
q̇2
λUλ + r2

λTλ

)
+

1

2

∑
λ,λ′

qλ (t) qλ′ (t)

∫
V

(
�∇× �aλ (�x)

)
·
(

�∇× �aλ′ (�x)
)

/µ0 dV.

Use the facts, that

(
�∇× �aλ

)
·
(

�∇× �aλ′
)

= �∇
(
�aλ′ ×

(
�∇× �aλ

))
+ �aλ′

(
�∇×

(
�∇× �aλ

))
,
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and that (
�∇×

(
�∇× �aλ

))
= −�∇2

�aλ =
ω2

λ

c2
�aλ.

We write the last integral as

∫
V

(
�∇× �aλ (�x)

)
·
(

�∇× �aλ′ (�x)
)

dV

=

∫
V

�∇
(
�aλ′ ×

(
�∇× �aλ

))
dV +

ω2
λ

c2

∫
V

�aλdV.

The first integral in the sum is proved to be zero due to the boundary conditions

(A.7):

∫
V

�∇
(
�aλ′ ×

(
�∇× �aλ

))
dV =

∫
S

(
�aλ′ ×

(
�∇× �aλ

))
· d�S

=

∫
S

(
�∇× �aλ

)
·
(
�aλ′ × d�S

)
= 0.

Thus the stored energy

E =
∑

λ

((
q̇2
λ + ω2

λq
2
λ

)
Uλ + r2

λTλ

)
. (A.29)

A.3 The longitudinal wake potential

The delta-function longitudinal wake potential is defined by (4.1). For now we con-

sider the case of �r = �r′ = 0. To calculate Wz first find the fields in the cavity due to

the exciting charge. The source terms due to the exciting charge are

ρ (�x, t) = Qδ (x) δ (y) δ (z − ct) , (A.30)

�j (�x, t) = ẑcρ (�x, t) .
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Eq. (A.18) becomes

q̈λ + qλω
2
λ =

1

2Uλ

∫
V

�j · �aλdV

=
cQ

2Uλ

∫
V

aλzδ (x) δ (y) δ (z − ct) dV (A.31)

=
cQ

2Uλ


0, t < 0

aλz (0, 0, ct) , 0 < t < L/c

0, t > L/c

,

where L is the cavity length, aλz (x, y, z) is the z−component of �aλ. Solve Eq. (A.31)

using the initial conditions q (0) = q̇ (0) = 0 (no fields in the cavity before the charge

enters). For t < 0 and t > L/c the equation is homogeneous and the solution is qλ ≡ 0, t < 0

qλ = qλ (t = L/c) cos ωλ (t − L/c) + q̇λ(t=L/c)
ωλ

sin ωλ (t − L/c) , t > L/c
.

For 0 < t < L/c solve the equation by the variation of parameters. Seek for the

solution in form

qλ = α (t) sin ωλt + β (t) cos ωλt.

Plugging this form of solution to the Eq. (A.31) for 0 < t < L/c and the boundary

conditions, we obtain the system of equations for α (t) , β (t) α′ (t) sin ωλt + β′ (t) cos ωλt = 0

ωλ (α′ (t) cos ωλt − β′ (t)) sin ωλt = cQ
2Uλ

aλz (0, 0, ct)
,

α (0) = β (0) = 0.
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The solution is

α (t) =
cQ

2Uλωλ

∫ t

0

aλz (0, 0, ct′) cos ωλt
′dt′,

β (t) = − cQ

2Uλωλ

∫ t

0

aλz (0, 0, ct′) sin ωλt
′dt′,

qλ =
cQ

2Uλωλ

∫ t

0

aλz (0, 0, ct′) sin ωλ (t − t′) dt′.

The solution valid for all t

qλ (t) =
cQ

2Uλωλ

∫ min(t,L/c)

0

aλz (0, 0, ct′) sin ωλ (t − t′) dt′. (A.32)

Similarly, substitution of (A.30) to (A.25) yields

rλ (t) =
1

2Tλ

∫
V

Qδ (x) δ (y) δ (z − ct) φλdV

=
Q

2Tλ


0, t < 0

φλ (0, 0, ct) , 0 < t < L/c

0, t > L/c

. (A.33)

With the above two equations and the equations (A.26), (A.27), and (A.29) it is

possible to construct the fields and stored energy due to the exciting charge in terms

of the empty cavity solutions φλ, �aλ, ωλ.

The energy left in the cavity after the exciting charge left (t > L/c) can be easily

calculated from (A.29)

E =
∑

λ

(
q̇2
λ + ω2

λq
2
λ

)
Uλ (A.34)

= Q2
∑

λ

1

4Uλ

∫ L

0

∫ L

0

dz′ dz′′aλz (0, 0, z′) aλz (0, 0, z′′) cos
ωλ (z′′ − z′)

c
.

Introduce

Vλ =

∫ L

0

dz exp (iωλz/c) aλz (0, 0, z) . (A.35)
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|Vλ|2 =

∫ L

0

∫ L

0

dz′ dz′′aλz (0, 0, z′) aλz (0, 0, z′′) cos
ωλ (z′′ − z′)

c
.

Comparing the last expression with (A.34) we obtain

E = Q2
∑

λ

|Vλ|2
4Uλ

. (A.36)

Define the loss factor as

kλ =
|Vλ|2
4Uλ

. (A.37)

The stored energy becomes simply

E = Q2
∑

λ

kλ. (A.38)

Thus kλ gives the amount of energy deposited in mode λ by the exciting charge.

Now calculate the wake potential Wz. Plug (A.27) to (4.1):

Wz (s) =
1

Q

∑
λ

∫ L

0

(
q̇λ

(
z + s

c

)
aλz (z) + rλ

(
z + s

c

)
∂

∂z
φλ (z)

)
, (A.39)

where aλz (z) = aλz (0, 0, z) , φλ (z) = φλ (0, 0, z) . Substituting qλ, rλ from Eqs.

(A.32) and (A.33) will give the final result. The problem is naturally solved in four

pieces:

a) s > L : The test charge enters after the exciting charge has already left the

cavity.

In this case

rλ

(
z + s

c

)
= 0,

q̇λ

(
z + s

c

)
=

Q

2Uλ

∫ L

0

aλz (z′) cos
ωλ (z + s − z′)

c
dz′,

Wz (s) =
∑

λ

1

2Uλ

∫ L

0

∫ L

0

aλz (z) aλz (z′) cos
ωλ (z + s − z′)

c
dz′dz.
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Compare the last integral with

Re {VλV
∗
λ exp (iωλs/c)}

=

∫ L

0

∫ L

0

dz′dz cos

(
ωλ (z − z′ + s)

c

)
aλz (z) aλz (z′) .

So we find the longitudinal wake potential for s > L :

Wz (s) =
∑

λ

1

2Uλ

Re {VλV
∗
λ exp (iωλs/c)}

=
∑

λ

|Vλ|2
2Uλ

cos
ωλs

c
=

∑
λ

2kλ cos
ωλs

c
. (A.40)

b) 0 < s < L : The test charge enters while the exciting charge is still in the

cavity. Here

rλ

(
z + s

c

)
=

Q

2Tλ

φλ (z + s) ,

q̇λ

(
z + s

c

)
=

Q

2Uλ

∫ min(z+s,L)

0

aλz (z′) cos
ωλ (z + s − z′)

c
dz′,

Wz (s) =
∑

λ

1

2Uλ

∫ L

0

dz

∫ min(z+s,L)

0

dz′aλz (z) aλz (z′) cos
ωλ (z + s − z′)

c

+
∑

λ

∫ L

0

1

2Tλ

φλ (z + s)
∂

∂z
φλ (z) dz

=
∑

λ

(
I1λ (s) − I2λ (s)

2Uλ

+
K1λ (s)

2Tλ

)
, (A.41)
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where

I1λ (s) =

∫ L

0

∫ L

0

aλz (z) aλz (z′) cos
ωλ (z + s − z′)

c
dz′dz

= Re {VλV
∗
λ exp (iωλs/c)} ,

I2λ (s) =

∫ L

0

dz

∫ L

min(z+s,L)

dz′aλz (z) aλz (z′) cos
ωλ (z + s − z′)

c

=

∫ L−s

0

dz

∫ L

z+s

dz′aλz (z) aλz (z′) cos
ωλ (z + s − z′)

c
,

K1λ (s) =

∫ L

0

φλ (z + s)
∂

∂z
φλ (z) dz

=

∫ L−s

0

φλ (z + s)
∂

∂z
φλ (z) dz, since φλ (z + s) = 0 for z > L − s.

The causality requires, that the wake potential is zero for s < 0. In particular, in

the range −L < s < 0 it yields

rλ

(
z + s

c

)
=

Q

2Tλ

φλ (z + s) ϑ (z + s) , ϑ (z) is the Step-function,

q̇λ

(
z + s

c

)
=

Q

2Uλ

∫ max(0,z+s)

0

aλz (z′) cos
ωλ (z + s − z′)

c
dz′,

Wz (s) =
∑

λ

1

2Uλ

∫ L

0

dz

∫ max(0,z+s)

0

dz′aλz (z) aλz (z′) cos
ωλ (z + s − z′)

c

+
∑

λ

∫ L

−s

1

2Tλ

φλ (z + s)
∂

∂z
φλ (z) dz =

∑
λ

(
I3λ (s)

2Uλ

+
K2λ (s)

2Tλ

)
= 0,

where

I3λ (s) =

∫ L

0

dz

∫ max(0,z+s)

0

dz′aλz (z) aλz (z′) cos
ωλ (z + s − z′)

c

=

∫ L+s

0

dz

∫ L

z−s

dz′ aλz (z) aλz (z′) cos
ωλ (z − s − z′)

c
= I2λ (−s) ,

K2λ (s) =

∫ L

−s

φλ (z + s)
∂

∂z
φλ (z) dz.
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Integrate by parts

K2λ (s) = −
∫ L

−s

φλ (z)
∂

∂z
φλ (z + s) dz

= −
∫ L+s

0

φλ (z − s)
∂

∂z
φλ (z) dz = −K1λ (−s) .

Thus ∑
λ

(
I2λ (s)

2Uλ

− K1λ (s)

2Tλ

)
= 0 (A.42)

for 0 < z < L. So the equation (A.41) becomes

Wz (s) =
∑

λ

I1λ (s)

2Uλ

=
∑

λ

2kλ cos
ωλs

c
. (A.43)

Note, that the longitudinal wake potential for 0 < z < L has the same form as the

longitudinal wake potential for z > L.

c) s < 0. The test charge enters before the exciting charge. From causality

Wz (s) = 0, s < 0. (A.44)

d) s = 0. Wz (0) can be interpreted as the voltage the exciting charge itself loses

to the cavity, divided by the charge Q. It can be seen from (A.38), that the voltage

loss of a charge to mode λ is kλQ. Thus

Wz (0) =
∑

λ

kλ. (A.45)

Summarizing the results, given by the equations (A.40), (A.43), (A.44), and (A.45)

the final answer for the longitudinal wake potential can be written:

Wz (s) ==
∑

λ

kλ cos
ωλs

c


0, s < 0

1, s = 0

2, s > 0

. (A.46)
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Note that due to the symmetry introduced by taking the velocities to be c, Wz does

not depend on the scalar potential solutions φλ, even if the test charge enters while

the exciting charge is still in the cavity. Note also that, since Wz is expressible as a

sum of cosines, its maximum value is at s = +0.

A.4 The transverse wake potential

The delta-function transverse wake potential is defined by (4.2). Express �E and �B in

terms of vector-potentials and plug to (4.2)

�W⊥ (s) =
1

Q

∫ L

0

dz

[
−∂ �A⊥

∂t
− �∇⊥Φ +

(
�v ×

(
�∇× �A

))
⊥

]
t=(z+s)/c

=
1

Q

∫ L

0

dz
(
c�∇⊥Az − �∇⊥Φ

)
t=(z+s)/c

− c

Q
�A⊥

∣∣∣z=L, t=(L+s)/c

z=0, t=s/c
.

For cavities with walls perpendicular to the z−axis at z = 0 and z = L the boundary

conditions are �E⊥ (z = 0) = �E⊥ (z = L) = 0 and thus the boundary term is expression

for �W⊥ vanishes

�W⊥ (s) =
1

Q

∫ L

0

dz
(
c�∇⊥Az − �∇⊥Φ

)
t=(z+s)/c

. (A.47)

Analogously to the longitudinal case, �W⊥ can be used as a Green’s function for trans-

verse momentum kick per total charge within an ultra-relativistic bunch of arbitrary

shape.

Plug the series (A.5) and (A.9) to (A.47):

�W⊥ (s) =
1

Q

∑
λ

∫ L

0

dz

(
cqλ

(
z + s

c

)
�∇⊥aλz (z) − rλ

(
z + s

c

)
�∇⊥φλ (z)

)
. (A.48)

Substituting qλ, rλ from Eqs. (A.32) and (A.33) will give the final result for �W⊥. The

problem is naturally solved in three pieces:

a) s > L : The test charge enters after the exciting charge has already left the

cavity.
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In this case

rλ

(
z + s

c

)
= 0,

qλ

(
z + s

c

)
=

Q

2Uλωλ

∫ L

0

aλz (z′) sin
ωλ (z + s − z′)

c
dz′,

�W⊥ (s) =
∑

λ

c

2Uλωλ

∫ L

0

∫ L

0

(
�∇⊥aλz (z)

)
aλz (z′) sin

ωλ (z + s − z′)
c

dz′dz

=
∑

λ

c

2Uλωλ

�I ′
1λ (s) ,

where

�I ′
1λ (s) =

∫ L

0

∫ L

0

(
�∇⊥aλz (z)

)
aλz (z′) sin

ωλ (z + s − z′)
c

dz′dz. (A.49)

Compare the last integral with

Im
{

V ∗
λ

(
�∇⊥Vλ

)
exp (iωλs/c)

}
=

∫ L

0

∫ L

0

dz′dz sin

(
ωλ (z − z′ + s)

c

) (
�∇⊥aλz (z)

)
aλz (z′) .

So we find the transverse wake potential for s > L :

�W⊥ (s) =
∑

λ

c

2Uλωλ

Im
{

V ∗
λ

(
�∇⊥Vλ

)
exp (iωλs/c)

}
. (A.50)

b) 0 < s < L : The test charge enters while the exciting charge is still in the
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cavity. In this case

rλ

(
z + s

c

)
=

Q

2Tλ

φλ (z + s) ,

qλ

(
z + s

c

)
=

Q

2Uλωλ

∫ min(z+s,L)

0

aλz (z′) sin
ωλ (z + s − z′)

c
dz′,

�W⊥ (s) =
∑

λ

c

2Uλωλ

∫ L

0

dz

∫ min(z+s,L)

0

dz
(

�∇⊥aλz (z)
)

aλz (z′) sin
ωλ (z + s − z′)

c

−
∑

λ

∫ L

0

1

2Tλ

φλ (z + s)
(

�∇⊥φλ (z)
)

dz =
∑

λ

(
c
�I ′
1λ (s) − �I ′

2λ (s)

2Uλωλ

−
�K ′

1λ (s)

2Tλ

)
,

(A.51)

where

�I ′
2λ (s) =

∫ L

0

dz

∫ L

min(z+s,L)

dz′
(

�∇⊥aλz (z)
)

aλz (z′) sin
ωλ (z + s − z′)

c

=

∫ L−s

0

dz

∫ L

z+s

dz′
(

�∇⊥aλz (z)
)

aλz (z′) sin
ωλ (z + s − z′)

c
,

�K1λ (s) =

∫ L

0

φλ (z + s)
(

�∇⊥φλ (z)
)

dz

=

∫ L−s

0

φλ (z + s)
(

�∇⊥φλ (z)
)

dz, since φλ (z + s) = 0 for z > L − s.

The causality requires, that the wake potential is zero for s < 0. In particular, in the

range −L < s < 0 it yields

rλ

(
z + s

c

)
=

Q

2Tλ

φλ (z + s) ϑ (z + s) ,

qλ

(
z + s

c

)
=

Q

2Uλωλ

∫ max(0,z+s)

0

aλz (z′) sin
ωλ (z + s − z′)

c
dz′,

�W⊥ (s) =
∑

λ

c

2Uλωλ

∫ L

0

dz

∫ max(0,z+s)

0

dz′
(

�∇⊥aλz (z)
)

aλz (z′) sin
ωλ (z + s − z′)

c

−
∑

λ

∫ L

−s

1

2Tλ

φλ (z + s)
(

�∇⊥φλ (z)
)

dz

=
∑

λ

(
c
�I ′
3λ (s)

2Uλωλ

−
�K ′

2λ (s)

2Tλ

)
= 0, (A.52)
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where

�I ′
3λ (s) =

∫ L

0

dz

∫ max(0,z+s)

0

dz′
(

�∇⊥aλz (z)
)

aλz (z′) sin
ωλ (z + s − z′)

c

= −
∫ L+s

0

dz

∫ L

z′−s

dz′
(

�∇⊥aλz (z′)
)

aλz (z) sin
ωλ (z − s − z′)

c
. (A.53)

and

�K ′
2λ (s) =

∫ L

−s

φλ (z + s)
(

�∇⊥φλ (z)
)

dz

=

∫ L+s

0

φλ (z)
(

�∇⊥φλ (z − s)
)

dz. (A.54)

Unlike the longitudinal case, Eq. (A.51) cannot be in general simplified. But never-

theless the certain similarity between �I ′
3λ and �I ′

2λ, and between �K ′
2λ and �K ′

1λ can be

seen. For the special case of a right cylinder with arbitrary cross-section whose axis

is aligned with the z− axis aλz and φλ can be written as

aλz (x, y, z) = fλ (x, y) gλ (z) ,

φλ (x, y, z) = ϕλ (x, y) ςλ (z) .

In this case

�I ′
3λ (s) = −�I ′

2λ (−s) ,

�K ′
2λ (s) = �K ′

1λ (−s) ,

and the relation (A.52) becomes

∑
λ

(
c
�I ′
2λ (s)

2Uλωλ

+
�K ′

1λ (s)

2Tλ

)
= 0, 0 < s < L. (A.55)

Plugging (A.55) to (A.51) we see, that for cavities with translational symmetry for
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0 < s < L

�W⊥ (s) =
∑

λ

c

2Uλωλ

Im
{

V ∗
λ

(
�∇⊥Vλ

)
exp (iωλs/c)

}
=

∑
λ

c

2Uλωλ

V ∗
λ

(
�∇⊥Vλ

)
sin

(ωλs

c

)
. (A.56)

c) s < 0. The test charge enters before the exciting charge. From causality

�W⊥ (s) = 0, s < 0. (A.57)

The exciting charge itself feels no the transverse wake field. Since the transverse

wake is a sum of sine terms it rises to a maximum value somewhere behind the exciting

charge.

A.5 Generalization for the case of parallel paths

of charges

An important generalization is to define the wake fields in terms of an exciting charge

and a test charge that move on parallel paths, not merely on the identical path

(figure 4-4). Take those paths to be parallel to the ẑ-axis. The source terms due to

the exciting charge are

ρ (�x, t) = Qδ (�r − �r′) δ (z − ct) , (A.58)

�j (�x, t) = ẑcρ (�x, t) ,

where the cylindrical coordinate system is used with �x = �r + ẑ0z, �r is the transverse

coordinate, �r′ is the transverse coordinate of the exciting charge.

The wake fields are functions of the transverse coordinates of the exciting charge

�r′ and the test charge �r as well as of their longitudinal separation s. Consider a

special case of cavity with translational symmetry.
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A.5.1 Generalization for the longitudinal wake potential

All the equations (A.31)-(A.34) are generalized for the case of non-identical paths

straight forward by substituting aλz (0, 0, ct) by aλz (�r′, ct) . Vλ will be now the func-

tion of �r and is introduced as

Vλ (�r) =

∫ L

0

dz exp (iωλz/c) aλz (�r, ct) , (A.59)

and

E (�r′) = Q2
∑

λ

|Vλ (�r′)|2
4Uλ

. (A.60)

The wake potential is given by

Wz (�r′, �r, s) =
1

Q

∑
λ

∫ L

0

(
q̇r′
λ

(
z + s

c

)
aλz (�r, z) + rr′

λ

(
z + s

c

)
∂

∂z
φλ (�r, z)

)
,

(A.61)

where

qr′
λ (t) =

cQ

2Uλωλ

∫ min(t,L/c)

0

aλz (�r′, ct′) sin ωλ (t − t′) dt′. (A.62)

rr′
λ (t) =

Q

2Tλ


0, t < 0

φλ (�r′, ct) , 0 < t < L/c

0, t > L/c

. (A.63)

Consider different times when the test charge enters the cavity.

a) s > L : The test charge enters after the exciting charge has already left the

cavity.

In this case

Wz (�r′, �r, s) =
∑

λ

1

2Uλ

∫ L

0

∫ L

0

aλz (�r, z) aλz (�r′, z′) cos
ωλ (z + s − z′)

c
dz′dz

=
∑

λ

1

2Uλ

Vλ (�r) V ∗
λ (�r′) cos

(ωλs

c

)
.

b) 0 < s < L : The test charge enters while the exciting charge is still in the
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cavity. Here

Wz (�r′, �r, s) =
∑

λ

1

2Uλ

∫ L

0

dz

∫ min(z+s,L)

0

dz′aλz (�r, z) aλz (�r′, z′) cos
ωλ (z + s − z′)

c

+
∑

λ

∫ L

0

1

2Tλ

φλ (�r′, z + s)
∂

∂z
φλ (�r, z) dz

=
∑

λ

(
I1λ (�r′, �r, s) − I2λ (�r′, �r, s)

2Uλ

+
K1λ (�r′, �r, s)

2Tλ

)
, (A.64)

with

I1λ (�r′, �r, s) =

∫ L

0

∫ L

0

aλz (�r, z) aλz (�r′, z′) cos
ωλ (z + s − z′)

c
dz′dz

= Re {Vλ (�r) V ∗
λ (�r′) exp (iωλs/c)} ,

I2λ (�r′, �r, s) =

∫ L

0

dz

∫ L

min(z+s,L)

dz′aλz (�r, z) aλz (�r′, z′) cos
ωλ (z + s − z′)

c

=

∫ L−s

0

dz

∫ L

z+s

dz′aλz (�r, z) aλz (�r′, z′) cos
ωλ (z + s − z′)

c
,

K1λ (�r′, �r, s) =

∫ L

0

φλ (�r′, z + s)
∂

∂z
φλ (�r, z) dz

=

∫ L−s

0

φλ (�r′, z + s)
∂

∂z
φλ (�r, z) dz,

since φλ (�r′, z + s) = 0 for z > L − s.

The causality requires, that the wake potential is zero for s < 0. In particular, in the

range −L < s < 0 it yields

Wz (�r′, �r, s) =
∑

λ

1

2Uλ

∫ L

0

dz

∫ max(0,z+s)

0

dz′aλz (�r, z) aλz (�r′, z′) cos
ωλ (z + s − z′)

c

+
∑

λ

∫ L

−s

1

2Tλ

φλ (�r′, z + s)
∂

∂z
φλ (�r, z) dz

=
∑

λ

(
I3λ (�r′, �r, s)

2Uλ

+
K2λ (�r′, �r, s)

2Tλ

)
= 0, (A.65)
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where

I3λ (�r′, �r, s) =

∫ L

0

dz

∫ max(0,z+s)

0

dz′′aλz (�r, z) aλz (�r′, z′) cos
ωλ (z + s − z′)

c

=

∫ L+s

0

dz

∫ L

z−s

dz′aλz (�r′, z) aλz (�r, z′) cos
ωλ (z − s − z′)

c
.

K2λ (�r′, �r, s) =

∫ L

−s

φλ (�r′, z + s)
∂

∂z
φλ (�r, z) dz.

Integrate by parts

K2λ (�r′, �r, s) = −
∫ L

−s

∂

∂z
φλ (�r′, z + s) φλ (�r, z) dz

= −
∫ L+s

0

φλ (�r, z − s)
∂

∂z
φλ (�r′, z) dz.

Unlike the case of the same paths, Eq. (A.64) cannot be in general simplified. But

nevertheless the certain similarity between �I3λ and �I2λ, and between �K2λ and �K1λ can

be seen. For the special case of a right cylinder with arbitrary cross-section whose

axis is aligned with the z− axis aλz and φλ can be written as

aλz (�r, z) = fλ (�r) gλ (z) ,

φλ (�r, z) = ϕλ (�r) ςλ (z) .

In this case

�I3λ (�r′, �r, s) = �I2λ (�r′, �r,−s) ,

�K2λ (�r′, �r, s) = − �K1λ (�r′, �r,−s) ,

and the relation (A.65) becomes

∑
λ

(
c
�I2λ (�r′, �r, s)

2Uλωλ

−
�K1λ (�r′, �r, s)

2Tλ

)
= 0, 0 < s < L. (A.66)
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So we find the wake potential

Wz (�r′, �r, s) =
∑

λ

I1λ (�r′, �r, s)
2Uλ

=
∑

λ

1

2Uλ

Vλ (�r) V ∗
λ (�r′) cos

(ωλs

c

)
. (A.67)

As in the case of the same paths, the longitudinal wake potential for 0 < z < L has

the same form as the longitudinal wake potential for z > L.

c) s < 0. The test charge enters before the exciting charge. From causality

Wz (�r′, �r, s) = 0, s < 0. (A.68)

A.5.2 Generalization for the transverse wake potential

The Eq.(A.48) for the transverse wake potential is generalized for the case of non-

identical paths as

�W⊥ (�r′, �r, s) =
1

Q

∑
λ

∫ L

0

dz

(
cqr′

λ

(
z + s

c

)
�∇⊥aλz (�r, z) (A.69)

−rr′
λ

(
z + s

c

)
�∇⊥φλ (�r, z)

)
,

where qr′
λ and rr′

λ are given by (A.62) and (A.63). As we did above consider three

different cases:

a) s > L : The test charge enters after the exciting charge has already left the

cavity.

In this case

�W⊥ (�r′, �r, s) =
∑

λ

c

2Uλωλ

∫ L

0

∫ L

0

(
�∇⊥aλz (�r, z)

)
aλz (�r′, z′) sin

ωλ (z + s − z′)
c

dz′dz

=
∑

λ

c

2Uλωλ

V ∗
λ (�r′, z′)

(
�∇⊥Vλ (�r, z)

)
sin

(ωλs

c

)
.

The last equality is true only for the case of the cavity with translational symmetry.
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b) 0 < s < L : The test charge enters while the exciting charge is still in the

cavity. In this case

�W⊥ (�r′, �r, s) =
∑

λ

c

2Uλωλ

∫ L

0

dz

∫ min(z+s,L)

0

dz

(
�∇⊥aλz (�r, z)

)
aλz (�r′, z′) sin

ωλ (z + s − z′)
c

−
∑

λ

∫ L

0

1

2Tλ

φλ (�r′, z + s)
(

�∇⊥φλ (�r, z)
)

dz

=
∑

λ

(
c
�I ′
1λ (�r′, �r, s) − �I ′

2λ (�r′, �r, s)
2Uλωλ

−
�K ′

1λ (�r′, �r, s)
2Tλ

)
, (A.70)

where

�I ′
2λ (�r′, �r, s) =

∫ L

0

dz

∫ L

min(z+s,L)

dz′
(

�∇⊥aλz (�r, z)
)

aλz (�r′, z′) sin
ωλ (z + s − z′)

c

=

∫ L−s

0

dz

∫ L

z+s

dz′
(

�∇⊥aλz (�r, z)
)

aλz (�r′, z′) sin
ωλ (z + s − z′)

c
,

�K1λ (�r′, �r, s) =

∫ L

0

φλ (�r′, z + s)
(

�∇⊥φλ (�r, z)
)

dz

=

∫ L−s

0

φλ (�r′, z + s)
(

�∇⊥φλ (�r, z)
)

dz,

since φλ (�r′, z + s) = 0 for z > L − s.

The causality requires, that the wake potential is zero for s < 0. In particular, in the

range −L < s < 0 it yields

�W⊥ (�r′, �r, s) =
∑

λ

c

2Uλωλ∫ L

0

dz

∫ max(0,z+s)

0

dz′
(

�∇⊥aλz (�r, z)
)

aλz (�r′, z′) sin
ωλ (z + s − z′)

c

−
∑

λ

∫ L

−s

1

2Tλ

φλ (�r′, z + s)
(

�∇⊥φλ (�r, z)
)

dz

=
∑

λ

(
c
�I ′
3λ (�r′, �r, s)
2Uλωλ

−
�K ′

2λ (�r′, �r, s)
2Tλ

)
= 0, (A.71)
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where

�I ′
3λ (�r′, �r, s) =

∫ L

0

dz

∫ max(0,z+s)

0

dz′
(

�∇⊥aλz (�r, z)
)

aλz (�r′, z′) sin
ωλ (z + s − z′)

c

= −
∫ L+s

0

dz

∫ L

z′−s

dz′
(

�∇⊥aλz (�r, z′)
)

aλz (�r′, z) sin
ωλ (z − s − z′)

c
.

and

�K ′
2λ (�r′, �r, s) = φλ (�r′, z + s)

(
�∇⊥φλ (�r, z)

)
dz

=

∫ L+s

0

φλ (�r′, z)
(

�∇⊥φλ (�r, z − s)
)

dz. (A.72)

The Eq. (A.70) can be simplified for the special case of a right cylinder with arbitrary

cross-section whose axis is aligned with the z−axis, when aλz and φλ can be written

as

aλz (�r, z) = fλ (�r) gλ (z) , (A.73)

φλ (�r, z) = ϕλ (�r) ςλ (z) . (A.74)

In this case

�I ′
3λ (�r′, �r, s) = −�I ′

2λ (�r′, �r,−s) ,

�K ′
2λ (�r′, �r, s) = �K ′

1λ (�r′, �r,−s) ,

and the relation (A.71) becomes

∑
λ

(
c
�I ′
2λ (�r′, �r, s)
2Uλωλ

+
�K ′

1λ (�r′, �r, s)
2Tλ

)
= 0, 0 < s < L. (A.75)
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Then Eq. (A.70) becomes

�W⊥ (�r′, �r, s) =
∑

λ

c

2Uλωλ

Im
{

V ∗
λ (�r′, z′)

(
�∇⊥Vλ (�r, z)

)
exp (iωλs/c)

}
=

∑
λ

c

2Uλωλ

V ∗
λ (�r′, z′)

(
�∇⊥Vλ (�r, z)

)
sin

(ωλs

c

)
. (A.76)

c) s < 0. The test charge enters before the exciting charge. From causality

�W⊥ (�r′, �r, s) = 0, s < 0. (A.77)

The exciting charge itself feels no the transverse wake field. Since the transverse

wake is a sum of sine terms it rises to a maximum value somewhere behind the exciting

charge.

A.5.3 Panofsky-Wenzel theorem

Let us summarize the results, which we obtained. We considered the wake potentials

for the case when the exciting charge and the test charge move along the parallel

paths. We found, that for the case of the cavities with translational symmetry, that

Wz (�r′, �r, s) =
∑

λ

1

2Uλ

Vλ (�r) V ∗
λ (�r′) cos

(ωλs

c

)
, (A.78)

�W⊥ (�r′, �r, s) =
∑

λ

c

2Uλωλ

V ∗
λ (�r′, z′)

(
�∇⊥Vλ (�r, z)

)
sin

(ωλs

c

)
. (A.79)

The Panofsky-Wenzel theorem can be proved simply by comparison of the above

expressions. It claims that
∂ �W⊥
∂s

= �∇⊥Wz. (A.80)
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Appendix B

Equivalent circuit for a disk-loaded

waveguide

B.1 Introduction

It was explained in Chapter 5 that matching the TW coupler is different from match-

ing a coupler of a resonator. The easiest way to explain the matching algorithms

for the TW coupler is the equivalent circuit language. There will be no reflection

from the TW disk-loaded waveguide at certain frequency ω0 if the admittance of the

coupler section is equal to the admittance of the infinite TW section at ω0:

Yin = Y∞ (ω0) . (B.1)

In this appendix the equivalent circuit for an infinite disk-loaded waveguide will

be derived.

B.2 Two-port network and its parameters

A general circuit for a two-port network is shown in figure B-1. The input voltage and

current V1, I1 are related to the output voltage and current V2, I2 by the Kirchhoff
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I1 I2

V1 V2

jXa

jX = - 
B

1_
jB

Figure B-1: Lossless two port network circuit.

laws:  V2 − V1 = −jXaI1

I2 − I1 = − V2

jXb
= jBV2

(B.2)

B.3 Equivalent circuit for the TM mode in a unit

length waveguide

A unit length waveguide can be fully represented by a lossless two-port network. This

section deals with the calculation of the network parameters. The derivations follow

[47]. A waveguide section schematic is shown in figure B-2. Start with Maxwell’s

equations in vacuum:



�∇× �E = −jωµ0
�H

�∇× �H = jωε0
�E

�∇ · �E = 0

�∇ · �H = 0

. (B.3)

Introduce the potentials �H = �∇ × �A, �E = −�∇ϕ − µ0
∂ �A
∂t

. Use Lorenz calibration

�∇ · �A + ε0
∂ϕ
∂t

= 0. Lorenz calibration is automatically satisfied if the vector-potential

�Π is introduced so that ϕ = − 1
jωε0

�∇ · �Π, �A = 1
jω

∂�Π
∂t

= �Π. Then
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S

x

y

z

Figure B-2: The schematic of a waveguide section.

�E = 1
jωε0

(
�∇

(
�∇ · �Π

)
+ k2

0
�Π

)
,

�H = �∇× �Π,

∇2�Π + k2
0
�Π = 0,

(B.4)

where k0 = ω
c

= ω
√

µ0ε0.

For the TM mode �Π = Πẑ0, Π = Ψ (x, y) Z (z) , Π|S = 0,where S is the waveguide

surface and z is the coordinate along the waveguide (figure B-2). This yields: �∇2

⊥Ψ + κ2Ψ = 0

Z ′′ + k2
zZ = 0

,

κ2
01 + k2

z = k2
0

Ψ|S = 0.

The fields now express as

�H = −
(
ẑ0 × �∇⊥Ψ

)
Z,

�E = 1
jωε0

�∇⊥ΨZ ′ + κ2
01

jωε0
ΨZẑ0.

(B.5)

Introduce “mode functions”�e (x, y) and �h (x, y) and “mode voltages”and “mode
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currents”V (z) and I (z):  �E⊥ = �e (x, y) V (z)

�H⊥ = �h (x, y) I (z)
, (B.6)

 �e (x, y) = −�∇⊥Ψ

�h (x, y) = −
(
ẑ0 × �∇⊥Ψ

) ,

 V (z) = − 1
jωε0

Z ′ (z)

I (z) = Z (z)
. (B.7)

Normalize Ψ so that

∫ ∣∣∣�∇⊥Ψ (x, y)
∣∣∣2 dxdy = 1. Then

∫ |�e|2 dxdy =
∫ ∣∣∣�h∣∣∣2 dxdy = 1.

The general solution for V (z) and I (z) is V (z) = V +e−γz + V −eγz

I (z) = I+e−γz + I−eγz
, (B.8)

with γ = jk0

√
1 − ω2

c/ω
2, ωc = κc.

It follows from the definition of V and I that

V +

I+
= Z0,

V −

I− = −Z0, (B.9)

where Z0 is the characteristic line impedance

Z0 = 1/Y0 =
1

cε0

√
1 − ω2

c/ω
2. (B.10)

Differentiating B.8 we obtain that V (z) and I (z) satisfy the transmission line equa-

tions:  dV
dz

= −γZ0I

dI
dz

= −γY0V
. (B.11)

For a waveguide section of length L such that γL � 1, the transmission line equations

B.11 become  V (z + L) − V (z) = −γZ0LI

I (z + L) − I (z) = −γY0LV
. (B.12)

Comparing the equations B.12 to the two-port network Kirchhoff equations B.2 we
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Figure B-3: Equivalent circuit for the TM01 mode in a lossless waveguide.

find that a waveguide section of length L can be represented by an equivalent circuit

of figure B-1 with  jXa = jωµ0L +
κ2
01L

jωε0

jXB = 1
jωε0L

. (B.13)

Summarizing, the equivalent circuit for the TM mode in a waveguide is shown in

figure B-3.

B.4 Equivalent circuit for the iris in a cylindrical

waveguide with the TM01 mode

Now I will derive the equivalent circuit for an iris located in a cylindrical waveguide.

I will follow the derivation of [48]. The following assumption are made:

• the iris is considered infinitely thin and located at z = 0 (figure B-4);

• the waveguide is considered single-moded at the given frequency, other modes

only exist at the iris neighborhood.

Away from the iris the expressions B.6 for the fields are valid. In the absence of the

iris V (z) and I (z) could be represented as a sum of symmetrical and antisymmetrical
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z = 0

Figure B-4: Infinitely thin iris located in a cylindrical waveguide.

standing waves  V (z) = C0
1 cos kzz + C0

2 sin kzz

I (z) = − jC0
1

Z0
sin kzz +

jC0
2

Z0
cos kzz

. (B.14)

The antisymmetrical part of B.14 with V (z) = sin kzz and I (z) = − j
Z0

sin kzz still

satisfies the boundary condition when an infinitely thin iris is present. However the

symmetric part of the solution does not satisfy the boundary conditions at z = 0 in

the presence of iris. Iris may introduce some phase shift into the symmetrical solution.

Thus in the presence of the iris the symmetrical part of the solution can be written

as  V (z) = cos kz (|z| − z0)

I (z) = − j
Z0

sin kz (|z| − z0)
. (B.15)

The general solution in the presence of the iris valid for |z| � π/kz is therefore V (z) = C1 cos kz (|z| − z0) + C2 sin kzz

I (z) = − jC1

Z0
sin kz (|z| − z0) + jC2

Z0
cos kzz

. (B.16)
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0

z = 0

Figure B-5: The equivalent circuit for an infinitely thin iris.

Consider now two reference planes: z1 = π/kz and z2 = −π/kz. We have V (z1) = −C1 cos kzz0

I (z1) = − jC1

Z0
sin kzz0 − jC2

Z0

, (B.17)

 V (z1) = −C1 cos kzz0

I (z1) = jC1

Z0
sin kzz0 − jC2

Z0

. (B.18)

The characteristic admittances Y1 = Z0I(z1)
V (z1)

= j C1 sin kzz0+C2
C1 cos kzz0

Y2 = Z0I(z2)
V (z2)

= j−−C1 sin kzz0+C2
C1 cos kzz0

, (B.19)

Y1 − Y2 = 2j tan kzz0 = −jb0,

where b0 is the iris susceptance. The equivalent circuit for the iris is shown in figure

B-5. Now we need to find the magnitude of the iris shunt susceptance and determine

the type of iris behavior: if it is capacitive or inductive.

The symmetric part of the electric field for the solution with iris can be expressed

as series over all the eigenmodes in the waveguide
(

�E⊥n, , Ezn

)
. Normalize the electric

field of the eigenmodes so that

∫
iris

∣∣∣ �E⊥n

∣∣∣2 dxdy = 1∫
iris

∣∣∣ �Ezn

∣∣∣2 dxdy = κ2
n

k2
z

. (B.20)
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Then the field expansion will take form
�E⊥s =

∑
n

�E⊥n

∫
iris

�E⊥s · �E∗
⊥ndxdy

Ezs =
∑

n

k2
z

κ2
n
Ezn

∫
iris

EzsE
∗
zndxdy

. (B.21)

For z = π/kz all non-propagating modes will decay. Then
�E⊥s

(
z = π

kz

)
= −�e⊥ (x, y) C1 cos kzz0 = −2�e (x, y)

∫
iris

�E⊥s · �E∗
⊥1dxdy,

Ez

(
z = π

kz

)
= ez (x, y) C1 sin kzz0 = 2jez (x, y) k2

z

κ2
01

∫
iris

EzsE
∗
z1dxdy.

Then

b0 = −2 tan kzz0 = −2j
k2

z

κ2
01

∫
iris

EzsE
∗
z1dxdy∫

iris

�E⊥s · �E∗
⊥1dxdy

.

For the small iris opening the fields on the iris Ezs and �E⊥s can be calculated ap-

proximately in quasistatic approximation and the following expression for b0 will be

finally obtained [48]

b0 =
3

2a3

kz

κ2
01

∫
iris

E2
zsdxdy

E2
zs (0)

,

where a is the hole’s radius. The susceptance is positive and proportional to the

frequency and hence represents a capacitance.

The result of the capacitive susceptance has a straightforward physical expla-

nation. In the TM01 mode the magnetic field lines travel in concentric circles and

electric field lines have both, radial and longitudinal, components, but no tangential

components. The current then flows normal to the iris edge (radially). This results

in a concentration of charge near the edge where many electric lines end. Therefore,

the capacitive behavior of the iris is expected.
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one cell

Xser

C

Figure B-6: The equivalent circuit for a microwave linear accelerator

B.5 Equivalent circuit for an accelerator and sim-

ple consequences

Combining the results of previous sections we find that a periodic structure of a

microwave linear accelerator has the equivalent circuit of a bandpass filter shown in

figure B-6. In figure B-6 Xser stands for the total reactance of the series arm, C

stands for the total capacitance. jXser = jωLser + 1
jωCser

= jωµ0Lcell +
κ2
01Lcell

jωε0

jωC = jωε0Lcell + jb0

. (B.22)

The lowest frequency of the passband (0-mode) determines from the relationship

jXser (ω0) = jω0Lser +
1

jω0Cser

= 0,

ω0 =
1√

LserCser

. (B.23)

The width of the passband is usually small compared to the passband frequency

∆ω � ω0, therefore Xser is linear over the passband [49].

Xser = ωLser

(
1 − ω2

0

ω2

)
≈ 2Lser (ω − ω0) = 4πLser (f − f0) .
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C is almost constant over the passband and can be evaluated at π/2−mode for definit-

ness.

B.5.1 Dispersion relationship for the accelerator network

For a periodic network the solution must satisfy the Bloch theorem: Vn+1 = Vnejφ,

In+1 = Ine
jφ, where φ = kzLcell is the phase shift per cell. From B.2 we then obtain Vn

(
ejφ − 1

)
= −jXserIn

In

(
ejφ − 1

)
= −jωCejφVn

. (B.24)

The system of equations B.24 has a non-zero solution if the dispersion relationship is

satisfied [50]:

ω = ω0

√
2Cser

C
(1 − cos φ) + 1. (B.25)

For a narrow passband ∆ω � ω0 or 2Cser

C
� 1 the dispersion relationship simplifies

ω (φ) = ω0

(
1 +

Cser

C
(1 − cos φ)

)
,

f (kzLcell) = f
(π

2

)
−

(
f

(π

2

)
− f (0)

)
cos kzLcell. (B.26)

B.5.2 Characteristic admittance of an infinite accelerator net-

work

Introduce jYser = 1/jXser, Yc = ωπ/2C. The characteristic admittance of an infinite

periodic network

jY∞ =

(
jY∞ + j jYc

2

)
jYser

jY∞ + j jYc

2
+ jjYser

+ j
jYc

2
, (B.27)

Y 2
∞ = YcYser

(
1 +

Yc

4Yser

)
.
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Let us calculate Y∞
(
fπ/2

)
, Y∞

(
f2π/3

)
and Y∞ (fave) , where fave =

(
fπ/2 + f2π/3

)
/2.

Xser is linear with frequency. At π− mode

jXser (π) + 2
2

jYc

= 0, Xser (π) =
4

Yc

.

Then

Xser

(π

2

)
=

Xser (π)

2
=

2

Yc

,

f2π/3 = f0 +
3

4
(fπ − f0) , Xser

(
2π

3

)
=

3

4
Xser (π) =

3

Yc

,

Xser (fave) =
1

2

(
3

Yc

+
2

Yc

)
=

5

2Yc

.

As a result,

jY∞
(π

2

)
=

Yc

2
,

jY∞

(
2π

3

)
=

Yc

2
√

3
, (B.28)

jY∞ (fave) =

√
3

5

Yc

2
.
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Appendix C

Ng and Ko method for an

accelerator coupler design

The first computer simulation of coupling into a 2π/3 mode of a travelling wave

structure was performed by C.K. Ng and K. Ko [31]. I repeated their simulation

for an example of a disk-loaded waveguide accelerator. The simulated structure is

shown in figure C-1. The structure consists of two travelling-wave 2π/3 cells and two

coupling cells. The dimensions of TW cells were adjusted so that it has the frequency

of 17.137 GHz (see table C.1). The microwaves at 17.137 GHz were feeded through

one waveguide and the load was placed on the other waveguide. The iris opening of

the coupling cell and the coupling cell diameter were varied until the VSWR close

to 1 was obtained. The VSWR of 1.06 (S11 = 2%) was achieved for the input cell

dimensions shown in table C.1. For the coupling cell dimensions of table C.1 the flat

field profile on the axis of the structure was obtained (figure C-1). The phase shift

per travelling wave cell was close to 1200.

Next, the tolerances were studied. First, the coupling cell radius was increased

to b = 6.76 mm. Immediately the calculated VSWR increased to VSWR= 3. The

field profile and the phase shift per TW cell also changes significantly (figure C-

3(a)). However introducing significant ohmic losses in form of low wall conductivity

σ = 2 · 107 (Ω · m)−1 did not produce a significant mismatch and disturb the field

profile (figure C-3(b)). Finally, the dependence of the VSWR on the frequency was
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Figure C-1: The geometry for the coupler simulation with Ng and Ko method.
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Figure C-2: The on-axis electric field profile for the structure tuned to V SWR = 1.06
by Ng and Ko method. The phase shift per TW cell is shown with numbers.
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Figure C-3: The on-axis electric field profile and phase shift per TW cell for the Ng
and Ko structure with a mismatched coupling cell (b = 6.76 mm) (a). The on-axis
electric field profile and phase shift per TW cell for the Ng and Ko structure with the
wall conductivity σ = 2 · 107 (Ω · m)−1 (b).
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Figure C-4: The dependence of the VSWR in a lossless Ng and Ko structure on the
frequency.

studied for a lossless structure (figure C-4). Similar dependencies were reported by

Ng and Ko [31].

Table C.1: The dimension of a TW cell selected for the

simulations and the dimensions of a coupler cell tuned

with the Ng and Ko method.

TW cell radius 6.89 mm

TW cell length 5.83 mm

Iris radius 1.94 mm

Iris tip radius 0.48 mm

Coupling cell radius 6.75 mm

Coupling iris width 4.96 mm

Coupling iris height 0.48 mm
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Appendix D

Pillbox coupler design with Kroll’s

method

A pillbox coupler was designed using Kroll’s method, described in Chapter 5. The

results agree perfectly with the coupler design using Ng and Ko method (see Appendix

C), which means that both methods work. The modelled geometry is shown in figure

D-1. Port was created at the cell #1 and the TM01 -mode of cylindrical waveguide was

excited through the port. The matching load was placed at the end of the coupling

waveguide. The symmetry plane was made an H−boundary. All other surfaces were

made E−boundaries.

The port was excited at 17.137 GHz. The TM01 mode at cell #1 would couple

with some reflection into a travelling wave 2π/3 mode in the following cells. In

cells #3 and #4 the Kroll’s formulaes (5.6) and (5.7) are approximately valid. The

reflection coefficient was calculated from the field profile in cells #3 and #4 using the

equations (5.7). The parameters of the coupler cell, the coupler hole opening w and

the coupler cell radius b, were then varied to minimize the reflection coefficient. A

C++ subprogram was written for this optimization. The C++ subprogram followed

the flow chart of figure 5-4. The optimization program ran for approximately 24

hours. The coupler was tuned to the low reflection of |R| = 0.012.

The magnitude of the electric field in a tuned structure is shown in color in

figure D-2. Figure D-3 shows the on-axis distribution of the electric field magnitude.
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Port

Figure D-1: The geometry for tuning a pillbox coupler with Kroll’s method.

The field profile looks flat, which means that the coupler is tuned. The reflection

coefficient, calculated using the equations (5.7) in different points of the structure on-

axis is shown in figure D-4. The phase shift per cell, calculated using the equations

(5.6) in different points of the structure on-axis is shown in figure D-5. The calculated

reflection is almost independent of the point, where it is calculated. The phase shift

per cell is very close to 1200 in all the points in cells #3 and #4. This means that

the solution converged well and the calculation is correct.

Tolerances, that is, the dependence of |R| on w and b, were also calculated. This

dependence is shown in figure D-6. It can be seen from the picture that the reflection

from the coupler is much more sensitive to the radius of the coupler cell than to the

size of the coupler hole.
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Figure D-2: The electric field magnitude in a TW structure with a tuned pillbox
coupler.
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Figure D-3: The electric field distribution on-axis of a structure with a tuned pillbox
coupler.
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Figure D-4: The reflection coefficient calculated according to (5.7) in different points
of the TW structure.
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Figure D-5: The phase advance per cell calculated according to (5.6) in different
points of the TW structure.
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Figure D-6: Dependence of the reflection from a PBG coupler on the deviation of the
coupler opening size w, and the coupling cell radius b from the optimized dimensions.
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