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It is a pleasure to nominate Kiran Sonnad for the Outstanding Doctoral Thesis 
Research in Beam Physics Award of the Division of the Physics of Beams of the 
American Physical Society.  I have known Kiran since he joined my research 
group in 1999, and in that time I have seen him grow into a mature researcher 
with in-depth knowledge of accelerator physics.  His thesis research meets the 
established, high standards of excellent beam physics in that it is inventive, novel, 
and comprehensive.  His thesis revolves around the area of nonlinear focusing 
systems.  This work is inventive in that a method for using nonlinearity to 
mitigate halo formation has been proposed.  The novelty is seen in the discovery 
of a new class of nonlinear accelerator focusing systems that have good 
integrability properties.  The comprehensiveness is seen in the development of 
analysis of beams with significant space charge. I believe this work will be 
instrumental in halo mitigation in intense beams. 

The first topic (of Ch. 3) of Kiran’s thesis grew out of using the constant-focusing, 
particle-core model for understanding beam halos.  In this theory, advanced by 
O’Connell, Wangler, Mills, and Crandall, the bulk of the beam is represented by 
an envelope equation that includes the external focusing through a constant term 
(rather than oscillating, as is actually the case for alternating-gradient focusing).  
It adds in the defocusing effects of emittance and space charge through other 
terms.  This equation can be solved to find the envelope oscillations that occur 
when a beam is injected into a focusing system.  When the beam is matched, the 
envelope remains at constant width, but if the focusing is too large or small 
given the emittance and space charge of the beam, the envelope undergoes 
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oscillations, and these lead to an electric potential oscillation at twice the betatron 
frequency. 

Halo is understood by injecting test particles into the system – having them 
evolve in that oscillating potential.  One finds that there exist chaotic orbits in this 
system that can start oscillating at small radii, but then transition to large 
trajectories, thus creating a halo.  In the first part of his thesis, Kiran recaps this 
work through his own calculations. 

Having understood the mechanism of halo generation, Kiran then went on to 
study a method for eliminating the halo.  There had previously been suggestions 
that one could eliminate halo through collimation, but this proved difficult.  
Collimation removes the particle instantaneously at large radius, but as long as 
the oscillation remains, new particles on chaotic trajectories in the interior at the 
point of collimation move out to large radii.  Thus, the halo is regenerated after 
collimation, and so eliminating halo requires elimination of the core oscillation 
that leads to chaotic, halo particles. 

Kiran’s doctoral research proposed to do this through use of a nonlinear 
focusing channel.  With nonlinearity, we know that beam particles of different 
amplitudes will oscillate with different frequencies.  This will lead to phase mixing 
that will damp away the oscillations.  To demonstrate this effect, Kiran 
developed his own code for calculating how the collection of cylinder making up 
the beam oscillation self consistently.  A sample result is shown in his Fig. 4.1, 
where one sees clearly how nonlinearity causes the mode to damp away. 

The benefit is shown in Fig. 4.2, where test particle trajectories are seen to no 
longer have large oscillations away from the core.  Later in this chapter a full 
particle-in-cell simulation is presented, and this shows that nonlinear damping of 
the oscillations followed by collimation can effectively remove the halo.  This 
work has been submitted for publication in Phys. Rev. ST/AB, where it is 
currently under review. 

With the above result, it remained to find systems where one could have strong 
nonlinear focusing not marred by particle loss through chaotic dynamics.  In 
previous work, Weishi Wan and I had given one approach to this problem.  
However, Kiran decided to look at the problem from another angle – using Lie 
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transform perturbation theory.  This turned out to be fruitful.  Kiran was able to 
derive a condition for improved integrability.  When this condition is satisfied, 
the Hamiltonian in the transformed system, while being nonlinear, is 
azimuthally symmetric (to the calculated order) and so integrable to that order.  
Follow-up numerical calculations have shown that systems satisfying this 
condition have dramatically larger dynamic apertures than systems that strongly 
violate this condition.  This work has been published in Phys, Rev. E. 

The final result of Kiran’s thesis is in understanding the self-consistent 
propagation of beams through such nonlinear, alternating gradient focusing 
systems.  His inspiration was the earlier work of Channel and Davidson in this 
area.  Kiran’s work was based on Hamiltonian, Lie-transform theory, which 
makes it easier to go to higher order.  Regardless, an important result of Kiran’s 
work is that the favorable integrability properties of the systems he found are 
not destroyed by space-charge effects. 

Kiran’s thesis has the above many results, but it also illustrates a number of 
theoretical techniques.  In doing so, it illustrates Kiran’s mastery of these 
techniques, and it also provides a reference for others to learn from.  For 
example, his thesis illustrates particle-in-cell computations methods for 
azimuthally symmetric systems.  It shows how one can use advanced 
perturbation methods (Lie transform methods) for studying beam physics 
problems.  Finally, his thesis shows how one can use the methods of nonlinear 
dynamics, such as surfaces of section, for studying beam physics. 

Kiran’s work was rewarded by his selection for an invited talk on his work at the 
2005 Particle Accelerator Conference to be held in Knoxville.  He has also 
achieved a stable home in the beam physics community by obtaining a job at 
SLAC. 

A good thesis is one that brings new ideas to the field.  Kiran’s use of Lie-
transform perturbation methods for finding integrable systems and for 
analyzing space-charge effects in such systems has done just that.  A great thesis, 
however, is one that is also timely and leads to new research directions that 
others pick up on.  The letter of Curt Bohn shows that Kiran’s work was both 
timely (NIU had considered pursuing similar ideas) and led to new research 
directions (that NIU intends to pursue in the future). 
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In closing, I want to add a personal note that it was been a pleasure to have 
Kiran in my research group.  He required little direction, as he is highly 
motivated and self-directed.  But most importantly, I highly recommend 
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Sonnad, Kiran G. (Ph.D., Physics)

Nonlinear Focusing in Particle Accelerators: An application and its associated dynamics

Thesis directed by Prof John R. Cary

The use of nonlinear focusing in particle accelerators has been proposed in a

variety of applications. This work proposes and studies yet another application and

analyzes the dynamics associated with nonlinear focusing. To begin with, it is proposed

that beam halos can be controlled by combining nonlinear focusing and collimation,

which is verified by numerical simulations. The study relies on a one dimensional,

continuous focusing Particle-in-Cell (PIC) model and a Particle-Core model. Results

from the PIC simulations establish the importance of reducing the mismatch of the

beam in order to reduce halo formation. It is then shown that nonlinear focusing leads

to damping of the beam oscillations thereby reducing the mismatch. This damping

is accompanied by emittance growth causing the beam to spread in phase space. To

compensate for this, the beam is collimated, and further evolution of the beam shows

that the halo is not generated. The use of the idealized, one-dimensional, continuous

focusing model is justified by analyzing nonlinear alternate gradient focusing systems.

The Lie Transform perturbation theory is used to derive an equivalent continuous fo-

cusing system for the alternate gradient focusing channel by canonically averaging over

the lattice or fast oscillating time scale. The analysis shows the existence of a condition

in which the system is azimuthally symmetric in the canonically transformed, slowly

oscillating frame. Numerical results show that this condition leads to reduced chaos

and improved confinement in the charged particle motion. The Lie Transform analy-

sis is then extended to include space charge effects which enables one to calculate a

near equilibrium distribution function which is azimuthally symmetric in the nonlinear

lattice.
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Chapter 1

Introduction

Particle accelerators find applications in almost every branch of physics. They

are used not only in the analysis of physical, chemical and biological samples but also

modification of the physical, chemical and biological properties of matter in applications

varying from material sciences to medical physics. The most energetic beams are used

in subatomic physics research. A rapidly growing application of particle accelerators

is synchrotron radiation sources. New applications under active development include

spallation sources, X-ray emitting Free Electron Lasers and heavy ion fusion. Improve-

ment in the current applications and realizing future applications demand the need for

improved performance of the accelerating systems. This would mean improved confine-

ment of the particles, higher energies, more intense beams, improved dynamic aperture,

higher luminosity etc. The various challenges to be overcome to meet these demands

include space charge effects, energy loss due to synchrotron radiation, beam halos, non-

linear effects, production of electron clouds, instabilities, beam-beam interactions etc.

These demands have made the theoretical understanding of the dynamics of charged

particles and the study of collective effects of beams in particle accelerators increasingly

important.

The common accelerators such as cyclic and linear accelerators and storage rings

rely upon alternating gradient quadrupole magnets for the purpose of focusing in the

direction transverse to the motion of the beam. This system and other models which
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incorporate linear focusing have been studied extensively. It is clear that linear focusing

forces are desirable because nonlinear oscillations of the particles lead to chaotic motion

and loss in confinement. Despite this, nonlinear focusing of various forms are gaining

importance in a variety of applications and are being proposed for a number of current

and future projects. This thesis will present yet another proposal for applying nonlinear

focusing to beam halo mitigation and also make a detailed analysis of the dynamics

associated with such a system. This analysis will be extended to examine the equilibrium

properties in the nonlinear focusing channel. These studies can in turn prove useful to

other applications of nonlinear focusing as well.

Since nonlinear focusing systems have not been studied extensively, it becomes

important that whenever an application of such a system is proposed, all the problems

associated with it are systematically analyzed and the results verified through numerical

computations before being considered for experiments. With such a broad goal, this

thesis brings together aspects of computational physics, nonlinear dynamics and per-

turbation analysis making this work of interest to other areas of physics as well where

such tools are used.

To begin with, an overview of some of the established theories related to lin-

ear focusing systems with respect to transverse motion of the particles is presented in

Chapter 2. In general, none of these theories are valid when a nonlinear term is added

to the respective focusing force. Chapter 3 will first describe the mechanism behind

beam halo formation in space charge dominated beams. This will be followed by a

study of applying a combination of nonlinear focusing and collimation to control the

beam halo. The study relies on a continuous focusing model and the calculations use

a radial particle-in-cell (PIC) code as well as a particle-core model. Chapter 5 will

introde Lie Transform perturbation analysis which will be used to derive a condition

for designing a nonlinear alternate gradient focusing transport system with improved

integrability in chapter 6. This condition will provide a relationship between a nonlinear
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alternate gradient lattice (arrangement of the focusing components) and an equivalent

azimuthally symmetric, continuous focusing channel that was used as a model in the

previous chapter. Numerical calculations are performed in order to track the motion

of the particles which show that confinement dramatically improves with improved in-

tegrability. The Lie transform analysis is extended to high intensity beams in chapter

7. High intensity beams are self consistent systems. In other words, they include space

charge forces. Using the analysis developed in this chapter, an equilibrium distribution

is derived which retains the conditions of near integrability and azimuthal symmetry

when the same conditions of lattice design derived in the previous chapter are satisfied.

Distributions that are perturbed from equilibrium distributions are of use in analyzing

different modes of oscillations, stabilities and resonances.

The results are summarized in chapter 8 along with a conclusion and possible

future directions in which this work can be extended and applied. Appendix A and

B provide details of the numerical schemes used in the calculations performed in this

work. The emphasis in this thesis is broad even within the domain of beam physics and

is intended to have a lasting appeal to researchers and students interested in a variety

of areas within and beyond beam physics.



Chapter 2

Some Aspects of Linear Focusing

This chapter provides a brief overview based on some pioneering work related to

linear focusing models in particle accelerators. It will begin with the Courant-Snyder

theory associated with the dynamics of a single particle satisfying Hill’s equation. This

will show the existence of a closed form solution for the trajectory of a charged particle

in an alternate gradient quadrupole channel. The analysis will then move to beams

with space charge effects in which the rms envelope equation, and the Kapchinskij-

Vladmirskij (KV) equilibrium distribution will be derived. All of the analysis in this

chapter deals with motion transverse to the propagation of the beam. The material in

this chapter is based on some popular books on accelerator physics [22, 66, 16, 50] and

from notes provided in courses at the US Particle Accelerator Schools [33, 3].

2.1 Transverse Motion of Single Charged Particles

2.1.1 Alternate Gradient Quadrupoles and Focusing

Focusing in accelerators is required to keep the particles from drifting away from

the desired trajectory which is usually called the reference orbit. Particle beams are

made up of collections of particles and it is impossible to have a system in which they

all travel along the intended direction all the time. In storage rings, it is required to

keep the particles from wandering away for hundreds of thousands of revolutions. Such

a focusing is accomplished with the help of quadrupole magnets.
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A quadrupole magnet has a nonuniform magnetic field that is proportional to

the distance from the center. It is impossible to obtain a magnetic field in vacuum

that produces restoring forces in both transverse degrees of freedoms simultaneously.

However, it is still possible to obtain a stable, net focusing system from magnets with

alternating polarities or gradients. Alternate gradient focusing was discovered in 1952

by Courant, Livingstone, Snyder and Christofilos [15, 14, 13].

In the absence of any current density, the magnetic field satifies the condition

∇× ~B = 0 which leads to

∂By

∂x
=
∂Bx

∂y
(2.1)

where x and y are the coordinates transverse to the propagation of the beam. For dis-

placements that are small from the reference orbit, the magnetic field may be expressed

as

~B = Bxx̂+Byŷ =

(

Bx(0, 0) +
∂Bx

∂y
y +

∂Bx

∂x
x

)

x̂+

(

By(0, 0) +
∂By

∂x
x+

∂By

∂y
y

)

ŷ (2.2)

In quadrupole magnets, the dipole terms Bx(0, 0) and By(0, 0) are zero. Assuming

that the particle is moving in the z direction, it is easy to see that the last term of

each component of the magnetic field produces a force that is perpendicular to the

displacement and cannot be regarded as a restoring force. The remaining coefficients

of x and y are equal according to Eq. (2.1). From the Lorentz force, one can easily see

that if one of these coefficients produces a focusing, or restoring force, the other one

produces a defocussing force. A quadrupole magnet can be produced by hyperbolic pole

shapes as shown in Fig. 2.1 The magnetic field produced by these magnets to a good

approximation is given by,

By = B0
x

a
(2.3)

Bx = B0
y

a
(2.4)

where B0 is the magnetic field at a characteristic distance a from the center.
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N S

NS

Figure 2.1: Design of a quadrupole magnet

From an analogy with optics, one can associate a focal length to a quarupole

magnet using the thin lens approximation. We imagine a charged particle moving

through the quadrupole at a distance x from the magnet’s axis of symmetry. The thin

lens approximation implies that the length of the magnet, l, is short enough that the

displacement x is unaltered as the particle passes through the magnet and hence the

magnetic field experienced by the particle, By = B0x/a, is constant along the particle

trajectory. The paraxial approximation assumes the angle with respect to the direction

along the reference orbit is equal to the slope of the particle’s trajectory, ie, x′ = dx/ds

where s is the distance measured along the reference orbit. As shown in Figure 2.2, the

slope of the particle’s trajectory will be altered by an amount

∆x′ = − l

ρ
= −l

(

eBy

p

)

= −
(

eB0l

pa

)

x (2.5)

where ρ is the radius of curvature of the trajectory and p the momentum of the particle

along the axial direction.

Since a ray parallel to the optic axis will be bent toward the focal point of the

lens, as shown in Figure 2.3, the change in slope is simply ∆x′ = −x/f , where f is the
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θ

l

θ

ρ

Figure 2.2: Deflection of a particle across a thin quadrupole

x

f

x’∆

Figure 2.3: Ray initially parallel to the optic axis that bends and passes the focal point

focal length of the quadrupole lens. The focal length is thus given by

1

f
=
eB0l

pa
(2.6)

Equation 2.5 may be expressed in matrix form as
∣

∣

∣

∣

∣

∣

∣

∣

x

x′

∣

∣

∣

∣

∣

∣

∣

∣

out

=

∣

∣

∣

∣

∣

∣

∣

∣

1 0

− 1
f 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x

x′

∣

∣

∣

∣

∣

∣

∣

∣

in

(2.7)

For a defocussing (concave) lens, the focal length is of opposite sign. The motion in
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free space, between two lenses is referred as a drift. For a drift along a length L, the

transformation matrix is ,
∣

∣

∣

∣

∣

∣

∣

∣

x

x′

∣

∣

∣

∣

∣

∣

∣

∣

out

=

∣

∣

∣

∣

∣

∣

∣

∣

1 L

0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x

x′

∣

∣

∣

∣

∣

∣

∣

∣

in

(2.8)

It is well known from geometrical optics that a combination of equal strength

convex and concave lenses will produce net focusing. As an example, one can calcu-

late the transfer matrix across a lattice which consists of equally spaced focusing and

defocussing lenses which begins with a focusing lens, then a drift of length L, third a

defocussing lens, and finally another drift of length L. This is often referred to as a

FODO lattice. This transformation matrix may be evaluated to give,

M =

∣

∣

∣

∣

∣

∣

∣

∣

1 − L
f −

(

L
f

)2
2L+ L2

f

− L
f2 1 + L

f

∣

∣

∣

∣

∣

∣

∣

∣

(2.9)

At least in the case where L is small when compared to f , it is clear that there is net

focusing by comparing with Eq. 2.7. In this approximation the resulting matrix is that

of a thin lens of net focal length f2/L > 0. If the two lenses were interchanged, the net

result would still be focusing. Hence a system of alternating gradient thin quadrupole

magnets, could in principle, focus in both degrees of freedom simultaneously. Moreover,

it is possible to show that the motion is stable provided the focal length is greater than

half the lens spacing [22]. That is,
∣

∣

∣

∣

L

2f

∣

∣

∣

∣

≤ 1 (2.10)

2.1.2 Equations of Motion

It is now straight forward to write the equations of motion for a particle with

constant axial momentum. Consider a particle passing through a quadrupole lens along

a distance ∆s. Then from Equation 2.5, we have

∆x′

∆s
= −

(

eB0(s)

pa

)

x (2.11)
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Taking the limit as ∆s→ 0, we obtain the second order differential equation

x′′ +

(

eB0

pa

)

x = 0. (2.12)

This equation arises in the special case where the design trajectory is a straight line.

Suppose the path along the reference orbit has a local curvature ρ0, which is the case

in the presence of a dipole magnet, then the equations would be modified to [22]

d2x

ds2
+

[

− 1

ρ0
+
eB0

pa

]

x = 0 (2.13)

and

d2y

ds2
−
[

eB0

pa

]

y = 0 (2.14)

The curvature term 1/ρ0 is generally very small when compared to the focusing term.

These equations may be expressed in the form

x′′ + κx(s)x = 0 (2.15)

y′′ + κy(s)y = 0 (2.16)

where,

κx(s) = 1
ρ2

0

κy(s) = 0















in dipole (2.17)

κx(s) = κy(s) = 0} in drift (2.18)

κx(s) = −κy(s) =
eB0

pa

}

in quadrupoles (2.19)

These differential equations are homogeneous as long as the particles do not have

a momentum that is offset from the reference orbit. The equation of motion for x looks

like a harmonic oscillator with a time varying spring constant, a form of Hill’s equation.

To solve this equation, we look for a solution of the form

x(s) = Ax

√

βx(s) cos(φx(s) − φ0) (2.20)
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Differentiating this with respecting to s gives

x′(s) =
Ax

2
√

βx(s)

dβx

ds
cos(φx(s) − φ0) −Ax

√

βx(s)
dφx

ds
sin(φx(s) − φ0) (2.21)

and the second derivative is,

x′′ = − Ax

4β
3/2
x

(

dβx

ds

)2

cos(φx(s) − φ0)

+
Ax

2β
1/2
x

d2βx

ds2
cos(φx(s) − φ0)

− Ax

2β
1/2
x

dβx

ds

dφx

ds
sin(φx(s) − φ0)

− Ax

2β
1/2
x

(

dβx

ds

)(

dφx

ds

)

sin(φx(s) − φ0)

− Axβ
1/2
x

(

dφx

ds

)2

cos(φx(s) − φ0)

− Axβ
1/2
x

d2φx

ds2
sin(φx(s) − φ0) (2.22)

Substituting this into Eq. 2.15 and collecting the sin and cosine terms, we get

Ax[− 1

4β
3/2
x

(

dβx

ds

)2

+
1

2β
1/2
x

d2βx

ds2

− β1/2
x

(

dφx

ds

)2

+ κxβ
1/2
x ] cos(φx(s) − φ0)

+ Ax[− 1

β
1/2
x

(

dβx

ds

)(

dφx

ds

)

− β1/2
x

d2φx

ds2
] sin(φx(s) − φ0) = 0 (2.23)

Each coefficient has to equal to zero.

We look at the coefficient of sin(φx(s) − φ0) first. This gives,

(

dβx

ds

)(

dφx

ds

)

+ βx
d2φx

ds2
= 0 (2.24)

Combining these leads to,

d

ds

(

βx
dφx

ds

)

= 0, (2.25)

which gives,

βx
dφx

ds
= constant = 1. (2.26)
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So,

dφx

ds
=

1

βx
(2.27)

Equating the coefficients of cos(φx(s) − φ0), we obtain

− 1

4β
3/2
x

(

dβx

ds

)2

+
1

2β
1/2
x

d2βx

ds2
− β1/2

x

(

dφx

ds

)2

+ κxβ
1/2
x = 0 (2.28)

or, from Eq. (2.27) this may be rewritten as,

2βx
d2βx

ds2
−
(

dβx

ds

)2

+ 4β2
xκx = 4 (2.29)

It may be noted that since κx 6= κy, βx is different from βy. The differential

equation for βx (or βy) is not easily solvable as it stands. This can be solved using

matrix techniques, which will not be done here.

2.1.3 Courant-Snyder Invariant

Let us define

αx(s) = −1

2

dβx

ds
(2.30)

We know that the motion is of the form

x(s) = Ax

√

βx(s) cos(φx(s) − φ0) (2.31)

Differentiating this with respect to s yields,

dx

ds
=

1

2

Ax

β
1/2
x

dβx

ds
cos(φx(s) − φ0) −Axβ

1/2
x

dφx

ds
sin(φx(s) − φ0) (2.32)

Simplifying this by using Eq. 2.30, Eq. 2.31 and Eq. 2.27, we get

x′(s) = −αx

βx
x+

Ax

β
1/2
x

sin(φx(s) − φ0), (2.33)

which may be rewritten as,

βxx
′ + αxx = Ax

√

βx sin(φx(s) − φ0). (2.34)
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So,

x2 + (βxx
′ + αxx)

2 = A2
xβx[cos2(φx(s) − φ0) + sin2(φx(s) − φ0)] (2.35)

or,

A2
x =

x2 + (β′x + αx)2

βx
= constant of motion (2.36)

This constant is known as the Courant-Snyder invariant. Figure 2.4 shows a

graphical representation of the trajectory of a particle satisfying the equation of motion

in a quadrupole focusing channel. This proves the existence of a closed form solution

for the motion of a particle in a quadupole focusing channel.

x’

x

+ α xβ

β    A

Figure 2.4: Graphical representation of particle trajectory

2.2 Beams with Space Charge Effects

This section will deal with high intensity beams where the effect of space charges

cannot be neglected. In general, problems associated with such a system involves solv-

ing the implicit Vlasov-Poisson equations which is usually done computationally with

the help of a Vlasov-fluid code, or Particle-in-cell (PIC) simulation. However, two re-
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markable analytical results exist which form the basis of a lot of analysis of beams with

space charge effects under linear focusing.

2.2.1 The RMS Envelope Equation

Consider a beam moving in the s direction, where individual particles satisfy the

equations of transverse motion

x′′ + κ(s)x− Fsc = 0 (2.37)

The linear external force is given by −κ(s)x, and Fsc is the space-charge force term,

which is in general nonlinear and includes both the self electric and self magnetic forces.

It is assumed that the beam is very long compared to its characteristic width, and

there are no forces along the s direction. For the sake of simplicity, we assume that

the particles are distributed about a mean position at x = y = 0. First we write the

equations of motion for the second moments of the distribution. These are,

d〈x2〉
ds

= 2〈xx′〉 (2.38)

d〈xx′〉
ds

= 〈x′2〉 + 〈xx′′〉 = 〈x′2〉 − κ(s)〈x2〉 + 〈xFsc〉 (2.39)

where the angle brackets 〈. . .〉 represents an average over the particle distribution in

position space. If the rms size of the beam is denoted by ax =
√

〈x2〉, then by using

Eq. (2.38) we have

axa
′

x = 〈xx′〉 (2.40)

Differentiating this and using Eq. (2.39) gives

a′′x − 〈x2〉〈x′2〉 − 〈xx′〉2
a3

x

− 〈xx′′〉
ax

= 0 (2.41)

At this point, we define a quantity εx known as the rms emittance which is given by

εx = 4
√

〈x2〉〈x′2〉 − 〈xx′〉2 (2.42)
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The properties of εx will be analyzed in the next section. Eliminating x′′ by combining

Eq. (2.37) and Eq. (2.41) yields

a′′ + κ(s)a− ε2x
a3

− 〈xFsc〉
a

= 0 (2.43)

For a bean with uniform distribution over an ellipse, the x and y components of

the Electric field inside the ellipse can be computed by Gauss’ law and are given by

Ex =
I

πε0v(Rx +Ry)

x

Rx
(2.44)

Ey =
I

πε0v(Rx +Ry)

y

Rx
(2.45)

where Rx and Ry are the semiaxes of the ellipse, related to the rms beam sizes by

Rx = 2ax and Ry = 2ay, v is the velocity of the particle along s, I is the beam current,

ε0 is the free space permitivity. Using these expressions for electric fields, in Eq. (2.43),

we get

R′′

x + κ(s)Rx − ε2x
R3

x

− Kp

2(Rx +Ry)
= 0 (2.46)

R′′

y + κ(s)Ry −
ε2y
R3

y

− Kp

2(Rx +Ry)
= 0 (2.47)

where the quantity Kp is a constant called the generalized perveance. The force arising

from a magnetic field has the same form as the electric field, which can be verified by

solving Ampere’s law instead of Gauss’ law. This introduces an additional factor in the

expression for Kp. Taking into account this additional effect, the perveance is given by

Kp = qI/2πε0mγ
3v3, (2.48)

where, q is the charge of the particles, ε0 is the free space permitivity, m is the mass of

the particle, γ is the relativistic Lorentz factor and v is the axial velocity of the particle.

These equations were derived by Kapchinsky and Vladmirsky [38] and are known as

the K-V envelope equations. It was later proved by Lapostolle [41] and independently

by Sacherer [54] that these equations are valid not only for uniform distributions but

for all distributions with elliptical symmetry with a beam “Radius” of Rx = 2ax and

Ry = 2ay.
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2.2.2 Properties of Beam Emittance

We now examine the properties of the beam rms emittance. To start with, we

show that when the particle equation of motion is x′′ = κ(s)x, the rms emittance is a

conserved quantity. Beginning with the definition of emittance, given by Eq. 2.42, we

have,

ε2x = 16[〈x′2〉〈x2〉 − 〈xx′〉2] (2.49)

Differentiating this, we get

dε2x
ds

= 16[
d〈x′2〉
ds

〈x2〉 + 〈x′2〉d〈x
2〉

ds
− 2〈xx′〉(〈xx′′〉 + 〈x′2〉)] (2.50)

This may be simplified to

dε2x
ds

= 16[2〈x′x′′〉〈x2〉 + 2〈x′2〉〈xx′〉 − 2〈xx′〉〈xx′′〉 − 2〈xx′〉〈x′2〉] (2.51)

where the second and fourth terms cancel. Using x′′ = κ(s)x, and the fact that κ(s)

can be factored out of the averaging, we get

dε2x
ds

= 64κ(s)[〈xx′〉〈x2〉 − 〈xx′〉〈x2〉] = 0 (2.52)

Thus, the emittance is a conserved quantity as long as the the forces on the particles

are linear. The space charge force is linear for a uniform distribution elliptical beam as

shown in Eq. (2.44). Thus, the emittance can be regarded as a conserved quantity in

the envelope equation under certain restrictions. The envelope equation has been used

extensively to study beams with space charge effects.

2.2.3 The Kapchinskij-Vladmirskij Beam Equilibria

It is often important to determine an equilibrium beam distribution. Beams that

are perturbed from this equilibrium distribution are analyzed to study different modes

of oscillations, instabilities and resonances. The only known equilibrium distribution
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for a linear focusing system is the Kapchinskij-Vladmirskij (KV) [38] distribution which

has been used extensively to study high intensity beams.

An equilibrium here refers to a phase space distribution function that depends

upon the invariants of the motion. This is known as a Vlasov equilibrium which is

a stationary solution to the Vlasov equation. The Vlasov equation in Hamiltonian

formalism is given by

∂f

∂s
= {f,H} (2.53)

where, f is the phase space density, H is the Hamiltonian, and { } represents the Poisson

bracket. Any phase space function of the invariants of the motion commutes with the

Hamiltonian, ie is equal to zero in a Poisson bracket operation giving a stationary

solution of the Vlasov equation which corresponds to a Vlasov equilibrium.

In this section, it will be shown that a beam with a uniform charge distribution

over an ellipse is indeed such an equilibrium under linear focusing. The Hamiltonian of

a long beam with space charge effects and neglecting longitudinal effects is given by

H =
1

2
(x′2 + y′2) +

1

2
κx(s)x2 +

1

2
κy(s)y

2 + ψ(x, y, s) (2.54)

The term ψ(x, y, z) arises due to the effect of the space charge perveance. In the specific

case of a uniform charge distribution over an ellipse (x2/R2
x + y2/R2

y) < 1, Eqs. (2.44

and 2.45) can be used to show that

ψ(x, y, s) = −[Kp/(Rx +Ry)](x
2/Rx + y2/Ry) (2.55)

and this Hamiltonian may now be rewritten as

H =
1

2
(x′2 + y′2) +

1

2
Kx(s)x2 +

1

2
Ky(s)y

2 (2.56)

where

Kx = κx(s) − Kp

Rx(Rx +Ry)
(2.57)
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and

Ky = κy(s) −
Kp

Ry(Rx +Ry)
(2.58)

A canonical transformation is now performed by introducing a generating func-

tion of the second kind, F2(x, y,X
′, Y ′). This transformation simplifies the Hamiltonian

which in turn helps identify constants of motion. At this point, we define functions

wx(s) = Rx/ε
1/2
x . wy(s) = Ry/ε

1/2
y . The function F2 that will be used is,

F2(x, y,X
′, Y ′) =

x

wx(s)

[

X ′ +
1

2
x
dwx(s)

ds

]

+
y

wy(s)

[

Y ′ +
1

2
y
dwy(s)

ds

]

(2.59)

The new phase space variables will satisfy the following,

X =
∂F2

∂X ′
=

x

wx
,

Y =
∂F2

∂Y ′
=

y

wy
,

x′ =
∂F2

∂x
=

1

wx

[

X ′ + x
dwx

ds

]

,

y′ =
∂F2

∂y
=

1

wy

[

Y ′ + y
dwy

ds

]

. (2.60)

Solving for X ′ and Y ′ gives,

X ′ = wxx
′ − x

dwx

ds
,

Y ′ = wyy
′ − y

dwy

ds
. (2.61)

The transformed Hamiltonian is given byK = H+∂F2/∂s. From the envelope equations

(2.46) and (2.47) it can be seen that the second derivatives of wx(s) and wy(s) are given

by

d2

ds
wx(s) +Kx(s)wx(s) =

1

wx(s)

d2

ds
wy(s) +Ky(s)wy(s) =

1

wy(s)
(2.62)

Using these to calculate the new Hamiltonian, we get

K(X,Y,X ′, Y ′) =
1

2w2
x(s)

[X ′2 +X2] +
1

2w2
y(s)

[Y ′2 + Y 2] (2.63)
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The equations of motion may now be determined for the new variables. They are,

d

ds
X ′ = − 1

w2
x(s)

X(s),

d

ds
Y ′ = − 1

w2
y(s)

Y (s),

d

ds
X =

1

w2
x(s)

X ′(s),

d

ds
Y =

1

w2
y(s)

Y ′(s).

(2.64)

Solving these equations gives,

X(s) = X0 cos[ψx(s, s0)] +X ′

0 sin[ψx(s, s0)]

Y (s) = Y0 cos[ψy(s, s0)] + Y ′

0 sin[ψy(s, s0)], (2.65)

where,

ψx(s, s0) =

∫ s

s0

ds

w2
x(s)

. (2.66)

In Eq. (2.65), X(s) and X ′(s) are the particle orbits which pass through the phase-space

point (X0,X
′

0) at s = s0, ie., X ′(s = s0) = X ′

0 and X(s = s0) = X0. The solutions

for Y (s) and Y ′(s) are identical in form with ψx(s, s0) replaced by ψy(s, s0) which is

evaluated in a similar manner. An important feature of these solutions is that one can

obtain two natural constants of motion.

X ′2 +X2 = constant, (2.67)

Y ′2 + Y 2 = constant. (2.68)

These are analogous to the Courant-Snyder invariants, Ax and Ay derived in section

1.2.

A self-consistent Vlasov equilibrium including space charge effects can now be

constructed from the constants of motion X ′2 +X2 and Y ′2 + Y 2. The KV equilibrium

corresponds to a distribution function

f =
Nb

π2εxεy
δ

[

1

εx
(X ′2 +X2) +

1

εy
(Y ′2 + Y 2) − 1

]

. (2.69)
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This corresponds to a hyperellipsoidal shell in the (X,Y,X ′, Y ′) space.

From the transformations given by Eqs (2.61) and (2.60), it follows that

dxdy = (wxwy)dXdY,

dx′dy′ = (wxwy)
−1dX ′dY ′

(2.70)

and, the constants of motion may be expressed in terms of (x, y, x′, y′) as

X ′2 +X ′2 = wx

(

x′ − x

wx

dwx

ds
+
x2

w2
x

)

,

Y ′2 + Y ′2 = wy

(

y′ − y

wy

dwy

ds
+
y2

w2
y

)

(2.71)

The density profile may now be determined from

nb(x, y, s) =

∫

dx′dy′fb = (wxwy)
−1
∫

dX ′dY ′fb. (2.72)

Using the expressions, Rx =
√
εxwx and Ry =

√
εywy, we obtain

nb(x, y, s) =















Nb

πa(s)b(s) , 0 ≤ x2/R2
x + y2/R2

y < 1

0, x2/R2
x + y2/R2

y > 1

(2.73)

which proves that a uniform distribution over an ellipse is a Vlasov equilibrium state.

The evolution of Rx and Ry are determined by the envelope equations, (2.46) and (2.47).

The following chapters will deal with identical systems modified with nonlinear

focusing terms. None of the theories mentioned in this chapter will be valid if nonlinear

terms in the focusing cannot be neglected. The tools that will be used to study the mod-

ified systems will include PIC codes, Particle-Core models in the absence of an envelope

equation, and finally Lie transform perturbation theory. The Lie transform analysis

will be used to derive adiabatic invariants and also near equilibrium distributions in a

nonlinear focusing channel.



Chapter 3

Mechanism of Beam Halo Formation

This chapter will explain the mechanism of beam halo formation in space charge

dominated beams, ie, beams with a low emittance. The analysis and results presented

in this chapter are based on the work of O’Connell, Wangler, Mills and Crandall [44]. A

simplified model is used with the purpose of providing some physical insight into beam

halos formed by a parametric resonance between the oscillation of the particles and the

envelope oscillations. The term “Halo” describes a low density distribution of particles

that surrounds a beam in phase space.

3.1 Dynamics of a Uniform-Density Core

Consider a zero emittance beam with uniform charge distribution and a circular

cross-section of radius R that is propagating through a constant focusing channel. The

beam is assumed to be very long compared to its width so that longitudinal effects may

be neglected. The transverse equation of motion of the beam radius is given by the

envelope equation, Eq. (2.46). Under these conditions this is,

d2R

ds2
+ ω2

0R− Kp

R
= 0 (3.1)

where ω0 is a constant and represents a continuous focusing force that is linear and is

directed radially inward. The parameter Kp is the space charge perveance described in

chapter 2. The emittance εr is zero which represents a cold beam. In this model, this
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system represents the “core” of the beam. For a matched core d2R/ds2 = 0, and the

corresponding radius is R0 =
√

Kp/ω0. The transverse equation of motion of a single

test particle is

d2x

ds2
+ ω2

0x− Fsc = 0 (3.2)

where Fsc is the space charge force, give for a uniform density core by

Fsc =















Kpx/R
2, x < R

Kp/x, x > R

(3.3)

For a small, perturbation δR from the matched radius R0, the envelope equation

can be linearized to give the solution δR/R0 = A sin Ωs where Ω =
√

2ω0. With this

perturbation, a particle lying within the beam, ie, x < R, will satisfy the equation of

motion,

d2x

ds2
+AΩ2x sin Ωs ' 0. (3.4)

This approximate result is a special case of the Mathieu equation, which suggests peri-

odic solutions in x for particle frequencies below half the core frequency Ω. The rate of

gain/loss of the particle energy due to the core oscillation is

dU

ds
= ~F~x′ = −AΩ2xx′ sinΩs (3.5)

It is clear that when the frequency of oscillation of the particle is half that of Ω,

ie, for example, if x ∼ sin(Ωs/2), then dU/ds ∼ sin2(Ωs) which results in a nonzero

average. This leads to a resonant interaction between the particle oscillation and the

envelope oscillation of the core where particles can either gain energy, loose energy, or

have no energy change depending on the relative phases of the particle displacement,

the transverse velocity and the core radius oscillation. When a particle is moving in

and out of the core, its oscillation is highly nonlinear due to the different forms taken

by the space charge force Fsc for x < R (inside the core) and x > R (outside the core)

respectively. As a result, there is a loss of phase coherence which creates a limit to
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continued resonance and can result at different times in gain, loss or no net change in

the energy of the particle. In the following section, a connection between beam halos

and this resonant interaction will be analyzed.

3.2 Classification of Particle Trajectories

The model described in the previous section will be applied to numerically calcu-

late the trajectories of particles with different initial conditions. The initial mismatch

of the core is assumed to be M = R/R0 = 1.5 with dR/ds = 0, ω0 = 1.0, and Kb = 1.

The particles were launched with various initial conditions shown in Fig. 3.1. These

conditions are identical to those used in Ref. [44]. The core radius oscillation is also

shown in the first figure.

Figure 3.1: Particle trajectories in phase space with initial conditions x′ = 0 and (a)
x = 1.0, (b) x = 1.55, (c) x = 1.65, (d) x = 2.2.

With these conditions, the trajectories of particles can be classified into three

distinct categories as follows: (1) For x < 1.5, the particles oscillate in phase with the
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core radius about their own equilibrium radius. These are known as plasma trajectories.

(2) For x > 2.0 the particles oscillate about the origin with an orbit that looks like an

ellipse that is pinched inward along the velocity axis due to the space charge force. The

amplitudes are variable and each orbit is confined to a narrow band in phase space.

These particles occupy the halo region and their orbits are called betatron trajectories.

(3) Finally, for 1.5 < x < 2.0 the particles execute a more complex motion. They may

initial spend part of the time executing plasma-like oscillations within the core, after

which they enter a phase relationship with the core such that they gain energy and

move into the halo region executing betatron-like oscillations. These particles can also

reverse the procedure and lose energy to the core. As a result they return to execute

plasma-like oscillations. Their orbits are referred to as hybrid trajectories, which are

strongly affected by the resonant energy transfer analyzed in the previous section.

The discovery of hybrid trajectories are important because they suggest the for-

mation of beam halos in a beam with no initial halo. In a real beam, the conditions

are not as idealized as in the model used in the present analysis. Particles once lying

within the core can be kicked into a hybrid trajectory due to real focusing effects like

imperfections in the focusing system. Particles can also drift into resonance due to

thermal diffusion. This would not be observable in the current model because a cold

beam was used. Finally, it is impossible to produce a beam with a uniform distribution.

One would always expect the presence of a tail in the particle distribution that extends

beyond what can be viewed as a ”core”. All these situations can produce halos in beams

that did not have any particles in the halo region initially.

Hybrid trajectories also indicate the limitations of collimation of the beam halo.

Suppose at a given time the beam is collimated to remove the existing halo. Any such

collimation procedure, even if carried out under the most ideal circumstances, would

remove particles with betatron trajectories and those with hybrid trajectories, which at

that time populate the halo region. However, particles with hybrid trajectories which lie
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within the core at the time of collimation can gain energy at a later time and repopulate

the halo. In the next chapter, a combination of nonlinear focusing and collimation as a

mechanism to eliminate beam halos has been proposed and studied through numerical

simulations.



Chapter 4

Control of Beam Halos through Nonlinear Damping and Collimation

4.1 Introduction

This work demonstrates that beam halos can be controlled by combining nonlinear

focusing and collimation. The study relies on a one dimensional, constant focusing

Particle-in-Cell model and a Particle-Core model. Calculations with a linear focusing

force show that the extent and density of the halo depend strongly upon the initial

mismatch of the beam, establishing the importance of obtaining a reduced mismatch.

Nonlinear focusing is then introduced in the calculations to study damping in the beam

oscillations thereby reducing the mismatch. Although the nonlinear force reduces the

mismatch of the beam through a damping mechanism, it is accompanied by emittance

growth. This process is very rapid and happens within the first 2-3 envelope oscillations.

After this, the halo is collimated, and further evolution of the beam shows that the halo is

not regenerated. It has also been shown that a one-time collimation with linear focusing

is ineffective since the halo is regenerated after collimation. While the same was not

true when nonlinear focusing was used, it resulted in a greater loss of particles during

collimation due to the initial emittance growth, especially for higher initial mismatches

of the beam. However, the elimination of the beam halo would result in a larger physical

aperture thus allowing a beam of higher current that could more than compensate for

this loss of particles.

A major issue facing the functioning of high current accelerators is beam halo
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formation. High current accelerators find applications in heavy ion fusion, nuclear

waste treatment, production of tritium, production of radio isotopes for medical use

and spallation neutron sources [37]. The halo is formed by a small intensity distribution

of particles surrounding the core of the beam. When such particles drift far away from

the characteristic width of the beam, their loss will lead to the production of residual

radioactivity of the accelerating system. Many of the above applications require that the

number of particles lost to the system must be less that one part in 105 - 106. With such a

stringent requirement, methods to control the beam halo can prove very useful. However

there has been relatively less effort spent on devising such methods when compared to

the extensive study that has already been done to understand the physics of beam halo

formation. The methods employed to study beam halos include analytic models and

multiparticle simulations using mainly the particle-core model, some PIC simulations,

[29, 44, 39, 40, 12, 53, 45, 32, 23, 35, 65, 67, 48, 31, 30, 58, 46] and experimental studies

[1, 51]. Batygin [5] showed that nonlinear forces can be used to obtain a better match

with a prescribed charge distribution leading to reduced halo. The method suggested

in this chapter does not require a specific initial charge distribution.

The dependence of the extent of beam halos and the initial beam mismatch has

been studied by Wangler et al, [67], where it been shown that the maximum dimension-

less particle amplitude Xmax, which is the distance with respect to the matched beam

width, can be described by an approximate empirical formula, which is,

Xmax = A+B|ln(µ)|. (4.1)

Here, A and B are weak functions of the tune depression ratio approximately given by

A = B = 4 [67], and µ is the initial beam mismatch ratio. This result is not a good

estimation for maximum amplitude for µ close to 1. It has also been shown [36] that

in addition to increased halo extent, the number of halo particles grows with increased

initial mismatch ratio.
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O’Connell et al [44] traced the trajectories of various test particles with different

initial conditions. This led to the discovery of hybrid trajectories, which undergo a

resonant interaction with the core which was later analyzed by Gluckstern [29]. This

discovery of hybrid trajectories reveals the limitations on the effectiveness of a one time

beam collimation, an issue that will be addressed in this paper. The removal of a halo

using a multicollimator system has been studied previously [36] for a periodic linear

focusing system.

Thus, it is already well established that reducing the beam mismatch can be an

important factor in halo mitigation. In the this chapter, we propose reducing mismatch

by damping the transverse oscillations of the beam by inducing nonlinear focusing be-

fore collimation to avoid the need for repeated collimation. Collimation still becomes

essential in this process due the emittance growth accompanying the nonlinear damp-

ing. These studies are based on a radial Particle-in-cell (PIC) code along with some

preliminary studies using a modified particle core model. This chapter describes the

particle core model for nonlinear focusing and examines the effect of nonlinear focusing

on beams through this model. The PIC algorithm and the physical model used to rep-

resent the beam has been described and simulation results of beam halo formation with

different initial mismatches has been presented. In addition, results showing damping

and emittance growth due to nonlinear focusing are presented. The regeneration of halo

after collimation in a linear focusing channel is shown. It is finally shown that halos can

be controlled by combining nonlinear focusing and collimation.

4.2 Results from a Particle-Core Model

The particle core model in this paper serves the purpose of obtaining a quali-

tatively similar result with a simpler model, thus exhibiting the general nature of the

phenomena of damping and emittance growth due to nonlinear focusing. For a linear

focusing system, the core is generally represented by the envelope equation, which is
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not valid for a nonlinear focusing system. Since nonlinear focusing is used in this study,

the core is simulated using a different method.

The envelope equation will still be used as a reference to determine parameters

such as mismatch ratio and tune depression ratio. Consider a uniform, round, thin

beam moving in the axial direction and with a constant axial velocity in a linear and

constant focusing channel. Under these conditions, the envelope equation describes the

oscillation of R, the radius of the beam with respect to the axial distance s which is a

time like variable. This can be expressed as (see for example [16, 66]).

d2R

ds2
+ k0R− ε2

R3
− K

R
= 0. (4.2)

The focusing force is represented by k0, K is the space charge perveance which depends

upon the intensity, axial velocity and charge to mass ratio of the particles [16, 66]. The

rms emittance of the beam εx is given by

εx = 4
√

〈x〉2〈vx〉2 − 〈xvx〉2, (4.3)

where the angle bracket represents an average over the particle distribution in position

space, x is displacement along the horizontal axis and vx = dx/ds. For a matched beam,

the radius remains constant at R = R0. It was shown by Sacherer [54] that the envelope

equation can be generalized to even nonuniform distributions having elliptic symmetry

(in this case, azimuthal symmetry). In such a model, the beam radius and matched

radius are given by R = 2a and R0 = 2a0 respectively, where a is the rms width of the

beam, and a0 is the matched rms width. We define a dimensionless displacement by

X = x/a0, a dimensionless velocity by Vx = vx/
√
koa0, a dimensionless axial distance

given by S =
√
k0s and a dimensionless rms width given by M = a/a0. The initial

mismatch ratio, which is the initial value of M is represented as µ. All calculations will

be made with respect to these dimensionless quantities.

The tune depression ratio η = ε/
√
k0R

2
0 is a dimensionless quantity which gives

a measure of the ratio between the wave numbers (or equivalently, frequencies) of a
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particle oscillating with and without the effect of space charge respectively. While this

ratio is exact for any in-core particle in a uniform distribution core, the definition may

be extended to provide information on a general beam, especially to determine if a beam

is space charge dominated or emittance dominated. A tune depression ratio close to

unity represents an emittance dominated beam while if η is much less than unity is is a

space charge dominated beam.

In this paper, the core was simulated through a series of infinitely long charged

cylindrical “sheets” which could move radially inward or outward. The field on test

particles and the sheets of the core were calculated from Gauss’ law using a flux weighted

averaging scheme [7]. The test particles did not contribute to the field. The sheets

representing the core were advanced in the radial direction while the test particles were

moved along the ”x” and ”y” coordinates. In both the cases, a leap frog scheme was

used.

The sheets that represent the core and the test particles satisfy the following

equation,

d2r

ds2
= F + Fsc, (4.4)

where r is the radial distance and s is the distance along the axis. F is the focusing

force and Fsc is the space charge force. The purely linear focusing force had the form

F = −kor, (4.5)

while the focusing force with the nonlinearity included had the form

F = −k1r − k2r
3. (4.6)

The corresponding space charge densities that balance the focusing force will then

be equal to

ρ =
ε0
e

2k0 (4.7)
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and

ρ =
ε0
e

(2k1 + 4k2r
2) (4.8)

respectively for r < R0, and equal to zero for r > R0. Here, e is the charge on the

particle and ε0 is the permitivity in free space. A mismatch is introduced by expanding

or contracting the core and uniformly scaling the charge density to ensure conservation

of charge. In performing the calculations in this section, we used a core which was

expanded to 1.35 times its matched width. All the sheets comprising the core were

initially at rest. In the absence of a nonlinearity, the density of the core is uniform,

corresponding to a Kapchinskij-Vladmirskij (KV) distribution [38].

Based on the parameter a0, the matched rms width of the beam, we set the linear

and nonlinear focusing parameters such that they satisfied the condition,

k0a0 = k1a0 + k2a
2
0. (4.9)

This equation indicates that the linear and nonlinear focusing forces were equal at the

characteristic distance a0 and also gives a measure as to how much the linear force was

reduced before introducing the nonlinear component. The nonlinear term in Eq. 4.6

was four times the corresponding linear term at r = a0. Thus,

k1

k2a
2
0

= 4. (4.10)

This gives a measure of how strong the contribution of the nonlinearity is to the net

focusing.

Figure 4.1(a) shows that the oscillations of the rms width of the core are sustained

in the linear focusing case. This is because all the sheets in the core are oscillating in

phase and at the same frequency. When nonlinearity is introduced, not only does the

density become nonuniform, but the frequency distribution of the oscillations of the

charged sheets for a mismatched beam also becomes nonuniform. This is expected to

lead to damping of the oscillation in the rms width of the core as shown in Fig. 4.1(b).



31

Figure 4.1: Oscillation of the rms width of the beam with respect to the matched rms
width at µ =1.35 for (a)linear and (b)nonlinear focusing

The mechanism is well known in many branches of physics as Landau damping. In the

damping process, the beam obtains a velocity distribution which is equivalent to heating

of the beam.

Figure 4.2: Phase space distribution of test particles. Linear oscillations at (a) minimum
rms width (b) maximum rms width. Nonlinear oscillations at (c) minimum rms width
and (d) maximum rms width.
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Figure 4.2 shows the corresponding phase space distribution of test particles

moving under the influence of this core at the end of about 40 core oscillations. In

Fig 4.2(a), the distribution was plotted when the core was at a maximum rms width,

and in Fig 4.2(b), the core had a minimum rms width, both with linear focusing. Both

the distributions were plotted after about 40 core oscillations. For these calculations,

5000 test particles were used which had an initial Gaussian distribution with an rms

width equal to half the initial radius of the core. In the linear case, this makes the

core and particle distribution equivalent according to the envelope equation. The ini-

tial distribution was identical for the linear and nonlinear case corresponding to a tune

depression of 0.1 in the linear focusing channel.

Figure 4.2(c) shows the final distribution resulting from nonlinear focusing. It

can be seen clearly that the beam spreads out in velocity space, while the spread in

position space is comparable to the linear focusing case. This is a because the nonlinear

component of the focusing force increases rapidly as the particle moves away from the

center. Thus, the particles having higher kinetic energy must also overcome a stronger

potential gradient as they drift away from the core. It will be seen later that this plays

an important role in restricting the radius of collimation in position space.

4.3 Results from PIC Simulations

The evolution of the beam is now simulated using a radial PIC code. In these

calculations, the charge distributions and forces used were azimuthally symmetric, a

simplified model for which a one-dimensional field solver is sufficient. Since the fields

vary along the radial direction, they are solved using Gauss’s law over a radial grid.

The particles however, are advanced using the leap frog scheme in cartesian coordinates

along the ’x’ and ’y’ axis. This helps avoid problems arising due to singularities at the

origin if radial and azimuthal motion was was used [25]. The particles are distributed

over the grid using area weighted averaging while the fields were assigned to the particles
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Figure 4.3: Oscillation of the dimensionless rms width of the beam for µ = (a) 1.5, (b)
1.35, (c) 1.2, (d) 1.02

using flux weighted averaging [7].

We examine the halo generated for beams with different initial mismatch ratios.

The beam had an initial Gaussian distribution in position and velocity space. The tune

depression calculated from the corresponding envelope equation was chosen to be 0.1

for all the cases, which implies that the beam is space charge dominated. We used

100,000 particles in all the PIC simulations, which was large enough for the particle

distributions to retain the desired azimuthal symmetry.

Figure 4.3 shows the oscillation of the normalized rms width of the beam with

an rms mismatch ratio µ of (a) 1.5, (b) 1.35, (c) 1.2 and (d) 1.02. For (a),(b) and

(c), where the mismatch ratio is more significant, it may be noticed that there is some

initial damping of the oscillations after which a steady pattern emerges. The small initial

damping could be attributed to the fact that a Gaussian distribution does not correspond

to a Vlasov-Poisson equilibrium, so in the initial stage of the beam oscillation, one could
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expect some remixing of the distribution in phase space. In case of (d), the oscillation

is not very regular and this is because the mismatch is not significantly large so other

phenomena like density oscillations become more prominent. Density oscillations occur

because an rms matched beam in this case still does not correspond to a Vlasov-Poisson

equilibrium.

To examine the halo formation in these beams, the phase space distribution of

the particles is then taken toward the end of the oscillations for two cases, which are (1)

when the rms width of the distribution is a minimum and (2) when it is a maximum. It

can be seen in Fig. 4.4 and 4.5 that the extent and intensity of the halo increases with

increased mismatch, which confirms the need to obtain a reduced mismatch in order to

control halo formation.

Figure 4.6 shows the damping of the oscillation of the rms width of beams with

nonlinear focusing. The nonlinear focusing is of the same form as Eq. (4.6) with k0a0 =

Figure 4.4: Phase space distribution at minimum rms width for µ = (a) 1.5, (b) 1.35,
(c) 1.2, (d)1.02
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Figure 4.5: Phase space distribution at maximum rms width for µ = (a) 1.5, (b) 1.35,
(c) 1.2, (d)1.02

k1a0 + k2a
3
0 and k1/(k2a

2
0) = 4, with a0 being the matched rms width of the beam as

predicted by the envelope equation. The initial distributions were identical to the ones

used in the linear focusing case. The parameter µ when defined for a nonlinear focusing

case corresponds to the mismatch ratio in the linear focusing channel for the same initial

distribution.

Figures 4.7 and 4.8 show the corresponding phase space distribution of the par-

ticles for µ = 1.5 and 1.2. They were taken toward the end of the nonlinear oscillations

shown in Fig. 4.6 when the beam width is a minimum and a maximum respectively.

It may be noticed that the rms width of the beam does not change significantly while

oscillating as a consequence of the damping. Similar to the particle core model results,

these figures show that the particles spread far in velocity space while their spread in

position space is comparable to the linear focusing case.

The PIC simulation results show a similar response to nonlinear focusing as the
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Figure 4.6: Oscillation of the dimensionless rms width of the beam with nonlinear
focusing for µ = (a)1.5, (b) 1.35, (c)1.2, (d)1.02

particle-core model does, which is damping accompanied by emittance growth. However,

we see in Fig. 4.6 that the damping is more rapid in the PIC simulations. It takes place

in the first 1−2 rms oscillations while it takes about 5−6 oscillations in the particle core

model. In the particle core model, we see a gap between the halo particles and the core

for linear focusing which is not seen in the PIC simulation. This could be attributed to

the fact that the particles in the particle-core model do not contribute to the field due

to which they are influenced only by the perfectly linear oscillations of the core. With

the same initial conditions used in both the models, the extent of the halo was the same

for linear and nonlinear focusing.

4.4 Collimation with Linear Focusing

Our results show that a one time collimation is ineffective in the presence of linear

focusing. At the initial process, the beam undergoes some emittance growth and then
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Figure 4.7: Phase space distribution for nonlinear oscillations, µ = 1.5 at (a) minimum
rms width (b) maximum rms width

Figure 4.8: Phase space distribution for nonlinear oscillations, µ = 1.2 at (a) minimum
rms width (b) maximum rms width

settles into a steady state of oscillations. At this point, the halo was visually identified

and collimated in phase space. There is no established quantitative definition as yet of a

beam halo although recent efforts are being made to quantify such a halo [2]. The beam

was collimated over an ellipse that satisfied the equation X2 +Y 2/c2 +V 2
x +V 2

y /d
2 = 1.

Here c and d are expressed in units of a0 and a0

√
k0 respectively. The values of c and

d used in the simulation were different for different values of µ and they are given in

table 4.1. This was done for an initial mismatch ratio µ = (a)1.5, (b)1.35 and (c)1.2

for the same initial distributions used in Sec.4.3. For the sake of consistency, the

collimation was always done when the beam radius was a maximum.

Figure 4.9 shows that the oscillations are sustained even after the collimation.
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Figure 4.9: Oscillation of the dimensionless rms width of the beam showing collimation
for µ = (a) 1.5, (b)1.35, (c)1.2

This is expected to cause continuous production of halo particles due to the resonant

interaction of some particles with these oscillations. Thus, a one time collimation is

ineffective and needs to be done periodically. The process can lead to continued beam

loss and interference in the performance in the accelerator. Moreover, halo particles can

still be generated between two collimating stations and lost to the accelerating system.

All this demands the need to introduce a scheme that addresses the mechanism of beam

halo formation itself.

Figure 4.10 shows that the halo is indeed regenerated. The phase space distribu-

tion was taken when the rms width of the beam was at a minimum toward the end of

the oscillations shown in Fig. 4.9. In order to show the halo particles more clearly, the

particles are made to appear a little wider in these plots. Although the halo intensity

is smaller than that seen in Fig. 4.4, it is large enough to cause radio activity of the
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Figure 4.10: Phase space distribution of particles after initial collimation of beam with
linear focusing at minimum rms width for µ = (a) 1.5, (b)1.35, (c) 1.2

walls given that the tolerance to fractional loss in many machines to the number of halo

particles is one in 104 − 105. It may be noticed that Figs.4.4 and 4.5 show that some

particles go a little beyond a relatively dense peanut distribution and do not satisfy the

maximum amplitude given by Eq. 4.1. On the other hand, such particles are not seen

in Fig. 4.10. Otherwise the maximum extent of the peanut shape distribution is the

same in both the plots for the corresponding mismatch and agree well with Eq. 4.1.

Thus, it is clear that these distant particles in Fig.4.3 are produced only in the initial

stage, a result of Vlasov mixing in phase space. Moreover, the boundary of the peanut

shape distribution in Fig. 4.10(b) overlaps with that obtained in Fig. 4.2(a) using the

particle core model and having the same initial mismatch of 1.35. This confirms the

findings of Wangler et al [67] that the halo particles produced purely by a resonant

interaction have a normalized maximum amplitude that depends only upon the initial
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Table 4.1: Table specifying the collimation of beam with linear focusing

µ=1.5 c=3.5 d=1.5 particle loss = 6.1%

µ=1.35 c=3.5 d=1.5 particle loss = 4.32%

µ=1.2 c=3.0 d=1.5 particle loss = 3.98%

mismatch and not on the specific model used to simulate the beam. The results also

show that for an rms mismatched, self-consistent Gaussian beam, some halo particles

are produced at the initial stage by an additional mechanism that go beyond the given

maximum amplitude.

4.5 Collimation with Nonlinear Focusing

This section will show that the combination of nonlinear damping and collimation

eliminates the beam halos permanently. Figure 4.11 shows the oscillation of the beam

along with the collimation. It may be noticed that the damping is sustained even after

the collimation is performed which is an important phenomenon that ensures that the

halo is not reproduced. The halo was once again visually identified and collimated in

phase space over an ellipse that satisfied the equation,

X2 + Y 2

c2
+
V 2

x + V 2
y

d2
= 1. (4.11)

The values of c and d are given in table 4.2. These were chosen by careful examination

of enlarged figures of the distribution, so that the high density area constituting the

core was not scraped off. The table also shows that the number of particles lost due

to collimation reduces with reduced mismatch. Thus, having a small initial mismatch

is still an advantage but this is not possible to achieve in most practical applications.

Figure 4.12 shows the distribution of particles at the end of the oscillations shown in

Fig. 4.11 when the rms width was a maximum. It is clear that the particles that stray

far away from the core are completely eliminated. These figures may be compared

with the corresponding ones in the previous section for the same mismatch with linear



41

Figure 4.11: Oscillation of the dimensionless rms width of the beam with nonlinear
focusing showing collimation for µ =(a)1.5,(b)1.35, (c) 1.2

focusing. Although the distributions were taken when the rms width was a maximum,

this would not make a significant difference from another phase of the rms oscillation

since their amplitudes are already well damped. The extent of the beam remains the

same after this process regardless of the initial mismatch, while, the number of particles

lost in the collimation increases with increased mismatch. The large spread in velocity

space, which is a result of the nonlinear damping implies that more particles need to

be collimated away if a small velocity distribution is desired. Despite this drawback,

the absence of a halo would enable one to have a broader beam that would more than

compensate for the additional loss in particles. For example, assume that particles

cannot be allowed beyond a distance of X = 3. The particle distributions shown in Fig.

4.12 clearly satisfy the restrictions, while the ones shown in Fig 4.4 and Fig 4.5 do not

because of the extended halo produced due to linear focusing. In addition to this, the

core itself stretches to X = 3 for linear focusing as seen in Fig. 4.5 while in the nonlinear
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Table 4.2: Table specifying the collimation of beam with nonlinear focusing

µ=1.5 c=2.75 d=2.5 particle loss = 15.15 %

µ=1.3 c=2.75 d=2.5 particle loss = 10.1 %

µ=1.2 c=2.5 d=2.5 particle loss = 6.4 %

Figure 4.12: Phase space distribution with nonlinear oscillations and collimation at
maximum rms width for µ = (a)1.5, (b)1.35, (c)1.2

case, even the at maximum rms width, the beam is restricted to well within a distance

of X = 3. All this implies that the initial beam will have to be considerably narrower

in the case of linear focusing in order to restrict the halo to within a distance of X = 3

and thus allowing less particles in the channel. Another point to be noted is that the

nonlinear focusing requires only a localized collimation system, while collimation with

linear focusing will require repeated collimation resulting in further loss of particles.
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4.6 Summary

In this paper, we have proposed a new method that combines nonlinear damping

and beam collimation to control beam halos. Our results showed that particles oscil-

lating with large amplitudes compared with the width of the core can be completely

eliminated with this mechanism making the need for repeated collimation unnecessary.

Particle-core and PIC simulations showed that nonlinear focusing leads to damp-

ing, thus reducing the beam mismatch. However, the damping was accompanied by

the particle distribution spreading in the velocity space. This is a result of transfer of

energy stored in the mismatch to the velocity distribution of the particles. The high

velocity particles are prevented from straying far away from the beam due to the strong

focusing force exerted by the nonlinear component at large radial distances. The beam

was collimated soon after this nonlinear damping was achieved, and the damped oscil-

lations prevented further halo formation. Results showed that the particles with large

amplitude oscillations were completely eliminated. The apparent drawbacks of this pro-

cess is the spread of particles in velocity space because of which the collimation process

results in loss of particles. However, we argue that the knowledge that beam halos are

controlled would enable one to extend the beam closer to the walls, thus increasing the

beam overall current that would more than compensate for the loss in collimation.

It must be mentioned that the model used here was idealized in many respects

because it had constant focusing and was purely radial. While this system is nearly

integrable in the absence of space charge, this would not be true in real systems with

nonlinear focusing components. This is because the Courant-Syder invariants [15] are

broken when nonlinear focusing components like sextupoles or octupoles are used. This

will cause the orbits to be chaotic leading to poor confinement even in the absence

of space charges. However, it has been shown that [57] it is possible to reduce the

nonlinear system to an equivalent, continuous and radially focusing one upon averaging
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over the lattice period given that the nonlinear components are arranged in a specific

manner along with an alternate gradient quadrupole focusing system. It has also been

shown that this symmetry can be retained in the presence of space charge forces [55].

We propose the use of such a lattice for further study involving a two dimensional

simulation.

Since the method proposed in this paper is not specific to a particular application,

different applications will demand conditions that may be different to the ones used in

this paper. For example, collimation of the halo is being studied for the SNS accumulator

ring [10]. The collimators use scrapers and absorbers to clean the transverse halo. The

accumulator ring already has a straight section dedicated to the collimation system.

Applying the proposed method to such a system will require more extensive study.

This is because the tune depression in this ring is close to unity, in contrast to the

ones chosen in this paper. In addition to this, including nonlinear components in a

ring will not be straight forward due to the effect of resonances and beam instabilities.

However, one of the advantages of the proposed method is the fact that the nonlinear

damping is only a transient process. Once the collimation is achieved, the system may

be adiabatically matched to a linear focusing system. The possibility of such a matching

has been analyzed by Batygin [4] and could be considered in such a study.

Less effort has been spent in devising methods to eliminate beam halos when

compared to the extensive study of the properties of halo production itself. This paper

could be an important step toward this direction. The results are encouraging enough

to perform simulations in higher dimensions using nonlinear focusing components such

as sextupoles or octupoles along with realistic designs for collimators.



Chapter 5

Lie Transform Perturbation Methods for Hamiltonian Systems

In this chapter, we outline the Hamiltonian perturbation method described in

detail in Ref. [9] and more briefly in Ref. [42]. This method is based on previous

work [34, 28, 19, 20, 21] that introduced Lie transform theory as a convenient method

to perform Hamilton perturbation analysis. The Lie transformation is defined with

respect to a phase space function w such that it satisfies the following Poisson bracket

relationship,

dZ

dε
= {Z, w(Z(z, t, ε), t, ε)}, (5.1)

where Z = (P,Q) is a phase space vector representing the generalized positions and

momenta of the system, w is the Lie generating function and ε is a continuously varying

parameter such that Z(ε = 0) = z, the original phase space vector. The above relation-

ship resembles Hamilton’s equation with respect to a “Hamiltonian”, w and “time”, ε.

This guarantees that the transformation is canonical for all values of ε.

The Lie operator L is defined such that it performs a Poisson bracket operation

with respect to w. Symbolically,

L = {w, }. (5.2)

A transformation operator T is defined such that its role is to replace the variables of a

function by the new canonical variables. For the identity function this is simply,

Tz = Z(z, ε, t). (5.3)
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The operator T is analogous to the “evolution” operator with respect to ε. Using

Eq. (5.1) it can be verified that T satisfies

dT

dε
= −TL. (5.4)

For a similar relationship involving the inverse transformation operator T−1, we differ-

entiate the equation TT−1 = 1 and use the above equation to obtain

dT−1

dε
= T−1L. (5.5)

The transformed Hamiltonian K can be expressed in terms of the original Hamiltonian

H as

K(ε) = T−1(ε)(H) + T−1(ε)

∫ ε

0
dε′T (ε′)

∂w

∂t
(ε′). (5.6)

This expression was obtained by Dewar [20].

To obtain explicit equations for each perturbation term, every physical quantity

and operator is expressed as a power series in ε known as the Deprit power series [19].

The original and transformed Hamiltonians are given by

H(z, ε, t) =
∞
∑

n=0

εnHn(z, t), (5.7)

K(z, ε, t) =
∞
∑

n=0

εnKn(z, t) (5.8)

The Lie generating function is represented a little differently because it appears as a

derivative in Eq. (5.6). This is,

w(z, t, ε) =
∞
∑

n=0

εnwn+1(z, t) (5.9)

The operators T and L are represented in a similar way as,

T (t, ε) =
∞
∑

n=0

εnTn(t), (5.10)

L(w) =
∞
∑

n=0

εnLn (5.11)
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where Ln = {wn, }, the Poisson bracket with respect to wn. The parameter ε is used

to keep track of the terms representing different orders in the expansion and is usually

set to one in the end.

Using Eq. (5.4), and the Deprit series expression for the operators L and T , gives

us the following recursion relationship

Tn = − 1

n

n−1
∑

m=0

TmLn−m. (5.12)

Up to third order, this may be expressed as

T0 = I, (5.13)

T1 = −L1, (5.14)

T2 = −1

2
L2 +

1

2
L2

1, (5.15)

T3 = −1

3
L3 +

1

6
L1L2 +

1

3
L2L1 −

1

6
L3

1. (5.16)

Similarly, using Eq. (5.5), and the Deprit series expression for the operators L

and T−1, the inverse transformation operator may be expressed recursively as

T−1
n =

1

n

n−1
∑

m=0

Ln−mT
−1
m (5.17)

and up to third order it may be expressed as

T−1
0 = I, (5.18)

T−1
1 = L1, (5.19)

T−1
2 =

1

2
L2 +

1

2
L2

1, (5.20)

T−1
3 =

1

3
L3 +

1

6
L1L2 +

1

3
L2L1 +

1

6
L3

1. (5.21)

It may be noted that when L, T and T−1 act upon any phase space function, they

are expressed in the form of Poisson brackets, which are independent of the canonical

variables used. This makes the whole formulation canonically invariant.
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To obtain the nth order perturbation equation, we premultiply Eq. (5.6) by T

and diffrentiate with respect to ε to obtain

∂T

∂ε
K + T

∂K

∂ε
=
∂H

∂ε
+ T

∂w

∂t
(5.22)

Using Eq. (5.4) to eliminate ∂T/∂ε (with dT/dε → ∂T/∂ε, since here T also depends

explicitly on t) and premultiplying by T−1,

∂w

∂t
=
∂K

∂ε
− LK − T−1∂H

∂ε
(5.23)

Inserting the series expansions and equating like powers of ε, we obtain in nth order,

∂wn

∂t
= nKn −

n−1
∑

m=0

Ln−mKm −
n
∑

m=1

mT−1
n−mHm. (5.24)

By writing out the first term in the first sum,

LnK0 = LnH0 = {wn,H0}, (5.25)

and the last term in the last sum, we get for n > 0 the final result

∂w1

∂t
+ {w1,H0} = n(Kn −Hn) −

n−1
∑

m=1

(Ln−mKm +mT−1
n−mHm) (5.26)

To third order, this equation yields,

K0 = H0, (5.27)

∂w1

∂t
+ {w1,H0} = K1 −H1, (5.28)

∂w2

∂t
+ {w2,H0} = 2(K2 −H2) − L1(K1 +H1), (5.29)

∂w3

∂t
+ {w3,H0} = 3(K3 −H3) − L1(K2 + 2H2)

−L2(K1 +
1

2
H1) −

1

2
L2

1H1. (5.30)

The expression ∂wn

∂t + {wn,H0} is the variation of wn along the unperturbed trajectory

described by H0. In the following chapter we use this perturbation scheme to perform
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time averaging. To do this, we set H0 = 0 which reduces the variation of wn along a

trajectory to a partial derivative with respect to t. Thus, instead of integrating along

the unperturbed trajectory, we simply perform an integration over time to determine

wn. At each order, Kn is chosen such that it cancels the terms that average to a nonzero

value over fast oscillations. As a result, the corresponding value of wn will have a zero

average. This is necessary to prevent wn from being secular (unbounded) in time [9].

For a systematic derivation of all these relationships one may refer to Ref. [9] where

they are given up to fourth order in ε.



Chapter 6

Finding a Nonlinear Lattice with Improved Integrability using Lie

Transform Perturbation Theory

6.1 Introduction

A condition for improved dynamic aperture for nonlinear, alternating gradient

transport systems is derived using Lie transform perturbation theory. The Lie trans-

form perturbation method is used here to perform averaging over fast oscillations by

canonically transforming to slowly oscillating variables. This is first demonstrated for a

linear sinusoidal focusing system. This method is then employed to average the dynam-

ics over a lattice period for a nonlinear focusing system, provided by the use of higher

order poles such as sextupoles and octupoles along with alternate gradient quadrupoles.

Unlike the traditional approach, the higher order focusing is not treated as a perturba-

tion. The Lie transform method is particularly advantageous for such a system where the

form of the Hamiltonian is complex. This is because the method exploits the property of

canonical invariance of Poisson brackets so that the change of variables is accomplished

by just replacing the old ones with the new. The analysis shows the existence of a

condition in which the system is azimuthally symmetric in the transformed, slowly os-

cillating frame. Such a symmetry in the time averaged frame renders the system nearly

integrable in the laboratory frame. This condition leads to reduced chaos and improved

confinement when compared to a system that is not close to integrability. Numerical

calculations of single particle trajectories and phase space projections of the dynamic
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aperture performed for a lattice with quadrupoles and sextupoles confirm that this is

indeed the case.

Linear focusing systems such as the alternate gradient quadrupole systems are rel-

atively easy to analyze because of the existence of the Courant-Snyder invariants [15],

which reduce the system to an uncoupled set of systems of one degree of freedom. In the

presence of higher order components such as sextupoles or octupoles, these invariants

are destroyed. Such a system is nonintegrable and has trajectories that are chaotic and

poorly confined. Despite this shortcoming in the use of nonlinear components, their use

has been proposed in a variety of applications. They include, for example, achieving

uniform particle distributions [61], control of beam emittance growth and beam halo for-

mation [5, 6], providing strong sextupole focusing in planar undulators in free electron

lasers [60], folding of beam phase space distributions as an alternate to beam collima-

tion [49], introducing Landau damping by providing octupole or sextupole induced tune

spread [43, 59], photoelectron trapping in quadrupole and sextupole magnetic fields

[64], etc. In addition to this sextupoles, are widely used in storage rings for cromaticity

corrections. Nonlinear forces also arise as a result of beam-beam interactions at an in-

teraction point of a storage ring collider which limit the dynamic aperture of the system

[27]. Thus, a general analysis of the nonlinear focusing problem is important. It is well

known that a near integrable Hamiltonian system will typically possess regular trajec-

tories intermingled with regions of chaos. The aim of this work is to find a condition

that optimizes the integrability of the system thereby minimizing the chaotic region in

the presence of certain nonlinear focusing components.

To perform the analysis we use the Lie transform perturbation method, which

exploits the invariance of the Poisson brackets under canonical transformations. In this

analysis all dynamical variables appear within Poisson brackets, so the whole formu-

lation is canonically invariant. If this were not true, one would need to express the

Hamiltonian in terms of the new variables up to the desired order before performing
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the perturbation analysis. This could make the problem more tedious when the form

of the Hamiltonian is not simple, and when it is required to carry the expansion up to

third order, both of which are true in this case. References [11, 17, 62] contain other

procedures for averaging applied to beam physics. We follow the Lie transform method

described in Ref. [9] and show that rearranging the different order terms of the Hamil-

tonian in this method enables one to perform a time averaging rather than average the

motion over the trajectory described by the integrable component of the Hamiltonian.

To start with, Chapter 5. provided a brief description of the Lie transform method

used in this chapter. Section 6.2 presents an illustration of the method applied to a

linear sinusoidal focusing system, an example also used by Channell [11]. In Sec. 6.3, we

introduce a nonlinear focusing system which has a higher order multipoles in addition to

quadrupoles. The resulting Hamiltonian describing the motion transverse to the beam

propagation is nonautonomous (independent of time) and has two degrees of freedom.

By averaging the motion over the lattice period up to third order, we derive a condition

for the new time-independent Hamiltonian to also be independent of the transformed

azimuthal variable. Under such a condition, the transformed angular momentum will

be an adiabatic invariant. It will be shown that this condition is satisfied when the

functions describing the forces due to the respective multipole are orthogonal to each

other in a certain manner.

In order to show that the condition of azimuthal invariance is a desirable one, var-

ious numerical calculations are performed. Section 6.4 includes results which show that

as one deviates from the desired condition, the particle oscillations acquire additional

frequency components and also have larger oscillation amplitudes. Section 6.5 illus-

trates the projection of the dynamic aperture on to different planes in phase space. The

dynamic aperture is the region that allows what may be defined as confined particles.

Estimating the dynamic aperture for different cases shows that maximum confinement

can be achieved when the associated time averaged Hamiltonian is integrable in the
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transformed coordinates and hence the system is nearly integrable in the laboratory

frame. The dynamic aperture is shown to gradually diminish in size as one deviates

from this condition.

6.2 A linear Sinusoidal Focusing System

As an illustration and a test for the validity of the method, we perform the analysis

for a linear periodic focusing system. The same example was used in Ref. [11] for the

method developed in that paper. The single particle Hamiltonian associated with such

a system is given by

H =
p2

2
+
kq2

2
sin(ωt). (6.1)

This Hamiltonian also describes the motion of a particle in systems such as the Paul trap

and the ponderomotive potential. We apply Eqs. (5.27 - 5.30) to perform the averaging.

As explained in the previous section, we set H0 = 0 and H1 = H. From Eq (5.27) we

get,

K0 = H0 = 0, (6.2)

Applying the first order relationship, Eq (5.28), we get

∂w1

∂t
= K1 −

p2

2
− kq2

2
sin(ωt). (6.3)

The third term on the right averages to zero with respect to time. In order that the net

result average to zero, we require

K1 =
p2

2
. (6.4)

Since w1 is relevant only up to an additive constant, it is sufficient to evaluate the

indefinite integral to determine w1, hence

w1 =
kq2

2ω
cos(ωt). (6.5)

The second order equation Eq.(5.29) gives

∂w2

∂t
= 2K2 −

2kpq

ω
cos(ωt). (6.6)
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Since the second term on the right side averages to zero, we choose

K2 = 0, (6.7)

and so,

w2 = −2kqp

ω2
sin(ωt). (6.8)

Applying the third order relationship, Eq. (5.30) then gives

∂w3

∂t
= 3K3 +

3p2k

ω2
sin(ωt)

−k
2q2

ω2
sin2(ωt) − k2q2

2ω2
cos2(ωt). (6.9)

Note that the third and fourth terms on the right side do not average to zero. In order

that they cancel, we set

K3 =
1

4

k2q2

ω2
(6.10)

and as a result,

w3 = −3p2k

ω3
cos(ωt). (6.11)

Collecting the nonzero terms, the transformed Hamiltonian is now given as a function

of the new variables by

K =
P 2

2
+

Ω2Q2

2
(6.12)

where Ω = k/
√

2ω. This is the Hamiltonian for a harmonic oscillator with solution

Q(t) = Q(0) cos(Ωt) +
P (0)

Ω
sin(Ωt), (6.13)

P (t) = P (0) cos(Ωt) − ΩQ(0) sin(Ωt). (6.14)

To transform back to the original coordinate system, we use the operator T−1 for

which we need to know L up to the desired order. The operators Ln can be expressed

in terms of the values of wn as

L1 = {kQ
2

2ω
cos(ωt), }, (6.15)
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L2 = {−2kQP

ω2
sin(ωt), }, (6.16)

L3 = {−3kP 2

ω3
cos(ωt), }. (6.17)
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Figure 6.1: q vs t with k = 1, ω = (a) 4, (b) 3, (c) 2.5 and (d) 2. The solid line
represents the numerical solution

Using these to perform the inverse transformation as described by Eqs. (5.18-

5.21), we get, up to third order,

q = Q+
kQ

ω2
sin(ωt) +

2kP

ω3
cos(ωt), (6.18)

p = P +
kQ

ω
cos(ωt) − kP

ω2
sin(ωt)

+
1

3

k2

ω3
Q sin(ωt) cos(ωt). (6.19)

The above solution is compared with calculations from a fourth order symplectic

integrator [24, 8] and is shown in Figs. (6.1) and (6.2). The parameters used were the

same as those used in Ref. [11]. The accuracy of the approximate solution compares well
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Figure 6.2: p vs t with k = 1, ω = (a) 4, (b) 3, (c) 2.5, (d) 2. The solid line represents
the numerical solution

with that obtained by Channell [11] using a different method. That is, the solution given

by Eqs. (6.18) and (6.19) overlaps well with the numerical solution for k/ω2 = 1/16 and

the accuracy gradually decreases with decreasing ω.

6.3 Single Particle Averaging for a Nonlinear Lattice

6.3.1 Alternate Gradient Sextupoles and Quadrupoles

The external magnetic fields in the beam channel are expected to satisfy Maxwell’s

equations in vacuum which are given by, ∇× ~B = 0, ∇ · ~B = 0. The two dimensional

multipole expansion expression for such a magnetic field is

By + iBx = B0

∞
∑

n=0

(bn + ian)(x+ iy)n. (6.20)

Ideally, bn and an, must be constants for the above to be valid. However, when analyzing

alternate gradient focusing systems, they are regarded as step functions of the axial
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distance. This is still valid if fringe effects are disregarded.

The orientation of the reference frame can be chosen such that a1 = 0. Assuming

the presence of only quadrupole (n = 1) terms and sextupole (n = 2) terms, b1, a2 and

b2 will generally be nonzero. The velocity of the particle in the z direction is assumed

to be constant. The resulting Hamiltonian can be obtained from the Lorentz force. In

cylindrical coordinates it is,

H =
1

2
(p2

r +
l2

r2
) +

1

2
κ2(s)r

2 cos(2θ)

1

3
κ3(s)r

3 cos(3θ + α). (6.21)

The variable s is the distance along the axis, which is equivalent to time for constant

axial velocity. The momentum in the radial direction is pr and l is the angular mo-

mentum. The values of κ2(s) and κ3(s) depend upon the strength of the quadrupole

and sextupole magnets respectively and also the velocity of the particle in the axial

direction. The angle α depends upon the relative values of a2 and b2 which is deter-

mined by the orientation of the sextupoles with respect to the quadrupoles. We use

normalized units in which the charge and mass of the particle are unity. It is assumed

that the Hamiltonian is periodic in s with periodicity S, ie, κ2(s + S) = κ2(s) and

κ3(s + S) = κ3(s). It is further assumed that the average of κ2(s) and κ3(s) over a

period S is zero. That is,

〈κ2〉 =
1

S

∫ s+S

s
κ2(s)ds = 0 (6.22)

and the same for κ3. The angle brackets 〈· · ·〉 denote an average over one period in the

rest of this section. With these conditions, κ2 and κ3 can in general be represented in

the form of Fourier series as

κ2(s) =
∞
∑

n=1

fn sin(
2nπs

S
) +

∞
∑

n=1

gn cos(
2nπs

S
), (6.23)

and

κ3(s) =
∞
∑

n=1

kn sin(
2nπs

S
) +

∞
∑

n=1

ln cos(
2nπs

S
). (6.24)
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However, the analysis in this section will show that it would be desirable for the above

series to satisfy certain restrictions.

The averaging procedure to follow is valid when the averaged orbits are slowly

varying over one lattice period S. The procedure is identical to the one used in the

previous section except that the algebra is more tedious since the Hamiltonian is more

complex. Once again, we set H0 = 0 and H1 = H. From Eq. (5.28) we get K0 = H0 = 0.

Equation (5.29) yields

∂w1

∂s
= K1 −

1

2
(p2

r +
l2

r2
) − 1

2
κ2(s)r

2 cos(2θ)

−1

3
κ3(s)r

3 cos(3θ + α). (6.25)

From Eqs. (6.23) and (6.24) it follows that 〈κI2〉 = 〈κI3〉 = 0. The Roman numerical

superscript indicates an integral over s with a constant of integration chosen so that the

integral has a zero average over one lattice period S. Similarly, a superscript ‘II’ will

indicate a double integration over s with the same conditions and so on.

Choosing K1 to cancel the terms with a nonzero average value then gives

K1 =
1

2
(p2

r +
l2

r2
). (6.26)

Integrating Eq.(6.25) yields

w1 = −[
1

2
κI2(s)r

2 cos(2θ) +
1

3
κI3(s)r

3 cos(3θ + α)]. (6.27)

Proceeding to evaluate the second order term w2 from Eq. (5.29) and noting that

L1 = {w1, } , we get

∂w2

∂s
= 2K2 + 2pr[κ

I
2(s)r cos(2θ) + κI3(s)r

2 cos(3θ + α)]

−2l[κI2(s) sin(2θ) + κI3(s)r sin(3θ + α)]. (6.28)

Given that 〈κI2〉 = 〈κI3〉 = 0, we must choose K2 = 0 since there are no nonzero average

terms. On integrating the above equation, we find

w2 = 2pr[κ
II
2 r cos(2θ) + κII3 (s)r2 cos(3θ + α)]
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−2l[κII2 (s) sin(2θ) + κII3 (s)r sin(3θ + α)]. (6.29)

Knowing w2, we can proceed to the next order to calculate w3 and K3. Applying

Eq. (5.30) we get

∂w3

∂s
= 3K3 − 3p2

r[κ
II
2 (s) cos(2θ)

+2κII3 (s)r cos(3θ + α)] + 3lpr[κ
II
3 (s) sin(3θ + α)]

+3
prl

r
[2κII2 (s) sin(2θ) + 3κII3 (s)r sin(3θ + α)]

+3
l2

r2
[2κII2 (s) cos(2θ) + 3κII3 (s)r cos(3θ + α)]

+[κII2 (s)r cos(2θ) + κII3 r
2 cos(3θ + α)][κ2(s)r cos(2θ) + κ3r

2 cos(3θ + α)]

+[κII2 (s) sin(2θ) + κII3 (s)r sin(3θ + α)][κ2(s)r
2 sin(2θ) + κ3(s)r

3 sin(3θ + α)]

−1

2
[κI2(s)r cos(2θ) + κI3(s)r

2 cos(3θ + α)]2

−1

2
[κI2(s)r sin(2θ) + κI3(s)r

2 sin(3θ + α)]2. (6.30)

From Eqs. (6.23) and (6.24) one can easily identify the terms that average to zero over

fast oscillations and those that do not. Once again K3 is chosen such that it cancels

the terms that average to a nonzero value. On simplifying certain averaged terms from

integration by parts, the third order transformed Hamiltonian may be expressed as

K3 =
1

2
〈(κI2)2〉r2 −

1

3
〈κI2κI3〉r3 cos(θ + α) +

1

2
〈(κI3)2〉r4. (6.31)

Since the Hamiltonian K is defined in the transformed coordinate system, the variables

must be replaced by the corresponding transformed variables in the above equation as

well as in Eq. (6.26).

In order for K3 to be independent of Θ, the transformed azimuthal variable,

〈κI2κI3〉 must vanish. It is clear from Eqs. (6.23) and (6.24) that one way this can be

accomplished is if κ2(s) can be expressed as a pure cosine series and κ3(s) as a pure

sine series. Figure (6.3) represents a practical design for κ2(s) and κ3(s) which satisfies

this condition. This is a specific case where the two lattices have equal periodicity.
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In this case, κ2(s) and κ3(s) are periodic step functions alternating in sign and with

opposite parity, which is equivalent to a phase lag of a quarter lattice period with

respect to each other. It may be noted that once the Θ dependence is eliminated, the

nonlinear force is purely focusing and leads to a positive tune shift. This design is

Figure 6.3: A step function lattice that will lead to a near integrable condition. The
shorter steps represent the sextupole function κ3(s) while the higher ones the quadrupole
function κ2(s).

only the simplest method of realizing optimum integrability and need not necessarily

be the most practical one for real machines. However, the formulation of this condition

is general enough to accommodate other designs that are possibly easier to implement.

The general procedure to apply this is to first express κ2(s) and κ3(s) of an existing

design in the form of Eqs. (6.23) and (6.24). Then the coefficient 〈κI2κI3〉 will need to be

evaluated. This would then tell us how to reposition the magnets in order to minimize

this. Numerical results in section VI. will show that considerable improvement in the

dynamic aperture can be accomplished even if 〈κI2κI3〉 does not completely vanish but is

small enough.

The purpose of choosing K3 to be independent of Θ is to look for a system

with improved integrability and thereby improve confinement by reducing chaos. Ac-

cording to the Kolmogorov-Arnold-Moser (KAM) theorem, a system perturbed from

integrability will consist of regions of regular motion and regions of chaos with the lat-
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ter approaching zero exponentially as the system approaches integrability. This system

would be perfectly integrable if the Θ dependence could be completely eliminated. How-

ever, the fourth order perturbation term will retain the Θ dependence. Despite this,

the numerical results in the following sections will show that restricting the integra-

bility up to third order makes a significant improvement in confinement in accordance

with the KAM theorem. It is likely that a few mutipoles or other components such

as undulators in synchrotron radiation sources cannot be incorporated in the averag-

ing procedure. Another such example would be beam-beam interactions at interaction

point of a storage ring collider where there might be many multipoles located at the

same place. Superposing these additional effects randomly to the existing lattice would

invariably make the system less integrable. In such a situation, it becomes even more

important to obtain a system with optimum integrability since the KAM theorem would

still guarantee that there exists a region in phase space with particles having regular

trajectories. One could also consider using the method in Ref. [63] to implement the

additional nonlinear components to a lattice that has already been designed to be nearly

integrable using the method suggested here.

6.3.2 Alternate Gradient Quadrupoles, Sextupoles and Octupoles

Although the analysis in the previous subsection used only sextupoles, this can

be extended to include higher multipoles. For example, if octupoles are used in addition

to the sextupoles, the Hamiltonian would be

H =
1

2
(p2

r +
l2

r2
) +

1

2
κ2(s)r

2 cos(2θ)

1

3
κ3(s)r

3 cos(3θ + α) +
1

4
κ4(s)r

4 cos(4θ + γ) (6.32)

where γ represents the orientation of the octupoles. The third order transformed Hamil-

tonian will then be

K3 =
1

2
〈(κI2)2〉r2 +

1

2
〈(κI3)2〉r4 +

1

2
〈(κI4)2〉r6
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−1

3
〈κI2κI3〉r3 cos(θ + α) − 1

3
〈κI2κI4〉r4 cos(2θ + γ)

−1

3
〈κI3κI4〉r5 cos(θ + α+ γ). (6.33)

The condition 〈κI2κI3〉 = 0, 〈κI2κI4〉 = 0 and 〈κI3κI4〉 = 0 would optimize the integrability

of such a system. A practical but idealized design for this to be satisfied is given in

Fig. (6.4).

Figure 6.4: A step function lattice leading to a near integrable condition. The shortest
steps represent the octupole function κ4(s) while the higher ones the sextupole functions
function κ3(s), and the highest ones the quadrupole functions κ2(s).

6.4 Single Particle Trajectories with Nonzero Angular Momentum

To show that particles are better confined when the 90o phase difference condi-

tion is satisfied, numerical calculations were performed using the original Hamiltonian.

The results are discussed in this and the next sections. Calculations were performed

using a fourth order symplectic integrator [24, 8] in cartesian coordinates. Cartesian

coordinates are more convenient for numerical calculations as they enable one to avoid

the singularity at the origin arising in the cylindrical coordinate system. The focusing

channel consisted of alternating gradient quadrupoles and sextupoles with various phase

differences between κ2(s) and κ3(s). The sextupoles were oriented such that α = −45o.
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In cartesian coordinates, the force due to quadrupoles is given by

~F = κ2(s)(xx̂− yŷ) (6.34)

and that due to the sextupoles (with α = −45o) is given by

~F = κ3(s)[(x
2 − y2 + 2xy)x̂+ (x2 − y2 − 2xy)ŷ)]. (6.35)

We define a radial distance R = 1
3 |κ2|/|κ3| where |−−| corresponds to the positive

nonzero values of the respective step function. The ratio |κ2|/|κ3| represents a measure

of the position where the forces due to the linear and nonlinear components become

comparable. The tune shift due to the nonlinear force was close to 15% for a particle

initially at r = R and θ = 45o. The fill factor η is defined as the ratio between the

length of the magnets and the length of one lattice period. This was set to 0.2 for both,

the quadrupoles and sextupoles. This is typical for most applications. For example,

the storage ring of the advanced photon source (APS) has a fill factor of about 0.21 for

quadrupoles. When expressed in units of S, η is the smallest time scale to be resolved

and so the time step in the computation needs to be much smaller than η. In all

the computations, this time step was set to 0.01η. The parameter κ2(s) has units of

frequency squared so we can define another dimensionless quantity as |κ2|S2 to which

the value of 8.0 was assigned for all calculations. This corresponds to about 7 lattice

periods per betatron radial oscillation about the origin. The separation between the

quadrupoles and sextupoles is represented by a term,

ψ =
2π∆s

S
(6.36)

where ∆s is the spatial distance between the two of them. The averaged Hamiltonian K

is independent of Θ when ψ = 90o, ie, when the sextupoles are placed halfway between

two quadrupoles of opposite sign. The values of R, η, |κ2|S2 and ψ completely specify

the focusing system.
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When a system is azimuthally symmetric, angular momentum is conserved. In

this system, when ψ = 90o, the angular momentum is nearly conserved because the

averaged angular momentum is azimuthally symmetric. As one deviates from ψ = 90o,

the dependence on θ becomes stronger and the variation of angular momentum becomes

more significant. This would lead to increased chaotic motion. In order to verify this,

as an example, we examined the trajectory of a particle at r = 0.15R. The particle had

an initial velocity of 0.05R/S in a direction perpendicular to its initial displacement.
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Figure 6.5: Radial oscillation of particles for (a) ψ = 90o, (b) ψ = 60o (c) ψ = 30o, (d)
ψ = 0o

The results of these calculations with respect to different values of ψ are shown in

Fig (6.5). The rapid variation in amplitude represents the lattice oscillations. The values

of ψ used were 90o, 60o, 30o and 0o respectively. It is clear that there is a transition

to chaotic motion as ψ deviates from 90o. For ψ = 90o, the maximum amplitude

of oscillation is relatively small. When ψ changes to 60o, the maximum amplitude
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increases. At ψ = 60o, we see that additional frequency components are added to the

oscillation. When ψ = 0, the sextupoles and quadrupoles overlap. In this situation the

motion is chaotic. There is no observable repetition in the motion of the particle and

it travels well beyond the maximum radial distance attained in the ψ = 90o case. This

transition would have been more rapid if the initial position of the particle was further

away from the center. It is sufficient to examine cases where the phase lag between the

quadrupoles and sextupoles, ψ, varies from 0o to 90o. Phase differences outside this

range can be mapped back to a corresponding point between 0o - 90o by making an

appropriate linear transformation in θ.

The requirement of reduced chaos becomes important when sextupoles or other

higher multipoles are present in certain segments of a storage ring where this segment

is periodically encountered by the particles. With reduced integrability, the motion

becomes sensitive to the initial conditions of the particle at the entrance of the segment.

This would eventually lead to increase in oscillation amplitude in the rest of the channel

and consequently limit the dynamic aperture of the storage ring.

6.5 Estimation of Dynamic Aperture for Different Cases

The dynamic aperture is defined as the volume in phase space in which all parti-

cles remain confined throughout their trajectories in the accelerator. The calculations

in this section estimate the projection of the dynamic aperture onto various phase space

planes for different values of ψ. In order to perform these calculations, we used 5000

particles that were initially distributed uniformly over the respective plane in phase

space, and these were then evolved for 500 lattice periods. It was assumed that parti-

cles that travel beyond r = R at any time during this period are not confined. After

identifying the particles that remain confined and those that do not, the initial distri-

bution was separated and the positions of these two sets of particles were plotted. In

Figs. (6.6,6.7,6.8) the left side represents the initial phase space positions of confined
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particles and the ones on the right represent the unconfined particles from the same
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Figure 6.6: Initial distribution of confined and unconfined particles lying on the x-y
plane for ψ = (a) 0o, (b) 30o (c) 60o, (d) 90o

initial distribution. It is important to plot the confined and unconfined particles sepa-

rately in order to ensure that there is no overlap between the two regions, which is true

in these simulations. This is expected because all the phase space variables other than

those shown in the respective plot were set to zero. Given that the dynamic aperture

allows only confined particles and not a mixture of the two, the left side plots represent

the projection of the dynamic aperture onto the respective plane.

Figure (6.6) shows particles lying in the x-y plane that were all initially at rest

and distributed uniformly within a circle of radius r = R. It may be noticed that when

ψ is 0o, a very small number of these particles are confined. This is the case when the

quadrupoles and sextupoles completely overlap. The confinement increases very rapidly

as one deviates from ψ = 0o. The area containing the confined particles then gradually

increases, reaching a maximum when ψ = 90o as predicted by the analytic result of the

previous section. Another interesting feature revealed by these plots is that the area of

confinement acquires sharper corners with increasing ψ.

Figure (6.7) shows confined and unconfined particles from the initial distribution

spread out in momentum space. These particles are all located initially at x = y = 0

and distributed uniformly within a circle of radius P = 0.44R/S. Once again, a rapid
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Figure 6.7: Initial distribution of confined and unconfined particles lying on the px − py

plane for ψ = (a) 0o, (b) 30o (c) 60o, (d) 90o
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Figure 6.8: Initial distribution of confined and unconfined particles lying on the x− px

plane for ψ = (a) 0o, (b) 30o (c) 60o, (d) 90o

improvement in confinement is seen as one deviates from ψ = 0o and there is then a

gradual improvement as ψ approaches 90o. Unlike the previous case, the boundary of

the region of confinement is smooth for all values of ψ. We also see that the dynamic

aperture attains a more circular shape for ψ = 90o which could be attributed to weaker

dependence of the dynamics on θ.

Figure (6.8) shows particles distributed over an ellipse such that

x2

R2
+

p2
x

(2P )2
< 1 (6.37)

while all other phase space values are zero. Qualitatively, the same behavior is noticeable

as in the previous cases. The figures also show that the shape of the dynamic aperture

exhibits less symmetry about the origin along the x-axis as ψ decreases from 90o. This
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is also a reflection of increased symmetry in the dynamics along θ.

In contrast to the dramatic improvement in the dynamic aperture seen when φ

was close to zero, there was only a small improvement when ψ changed from 60o to

90o, This phenomena is important in applications where it is not possible to achieve

the idealized condition due to other practical limitations often demanding that such

theoretically derived conditions be sufficiently robust to be useful. Improvement in the

region of confinement, which is directly related to increased size of the dynamic aperture

is an important aspect in improving the performance of particle accelerators. It has been

shown how the presence of higher order poles can limit the size of the dynamic aperture

in circular accelerators [26].

6.6 Summary

In this chapter, a condition for improved dynamic aperture is derived for non-

linear lattices in particle accelerators. To start with, the Lie transform perturbation

method is presented for averaging over fast time scales. The validity of the method is

first verified numerically for a linear periodic focusing system. This averaging proce-

dure is then applied to nonlinear focusing systems with quadrupoles and sextupoles.

The Hamiltonian of this system contains terms with mixed variables, a situation in

which the Lie transform method greatly simplifies the analysis. This analysis yields

a condition for the Hamiltonian to have increased symmetry thereby reducing chaos

and increasing the dynamic aperture. The condition leads to a canonical transforma-

tion where the new Hamiltonian is independent of its azimuthal variable up to third

order in the perturbation expansion. While the analysis was performed explicitly for

a lattice with quadrupoles and sextupoles, it was straightforward to show that similar

conditions exist when even higher order mutipoles or combinations of these are used.

Unlike the traditional approach of analyzing a nonlinear lattice, no assumption was

made that the nonlinear focusing was small compared to the linear focusing strength.
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Hence this analysis is valid even when the nonlinearity is strong enough that the closed

form Courant-Snyder solutions are not valid.

Numerical calculations were performed for a particular case in which the focusing

components were quadrupoles and sextupoles represented by periodic step function

lattices of equal periodicity. In this case, the condition of azimuthal symmetry in the

transformed frame was satisfied by having a phase difference of ψ = 90o, equivalent to

a quarter of a lattice period between the quadupoles and sextupoles. Single particle

trajectories of particles with angular momentum showed increased chaotic behavior as

ψ decreased from 90o to 0o. The size of the dynamic aperture was estimated by allowing

the particles to drift up to a maximum radial distance which allowed a maximum tune

shift of about 15% when compared to arbitrarily small oscillations. Calculations showed

that the size of the dynamic aperture increased rapidly as ψ increased from 0o and

gradually reached a maximum as ψ approached 90o. Results showed that the condition

was robust enough for possible practical applications

While the parameters used in the calculations were realistic, they were also sim-

plified. This theory remains to be applied to parameters specific to real machines. For

example, it would be interesting to apply it in the use of sextupoles for chromaticity cor-

rections in storage rings with their lattice periods different from that of the quadrupoles

and also having a different fill factor. This would still allow conditions for a near inte-

grable system and so one should expect improved confinement by imposing the same.

The derivation of the symmetric transformed Hamiltonian in this chapter is ex-

pected to benefit various current and proposed applications of nonlinear lattices in

particle accelerators. It would also add to previous work on increasing the dynamic

aperture of accelerator lattices in the presence of nonlinear components [63]. The Lie

transform perturbation method presented here is easily applicable to other areas of

Hamiltonian dynamics as well where it is required to perform a time averaging over

certain fast time scales.



Chapter 7

A Near Equilibrium Phase Space Distribution for High Intensity

Beams with Nonlinear Focusing.

7.1 Introduction

A procedure to obtain a near equilibrium phase space distribution function has

been derived for high intensity beams with space charge effects and nonlinear focusing.

A method to average the single particle Hamiltonian over fast time scales in the presence

of space charge forces is first derived, by using the Lie Transform method to canonically

transform to slowly oscillating phase space coordinates. Such a formulation is useful in

calculating physical effects that evolve over the slowly varying time scale and where fast

oscillating phenomena may be ignored. The theory is then applied to a beam propagat-

ing through a nonlinear focusing channel. The lattice is arranged such that the resulting

Hamiltonian for a single particle system is azimuthally symmetric when the dynamics

is averaged over fast oscillations. The analysis first shows the existence of a phase space

distribution that retains this symmetry, and then a near equilibrium solution is obtained

that also retains this symmetry. The resulting equilibrium distribution will then have

no oscillations in the slow time scales but will have only perturbed fast oscillations along

with density perturbations in the azimuthal direction. The distribution functions may

be numerically determined for a linear and nonlinear lattice.

There is a wide interest in the study of periodically focused beams with intensi-

ties high enough that self field effects become important [16]. Interest has also arisen in
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the study and applications of nonlinear focusing, some of which involve intense beams

[61, 5, 4, 60, 49, 43, 56]. Of particular value in the study of intense beams is obtaining an

equilibrium or near equilibrium distribution. This is useful in various stability analysis,

in preparing beams that are well matched or to perform numerical simulations of beams

that are perturbed from this matched condition. The only known exact beam equilib-

rium is the Kapchinskij-Vladmirskij (KV) distribution [38]. This distribution applies

only to a linear focusing system and is also unphysical with the density having a dis-

continuity at the edge and being exactly uniform in the interior of the beam. Recently,

perturbation methods have been developed to perform Hamiltonian averaging to study

high intensity beams including obtaining more realistic near equilibrium distributions.

These studies have been applied primarily to linear focusing systems [17, 62].

In this paper, we first extend the Lie Transform method to average the dynamics

of a single particle over fast oscillations. This is done by canonically transforming to

slowly varying phase space coordinates. The resulting phase space distribution derived

from the analysis satisfies the Vlasov-Poisson equation up to the desired order. This

kind of averaging is useful in problems where only the slow evolution of a system is of

interest, where the transformed or averaged Hamiltonian is often more convenient to

use in numerical calculations. Moreover, in many cases the transformed Hamiltonian

reduces a two dimensional problem to a one dimensional one, reducing the computation

time by many orders of magnitude.

The method is then applied to a beam propagating through a nonlinear focusing

channel consisting of alternating gradient quadrupoles and higher order poles like sex-

tupoles or octupoles along with the quadrupoles. It has already been proved [57] that

a condition exists wherein this nonlinear lattice can be designed in such a way that the

resulting Hamiltonian is azimuthally symmetric in the slowly varying coordinate system

for the motion of a single charged particle. The analysis in this chapter will prove the

existence of a phase space distribution such that this condition of symmetry is retained
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in the presence of space charge forces for the same nonlinear lattice. A symmetric

Hamiltonian also implies improved integrability, a condition that is desirable because it

leads to increased dynamic aperture which is generally difficult to achieve for nonlinear

focusing channels especially in the presence of space charge forces. The combination of

an equilibrium solution with improved integrability is favorable for a stable beam with

respect to mismatches and minimizing initial emittance growth.

The equilibrium distribution may be determined by numerically solving the steady

state Vlasov-Poisson equation in the averaged reference frame. Transforming back to

the laboratory frame of reference yields a distribution function which has no envelope

oscillations but has perturbations over the lattice period, leading to a near equilibrium

distribution.

7.2 Obtaining Averaged Hamiltonians with Space Charge Terms

This section gives a brief introduction to the Lie Transform method as used for

averaging over fast oscillations along with the additional terms arising due to a space

charge component in the Hamiltonian. As discussed in previous chapters, using ε as

an order parameter, it is possible to transform perturbatively to a new reference frame

starting from a Hamiltonian expressed as

H = H0 + εH1 + ε2H2 + ε3H3 + · · · (7.1)

this Hamiltonian will then be transformed to

K = K0 + εK1 + ε2K2 + ε3K3 + · · · (7.2)

In the presence of space charge forces, the Hamiltonian may be expressed as

H = He +Hsc (7.3)

where He is the term arising due to external forces and kinetic energy terms while

Hsc arises due to space charge forces. We consider a thin, long beam with the space
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charge potential satisfying Poisson’s equation. It may be noted that the force due to

the magnetic field arising from the motion of the charge has the same form as the

electrostatic potential, so the units can be normalized to accommodate both the forces.

The Hamiltonian of such a system may be expressed in cylindrical coordinates as

H =
1

2
(p2

r +
l2

r2
) + U(r, θ, s) +

q

mv2
sγ

3
φ(r, θ, s) (7.4)

Where He = 1
2(p2

r + l2

r2 ) + U(r, θ, s) and Hsc = (q/mv2
sγ

3)φ(r, θ, s), the space charge

potential takes into account both the electric and magnetic self forces acting on the

particles of the beam in which m is the mass, q the charge and vs the axial velocity of

the particle, and γ is the Lorentz relativistic factor. The external focusing potential U

is periodic with a periodicity S. The axial distance, s is equivalent to time for a beam

with constant axial velocity.

In the analysis to follow, we disregard the effects of a finite boundary. A Green’s

function approach to the same problem which can include the effect of finite boundaries

can be found in Ref. [11]. Where ever convenient, we represent the phase space vectors

by q = (r, θ), p = (pr, l) in the original reference frame, and by Q = (R,Θ), P = (Pr,L)

in the transformed reference frame. The space charge potential satisfying Poisson’s

equation is then given by,

∇2φ(q, t) = − q

ε0

∫

dq′dp′δ(q − q′)f(q′,p′, t) (7.5)

where f is the phase space density that is given by the Vlasov equation.

df

ds
=
∂f

∂s
+ {H, f}. (7.6)

If F (Q,P, t) = f(q(Q,P, t),p(Q,P, t), t), then it can be easily verified that f = TF

where T is the transformation operator defined in chapter 5. From the property of

canonical invariance of the Vlasov equation, we have

dF

ds
=
∂F

∂s
+ {K,F}, (7.7)
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where K is the transformed Hamiltonian. Using the perturbation expansion terms of

the transformation operator T given by Eqs. (5.13 - 5.16), we can in principle expand

f in terms of F . This would give,

f = TF = T0F + T1F + T2F + T3F . . .

= f0 + εf1 + ε2f2 + ε3f3 + . . . (7.8)

From this, the number density n(q,p, t), which is the number of particles per unit area

of cross section per unit length can be determined, where

n(q,p, t) =

∫

dpf(q,p, t) (7.9)

and n0, n1, n2 etc can be got by integrating f0, f1, f2 etc respectively in momentum

space. This expansion can be used to determine the different order terms of φ from

Eq. (7.5) giving

φ = φ1 + φ2 + φ3 + φ4 + · · · (7.10)

The index for representing the expansion terms of φ has been deliberately shifted for

reasons that will become clear later. Since T0 is simply the identity operator, it is

straight forward to verify that the first term of φ satisfies,

∇2φ1 = − q

ε0

∫

dpF (7.11)

In this analysis, we carry out the transformation up to third order. It is assumed

that the lowest nonzero term of the Hamiltonian is proportional to ε, a quantity that

turns out to be the ratio between the fast and slow oscillation time periods respectively.

This ordering scheme enables one to perform a canonical transformation to slowly vary-

ing coordinates and has been used before [11, 18, 57]. In this case, we have H0 = 0,

H1 = He + φ1, H2 = φ2 and H3 = φ3. Applying these terms in the equations (5.27 -

5.30), the transformed Hamiltonian K and the Lie operator w may be determined. Up

to third order, we get the following equations.

K0 = 0, (7.12)
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∂w1

∂t
= K1 −He − q

mv2
sγ

3
φ1, (7.13)

∂w2

∂t
= 2(K2 −

q

mv2
sγ

3
φ2) − L1(K1 +He +

q

mv2
sγ

3
φ1), (7.14)

∂w3

∂t
= 3(K3 −

q

mv2
sγ

3
φ3) − L1(K2 + 2

q

mv2
sγ

3
φ2) −

L2(K1 +
1

2
He +

1

2

q

mv2
sγ

3
φ1) −

1

2
L2

1(H
e +

q

mv2
sγ

3
φ1) (7.15)

It may be noted that, K is initially expressed as a function of (q,p), the original

variables. However, based on the canonical invariance of the whole formulation, in the

end, (q,p) may be simply replaced by (Q,P), the transformed variables.

We apply these equations to the Hamiltonian in Eq (7.4). The external potential

is decomposed into a term averaged over a period S and an oscillating term. This is,

U(r, θ, s) = 〈U(r, θ, s)〉 + Ũ(r, θ, s), (7.16)

where the angle brackets represents the following,

〈U(r, θ, s)〉 =
1

S

∫ s+S

s
U(r, θ, s)ds. (7.17)

The zeroth order equation simply gives K0 = 0. The first order equation gives,

∂w1

∂s
= K1 − (

1

2
p2

r +
l2

r2
) − 〈U〉 − Ũ − q

mv2
sγ

3
φ1. (7.18)

The term K1 will be chosen such that it contains only terms with a nonzero average over

the fast time scale. It is clear from Eq. (7.11) that the space charge term φ1 does not

average to zero, since F depends upon only the transformed coordinates. As a result,

we obtain,

K1 =
1

2
(p2

r +
l2

r2
) + 〈U〉 +

q

mv2
sγ

3
φ1. (7.19)

Inserting this into Eq (7.18) and integrating with respect to s yields,

w1 = −Ũ I. (7.20)
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The Roman numerical superscript represents an integration over s where a constant is

chosen such that 〈w〉 = 0. This is equivalent to an indefinite integral of a Fourier expan-

sion of Ũ . This condition is necessary to prevent wn from being secular (unbounded)

in ”time” s [9]. Similarly, a superscript “II” represents a double integral with the same

condition and so on.

Knowing w1 enables us to determine f1 and φ2 in terms of F . These are, from

Eq (7.8)

f1 = T1F = −∂Ũ
I

∂q
· F (q,p, t)

∂p
(7.21)

and

∇2φ2 = −q
ε

∫

dpf1 =
q

ε0

∂Ũ I

∂q
·
∫

dp
F (q,p, t

∂p
= 0 (7.22)

where it is assumed that f1 → 0 as p → ∞. Consequently, the first order term of the

number density n1 = 0.

Repeating the same procedure with the second order equation gives

K2 = 0 (7.23)

and this gives

w2 = 2(
∂Ũ II

∂r
pr +

∂Ũ II

∂θ

l

r2
) (7.24)

requiring that 〈Ũ II〉 = 0, leads to the condition 〈w2〉 = 0. Knowing the expression for

w2 can now enable us to determine f2 and φ3 from T2 given by Eq. (5.15). This gives

f2 = T2F = −
[

∂2Ũ II

∂r2
pr +

∂2Ũ II

∂θ∂r

l

r
− 2

∂Ũ II

∂θ

l

r3

]

∂F

∂pr

−
[

∂2Ũ II

∂θ∂r
+
∂2Ũ II

∂θ2

l

r2

]

∂F

∂l
+

[

∂Ũ II

∂r

∂F

∂r
+
∂Ũ II

∂θ

1

r2
∂F

∂θ

]

+
1

2

(

∂Ũ I

∂r

)2
∂2F

∂p2
r

+
∂Ũ I

∂θ

∂Ũ I

∂r

∂2F

∂pr∂l
+

1

2

(

∂Ũ I

∂θ

)2
∂2F

∂l2
(7.25)

Integrating by parts and using the assumption that F → 0 as p → ∞ we get,

∇2φ3 = − q

ε0

∫

dpf2 =

− q

ε0

[

∂2Ũ II

∂r2
+
∂2Ũ II

∂θ2

1

r2

]

n0 −
q

ε0

[

∂Ũ II

∂r

∂n0

∂r
+
∂Ũ II

∂θ

1

r2
∂n0

∂θ

]

(7.26)
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Applying the third order equation is less straightforward. Simplifying Eq.(7.15),

gives

∂w3

∂s
= 3K3 − 3

q

mv2
sγ

3
φ3 −

3

2
(
∂w2

∂r
pr +

∂w2

∂θ

l

r2
)

−3
l3

r3
∂Ũ I

∂r
+D(3〈U〉 + Ũ + 3

q

mv2
sγ

3
φ1)

−1

2
[(
∂Ũ I

∂r
)2 +

1

r2
(
∂Ũ I

∂θ
)2] (7.27)

where D is a differential operator given by

D =
∂Ũ II

∂r

∂

∂r
+

1

r2
∂Ũ II

∂θ

∂

∂θ
(7.28)

While integrating Eq (7.27) with respect to s, we need to retain only the third

order terms. Integrating Dφ1(r, θ, s) by parts recurrently, we get

(Dφ1)
I = DIφ1 +DII∂φ1

∂s
+DIII∂

2φ1

∂s2
+ . . . (7.29)

The order parameter, ε is proportional to the ratio between the frequencies of the slow

and fast oscillating components. The operator D is a fast oscillating term, so integrating

it results in introducing a factor that is the inverse of the frequency of oscillation of D.

On the other hand, φ1(r, θ, s) is a slowly oscillating term and so differentiating it with

respect to s effectively introduces a factor equivalent to the frequency of oscillation of

φ1. Thus, the only term of relevance in the expansion is DIφ1(r, θ, s). As a result, up

to the desired order in ε we have,

(Dφ1)
I ' ∂Ũ III

∂r

∂φ1

∂r
+

1

r2
∂Ũ III

∂θ

∂φ1

∂θ
(7.30)

For the same reason, we have

〈D(r, θ, s)φ1(r, θ, s)〉 ' 〈D(r, θ, s)〉φ1(r, θ, s) = 0 (7.31)

Equation (7.26) indicates that φ3 is also a product of a slow and a fast oscillating

term and the same rules may be applied while integrating with respect to s. As a result,
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we have 〈φ3〉 ' 0 and also,

∇2φI
3(q, s) ' − q

ε0

[

∂2Ũ III

∂r2
+
∂2Ũ III

∂θ2

l

r3

]

n0 −
q

ε0

[

∂Ũ III

∂r

∂n0

∂r
+
∂Ũ III

∂θ

1

r3
∂n0

∂θ

]

(7.32)

Once again, K3 needs to be chosen so that it cancels terms with nonzero averages over

the lattice periods. Using the result 〈φ3〉 ' 0 and Eq.(7.31), and recognizing other terms

that average to zero over the lattice period S, we get

K3 =
1

3
[−〈∂Ũ

II

∂r

∂Ũ

∂r
+

1

r2
∂Ũ II

∂θ

∂Ũ

∂θ
〉 +

1

6
〈(∂Ũ

I

∂r
)2 +

1

r2
(
∂Ũ I

∂θ
)2〉] (7.33)

The third order transformed Hamiltonian contains no space charge term and is identical

to what would be obtained for a single particle in the absence of any space charge. How-

ever, it will be seen that the space charge terms appear in the third order transformation

equations.

Evaluating w3 explicitly will involve integrating all terms in the manner similar

to previous cases and also applying the results from Eq.(7.30) and (7.32). Let us first

define a term G̃ such that

G̃ = 3K3 + (
∂Ũ II

∂r

∂U

∂r
+

1

r2
∂Ũ II

∂θ

∂U

∂θ
)

−1

2
[(
∂Ũ I

∂r
)2 +

1

r2
(
∂Ũ I

∂θ
)2] (7.34)

Based on the choice of K3, we know that G̃ is fast oscillating with a zero average. The

function w3 can now be expressed more compactly as

w3 = G̃I − 3
q

mv2
sγ

3
φI

2 −
3

2
(
∂w3

∂r
+
∂w2

∂θ

l

r2
)I

−3
l3

r3
∂Ũ III

∂r
+ 3DI(〈U〉 +

q

mv2
sγ

3
φ1) (7.35)

This would enable one to determine expressions for f3 and φ4 which are, from Eq. 5.16

f3 = T3F = −1

3
{w3, F} +

1

6
{w1, {w2, F}} +

1

3
{w2, {w1, F}} −

1

6
{w1, {w1, {w1, F}}}

(7.36)
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and from this,

∇2φ4 = − q

ε0

∫

dpf3 (7.37)

These shall not be evaluated explicitly but enough has been done to show how it could

be done in principle.

The transformed Hamiltonian is now given up to third order by

K = K1 +K2 +K3 (7.38)

where the parameter ε is now set to one. The variables of this function will need to be

replaced by the transformed ones, and then this Hamiltonian will contain a constant

focusing potential and in general a slowly varying space charge potential, which would

also be time invariant in the case of an equilibrium distribution in the transformed

reference frame. This completes the general derivation of an averaged Hamiltonian along

with the procedure to transform the variables between the two coordinate systems.

7.3 A Near Equilibrium Solution for a Nonlinear Focusing System

We now apply the method developed in the previous section to a specific case of

nonlinear focusing. The Hamilton for a system with quadrupoles and sextupoles and a

space charge potential can be represented as [57].

H =
1

2
(p2

r +
l2

r2
) +

1

2
κ2(s)r

2 cos(2θ)

1

3
κ3(s)r

3 cos(3θ + α) + φ(r, θ, s). (7.39)

The values of κ2(s) and κ3(s) depend upon the strength of the quadrupole and sex-

tupole magnets respectively and also the velocity of the particle in the axial direction.

The angle α is determined by the orientation of the sextupoles with respect to the

quadrupoles. We use normalized units in which the charge and mass of the particle are

unity. In this case, it is assumed that the Hamiltonian is periodic in s with periodicity

S, ie, κ2(s + S) = κ2(s) and κ3(S + s) = κ3(s). It is further assumed that κ2(s) and
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κ3(s) are periodic step functions with the same periodicity S, with a zero average over

S. That is,

〈κ2〉 =
1

S

∫ s+S

s
κ2(s)ds = 0 (7.40)

and the same for κ3. Thus, for this case, we have 〈U〉 = 0 and Ũ = 1
2κ2(s)r

2 cos(2θ) +

1
3κ3(s)r

3 cos(3θ + α).

It has already been shown [57] that when the analysis of the previous section is

applied to this system in the absence of space charges, the Hamiltonian can be trans-

formed to an azimuthally symmetric if 〈κI2κI3〉 = 0. Using the Hamiltonian derived in

this reference and including the effects of space charge based on the analysis of Sec.7.2,

we get up to third order,

K =
1

2
(P 2

r +
L2

R2
) +

1

2
〈(κI2)2〉R2 +

1

4
〈(κI3)2〉R4 +

q

mv2
sγ

3
φ1 (7.41)

This expression for the Hamiltonian can be obtained from a realistic focusing system

such as a step function lattice, which brings about a connection with the idealized

constant focusing model used in the study of beam halos in chapter 4.

Since this system has focusing components that are azimuthally symmetric, it

should allow a self consistent phase space distribution F that is also independent of Θ.

The transformed angular momentum would then be a conserved quantity. Since the

focusing is constant, we can seek an equilibrium solution in the transformed coordinate

frame. A practical choice would be a thermal equilibrium which is given by

F (P,R,L) = N0ζ exp[K/K0] (7.42)

N0ζ exp{−[
1

2
(P 2

r +
L2

R2
) + V (R) +

q

mv2
sγ

3
φ1]/K0}

where, K0 is a constant, N0 is the total number of particles, and ζ is chosen such that

F is normalized to the total number of particles, ie,

1

ζ
=

∫

dQdP exp{−[
1

2
(P 2

r +
L2

R2
) + V (R) +

q

mv2
sγ

3
φ1]/K0} (7.43)
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and, from Eq (7.41) the external potential is given by,

V (R) =
1

2
〈(κI2)2〉R2 +

1

4
〈(κI3)2〉R4. (7.44)

Substituting this into Eq(7.5) and recognizing that that there is only one independent

variable, r, we obtain,

1

r

d

dr
r
d

r
φ1 = − q

ε0
ζN0K0π exp{−[V (r) +

q

mv2
sγ

3
φ1(r)]/K0} (7.45)

On solving for φ1, we can determine F from which f1, f2 and f3, and their integrals over

momentum space, n1, n2 and n3 can calculated as described in the previous section.

These are,

n0(q, s) =

∫

dpF (7.46)

n1 = 0 (7.47)

n2 =

[

∂2Ũ II

∂r2
+
∂2Ũ II

∂θ2

1

r2

]

n0 +

[

∂Ũ II

∂r

∂n0

∂r
+
∂Ũ II

∂θ

1

r2
∂n0

∂θ

]

(7.48)

since in this case, Ũ = 1
2κ2(s)r

2 cos(2θ) + 1
3κ3(s)r

3 cos(3θ + α), and n0 is independent

of θ, we obtain

n2 = −[κII2 cos(2θ) + 2rκII3 cos(3θ + α)]n0 + [κII2 r cos(2θ) + κII3 r
2 cos(3θ + α)]

∂n0

∂r

(7.49)

It is clear that with F being independent of θ and s, n0 will be stationary and in-

dependent of θ too. The variation in θ and s comes about only in the second order

perturbation in n, which is n2. The coefficients κII2 and κII3 are plotted in Fig 7.1 for a

step function lattice corresponding to the one used in the dynamic aperture analysis in

chapter 6.
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Figure 7.1: Plot of κII2 and κII3 for the step function lattice shown in Fig 6.3

7.4 Summary

In this chapter the Lie transformation perturbation method was presented for

performing an averaging over fast oscillations for high intensity beams with a general

external potential and a space charge potential. This method proves to be convenient

under certain circumstances when compared to other methods. A procedure was then

derived to transform the phase space distribution from the averaged phase space co-

ordinates to the laboratory coordinates. When one is interested in observing physical

phenomena occurring over long time scales, it is sufficient to solve the averaged Vlasov-

Poisson equations. This reduces computation time especially when the averaging pro-

cedure reduces the number of degrees of freedom. The phase space distribution may be

transformed back to the laboratory reference frame once the computation is completed

if necessary.

The averaging procedure was then applied to a nonlinear focusing lattice with

quadrupoles and sextupoles for a beam with space charge effects. The focusing compo-

nents were arranged in such a way that the external component of the Hamiltonian was

independent of the azimuthal variable after performing the averaging. This proved the

existence of a phase space distribution that is also independent of the transformed az-

imuthal variable. A procedure to obtain an equilibrium phase space distribution for the
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azimuthally symmetric Hamiltonian was described. On transforming this equilibrium

back into the laboratory frame, it could be seen that only the higher order perturbations

of the distribution were fast oscillating and had azimuthal variation. This procedure

can have more general applications where a near equilibrium distribution is sought for

a nonautonomous Hamiltonian in self consistent systems.



Chapter 8

Conclusion

This thesis addressed various aspects related to nonlinear focusing in particle ac-

celerators. To begin with, a brief overview of some well established theories related to

linear focusing was presented. The systems that were analyzed in this overview corre-

sponded to the respective systems studied in subsequent chapters with nonlinear terms

included in the focusing. These systems included the motion of a single charged parti-

cle, the dynamics of a beam with space charge effects with a mismatched, or oscillating

envelope, and finally the derivation of a beam equilibrium.

A simple model using a cold beam with a circular cross-section and uniform

density was used to show the existence of a parametric resonance between the oscillations

of the envelope and a single particle. Calculations of trajectories of particles with

different initial conditions showed that this resonance is a potential cause of beam

halo formation. It was then proposed that a combination of nonlinear focusing and

collimation can be used to control such a mechanism of halo production. Numerical

results using a PIC code showed that this was true. The model used in this study

was a continuous focusing channel. The PIC simulations also showed that the extent

and intensity of the beam halo increased with mismatch ratio, and also that some halo

particles were formed as a result of initial Vlasov mixing in an rms mismatched beam.

We then moved to the analysis of the motion a single particle in a nonlinear

focusing channel. The Lie Transform perturbation theory was used to show that it is
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possible to obtain a nonlinear lattice with improved integrability. The lattice composed

of a combination of quadrupoles and higher order poles such as sextupoles and/or oc-

tupoles. In this analysis, it was shown that it is possible to obtain a focusing system

that is continuous and azimuthally symmetric in a reference frame that was averaged

over the lattice period. Such a focusing system corresponded with the model used in

the study of control of beam halos. Numerical calculations showed that satisfying this

condition of improved integrability, or equivalently, azimuthal symmetry in the averaged

reference frame, led to reduced chaos and improved dynamic aperture. This study has

the potential of being useful in various applications of nonlinear focusing besides the

one studied here.

Finally, the Lie Transform analysis was extended to include space charge forces. In

this, it was shown that it is possible to retain the above mentioned azimuthal symmetry

in beams with space charge effects. In addition to this, a near equilibrium phase space

distribution function was derived. This is particularly important in the context of a

nonlinear lattice because a KV beam equilibrium does not exist in such a system.

There are many directions in which this work can be extended. One can explore

the possibility of increasing the dynamic aperture of a lattice for a real machine design

by improving the integrability of the system. This would involve tracking the motion

of particles through a more complex arrangement of magnets and trying to vary the

arrangement within practical limitations in order to improve integrability by employing

the method prescribed in this thesis. Increased dynamic aperture is particularly impor-

tant in synchrotron radiation sources for the quest for brighter beams. Another possible

extension of this work would be to perform two and three dimensional PIC simulations

for the study of beam halo mitigation. This would involve the use of a nonlinear lat-

tice with an azimuthal symmetry in the averaged reference frame. In addition to that

it would involve incorporating real collimation devices. Such a study could be useful

in to the Spallation Neutron Source (SNS) accumulator ring and in heavy ion fusion
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experiments. It is hoped that this thesis and the publications produced by this work

will contribute toward improving the performance of various particle accelerators thus

benefiting the scientific community at large. This work also has the potential of being

of use to other areas of Hamiltonian dynamics and plasma physics.
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Appendix A

Numerical scheme used for the PIC simulations

PIC simulations require an accurate method to weigh the charge on to the grid

points, calculate the field at the grid points and also weigh the fields on to the particles.

The particles then need to be moved at every time step in an accurate enough manner.

The numerical scheme used in the PIC simulations in this thesis is based on methods

proposed by Birdsall and Langdon [7].

The weighing of particles on to the grid points needs to be done in such a manner

that the total charge is conserved. The method that has been used in this work is known

as area weighing. Figure A.1 shows the radial positions of two adjacent grid points along

a radial axis and a particle located between them. Since there is no θ dependence, these

particles and grid points represent rings. The regions a and b represent areas between

adjacent rings of radius ri, rj+1 and rj, ri respectively. Let the particle be located at ri,

then the fraction of the charge qi assigned to the point rj is (area a)/(areas a + b) ,

leading to

Qj = qi
r2j+1 − r2i
rj+1 − r2j

(A.1)

and for the point rj+1 it is (area b)/(areas a + b), leading to

Qj+1 = qi
r2i − r2j
rj+1 − r2j

(A.2)

At the origin, we need to use, rj = 0

The electric fields are first calculated on the points lying midway between the grids
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r r r
j j+1i

particle

ab

Figure A.1: Grid points and particle position for weighing on to grid

points containing the charge as shown in Fig A.2. The fields are computed using Gauss’

law which guarantees flux conservation. For the particular case of the cylindrical surface

j = 1/2, Gauss’ law produces (in rationalized cgs units) the following radial electric field

equation from the charge at the origin,

Q0 = 2πr1/2E1/2. (A.3)

For the case where rj+1/2 is some radius equal to 1/2(rj+1 + rj), the following equation

is satisfied,

Qj = 2πrj+1/2Ej+1/2 − 2πrj−1/2Ej−1/2 (A.4)

The fields are calculated sequentially starting from the j = 1/2 surface, and Eq. A.4 is

used to solve for E3/2, E5/2, and so on.

r r r
0 1 2

E E1/2 3/2

rj

Figure A.2: Location of grid points with mid-points where electric field is calculated

These fields are then weighed on to the grid points, by a flux wighted average

scheme. In this, the electric field at rj satisfies

rjEj =
rj+1/2Ej+1/2 + rj−1/2Ej−1/2

2
(A.5)

At the origin, the electric field is set to zero.

The electric fields are then assigned to the particles using area weights where

referring to fig.A.1

Ei = Ej

r2j+1 − r2i
r2j+1 − r2j

+ Ej+1

r2i − r2j
r2j+1 − r2j

(A.6)
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Once the field on the particle is known, the force on the particle may be calculated from

Fi = qiEi, which is used to move the particle. In this case, the particles are moved using

a the leap-frog scheme which is a second order syplectic map. The leap from scheme

will be analyzed in Appendix B.



Appendix B

Symplectic Integrators

There exist several standard numerical methods for integrating ordinary differen-

tial equations. However, if one is interested in integrating Hamiltonian systems, these

methods may lead to wrong results. This is due to the fact that these methods do

not explicitly preserve the symplectic condition. One manifestation of this is that the

Jacobian of the transformation for one time step differs slightly by unity and as a result,

the system will be damped or excited artificially. This can lead to misleading results

after the system has been evolved for a sufficiently long time. This chapter will dis-

cuss integrators that are symplectic to varying orders in time step for a special class of

functions.

B.1 The General Method

The method described here is based on the work by R. D. Ruth [52] in 1983. This

work involved derivation of an integration scheme that was symplectic up to third order

in the time step. The work was extended to fourth order by E. Forest and R. D. Ruth

[24], and independently by J. Candy and W. Rozmus [8]. The approach of the problem

is as follows: Consider a Hamiltonian of the form

H(q, p) = A(p) + V (q) (B.1)

where q and p are the phase space vectors. The aim is to make a canonical transfor-

mation such that the new Hamiltonian K in the new variables is zero. Since this may
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not be practical, we attempt to make K zero up to a given order tk where t is the time

step. The new Hamiltonian will then be

K(q′, p′, t) = O(tk+1) (B.2)

and using Hamilton’s equations, we get

q′(t) = q0 +O(tk+1) (B.3)

p′(t) = p0 +O(tk+1) (B.4)

Once this is accomplished, the motion in the original variables can be obtained (accurate

to order k) by inverting the canonical transformation. Therefore, we get a map from

q(0), p(0) to q(t), p(t). The process can be repeated to go from q(t), p(t) to q(2t), p(2t)

and so on.

B.2 The First Order Map

For the sake of illustration, we start from a low order map. We use a generating

function of the new coordinates and old momenta which will have the form,

F3(q
′, p, t) = −q′p+G(q′, p, t) (B.5)

The function G will take on the form

G = −[A(q) + V (q′)]t (B.6)

The transformed Hamiltonian is

K = H +
∂F3

∂t
= V (q) − V (q′) (B.7)

Using the canonical transformation equations appropriate for this we get

q = −∂F3

∂p
= q′ +Ap(p)t (B.8)

p′ = −∂F3

∂q′
= p+ Vq′(q

′) (B.9)
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Substituting this into the Hamiltonian yields

K = tVq′(q
′)Ap′(p

′) +O(t2) (B.10)

Consequently, we get

q′ = q0 +O(t2) (B.11)

p′ = p0 +O(t2) (B.12)

So, if q′, p′ are used as initial conditions, the error introduced is O(t2). This approach

has yielded a first order symplectic map.

B.3 Second Order Map, the Leap Frog Scheme

Deriving a second order map consists of modifying the previous method to two

canonical transformations instead of one. These are given by (q, p) → (q′, p′) and then

(q′, p′) → (q′′, p′′). The generating function of the first step is

F3 = −q′p− aA(p)t− tV (q′, bt) (B.13)

Note that we are assuming a time dependent potential here. This yields the transfor-

mation

q = q′ + aAp(p)t (B.14)

p′ = p− tVq′(q
′, bt) (B.15)

The second map is performed through the generating function

F ′

3 = q′′p′ − (1 − a)A(p′)t (B.16)

which yields the transformation

q′ = q′′ + (1 − a)Ap′(p
′)t (B.17)

p′′ = p′. (B.18)
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The transformed Hamiltonian is

K = t(1 − 2a)Ap′′(p
′′)Vq′′(q

′′, 0) + t(1 − 2b)Vt(q
′′, 0) +O(t2) (B.19)

The purpose of the expansion of K in t is to identify the coefficients of various powers

in K. Setting a = b = 1/2 gives K = O(t2).

We can now specify the integration procedure. We shift the notation q → q′′, p→

p′′ since in the real problem one needs to perform an inverse canonical transformation

from the initial condition. Letting q′′ = q0, p
′′ = p0 and time step t = h, the map may

then be defined by

p1 = p0 (B.20)

q1 = q0 +
h

2
Ap1

(p1) (B.21)

p = p1 + hVq1
(q1, t0 + h/2) (B.22)

q = q1 +
h

2
Ap(p) (B.23)

This method is the well known leap-frog scheme and used frequently in circumstances

where anomalous damping and excitation is a problem. It may be noted that it is

written a little differently than the typical implementations in a computer code since it

is expressed for one full time step.

B.4 The Third and Fourth Order Maps

The third and fourth order maps can be derived in a similar manner, ie, by

constructing a sequence of maps. Using the general form

pi+1 = pi − citVq(qi) (B.24)

qi+1 = qi + ditAp(pi+1). (B.25)

Because the new Hamiltonian is in terms of the initial conditions, the transformations

are applied in the reverse order. That is, (q, p) → (qn−1, pn−1) → (qn−2, pn−2) → . . . →
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(q0, p0). For n = 2 it has already been shown that c1 = 0, d1 = 1/2, c2 = 1, d2 = 1/2.

For n = 3, it can be found that [52]

c1 = 7/24, c2 = 3/4, c3 = −1/24

d1 = 2/3, d2 = −2/3 d3 = 1

(B.26)

Solving for the n = 4 case is rather tedious and has been done [24, 8] The coefficients

are

c1 = 0, d1 = x+ 1/2

c2 = 2x+ 1, d2 = −x

c3 = −4x− 1, d3 = −x

c4 = 2x+ 1, d4 = x+ 1/2

(B.27)

or alternately,

c1 = x+ 1/2, d1 = 2x+ 1

c2 = −x, d2 = −4x− 1

c3 = −x, d3 = 2x+ 1

c4 = x+ 1/2, d4 = 0

(B.28)

where the value of x is given by

x = 1/6(21/3 + 2−1/3 − 1) = 0.1756 . . . (B.29)

This algorithm can be extended to case where the potential V is an explicit

function of time. In this case, the Hamiltonian will be given as

H(q, p, t) = A(p) + V (q, t) (B.30)

If we define the type 1 generating function F1 = Pτ t, then time can be eliminated by

introducing the canonically conjugate pair (τ, pτ ). The equations of transformation are

τ =
∂F1

∂pτ
= t (B.31)

Hnew = H +
∂F1

∂t
= H + pτ (B.32)



99

It may be noted that τ is numerically equal to t and that pτ = −H(q, p, t) + constant.

Upon substitution, we find

Hnew(q, τ, p, pτ ) = [A(p) + pτ ] + V (q, τ) (B.33)

In this chapter, the syplectic map has been explained for a specific class of func-

tions, where the Hamiltonian can be separated into functions depending purely on

momentum and position respectively. All the systems used in this thesis fell under this

category. More sophisticated methods will be required if the Hamiltonian does not fall

under this category.
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A condition for improved dynamic aperture for nonlinear, alternating gradient transport systems is derived
using Lie transform perturbation theory. The Lie transform perturbation method is used here to perform
averaging over fast oscillations by canonically transforming to slowly oscillating variables. This is first dem-
onstrated for a linear sinusoidal focusing system. This method is then employed to average the dynamics over
a lattice period for a nonlinear focusing system, provided by the use of higher order poles such as sextupoles
and octupoles along with alternate gradient quadrupoles. Unlike the traditional approach, the higher order
focusing is not treated as a perturbation. The Lie transform method is particularly advantageous for such a
system where the form of the Hamiltonian is complex. This is because the method exploits the property of
canonical invariance of Poisson brackets so that the change of variables is accomplished by just replacing the
old ones with the new. The analysis shows the existence of a condition in which the system is azimuthally
symmetric in the transformed, slowly oscillating frame. Such a symmetry in the time averaged frame renders
the system nearly integrable in the laboratory frame. This condition leads to reduced chaos and improved
confinement when compared to a system that is not close to integrability. Numerical calculations of single-
particle trajectories and phase space projections of the dynamic aperture performed for a lattice with quadru-
poles and sextupoles confirm that this is indeed the case.
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I. INTRODUCTION

Linear focusing systems such as the alternate gradient
quadrupole systems are relatively easy to analyze because of
the existence of the Courant-Snyder invariants[1], which
reduce the system to an uncoupled set of systems of one
degree of freedom. In the presence of higher order compo-
nents such as sextupoles or octupoles, these invariants are
destroyed. Such a system is nonintegrable and has trajecto-
ries that are chaotic and poorly confined. Despite this short-
coming in the use of nonlinear components, their use has
been proposed in a variety of applications. They include, for
example, achieving uniform particle distributions[2], control
of beam emittance growth and beam halo formation[3,4],
providing strong sextupole focusing in planar undulators in
free electron lasers[3], folding of beam phase space distri-
butions as an alternate to beam collimation[4], introducing
Landau damping by providing octupole or sextupole induced
tune spread[5,6], photoelectron trapping in quadrupole and
sextupole magnetic fields[7], etc. In addition to this sextu-
poles are widely used in storage rings for cromaticity correc-
tions. Nonlinear forces also arise as a result of beam-beam
interactions at interaction point of a storage ring collider
which limit the dynamic aperture of the system[8]. Thus, a
general analysis of the nonlinear focusing problem is impor-
tant. It is well known that a near integrable Hamiltonian
system will typically possess regular trajectories inter-
mingled with regions of chaos. The aim of this paper is to
find a condition that optimizes the integrability of the system
thereby minimizing the chaotic region in the presence of
certain nonlinear focusing components.

To perform the analysis we use the Lie transform pertur-
bation method, which exploits the invariance of the Poisson
brackets under canonical transformations. In this analysis all
dynamical variables appear within Poisson brackets, so the

whole formulation is canonically invariant. If this were not
true, one would need to express the Hamiltonian in terms of
the new variables up to the desired order before performing
the perturbation analysis. This could make the problem more
tedious when the form of the Hamiltonian is not simple, and
when it is required to carry the expansion up to third order,
both of which are true in this case. References[9–11] contain
other procedures for averaging applied to beam physics. We
follow the Lie transform method described in Ref.[12] and
show that rearranging the different order terms of the Hamil-
tonian in this method enables one to perform a time averag-
ing rather than average the motion over the trajectory de-
scribed by the integrable component of the Hamiltonian.

To start with, Sec. II provides a brief description of the
Lie transform method used in this paper. Section III presents
an illustration of the method applied to a continuous periodic
focusing system, an example also used by Channel[9]. In
Sec. IV, we introduce a nonlinear focusing system which has
a higher order multipoles in addition to quadrupoles. The
resulting Hamiltonian describing the motion transverse to the
beam propagation is nonautonomous and has two degrees of
freedom. By averaging the motion over the lattice period up
to third order, we derive a condition for the new time-
independent Hamiltonian to also be independent of the trans-
formed azimuthal variable. Under such a condition, the
transformed angular momentum will be an adiabatic invari-
ant. It will be shown that this condition is satisfied when the
functions describing the forces due to the respective multi-
pole are orthogonal to each other in a certain manner.

In order to show that the condition of azimuthal invari-
ance is a desirable one, various numerical calculations are
performed. Section V includes results which show that as
one deviates from the desired condition, the particle oscilla-
tions acquire additional frequency components and also have
larger oscillation amplitudes. Section VI illustrates the pro-
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jection of the dynamic aperture on to different planes in
phase space. The dynamic aperture is the region that allows
what may be defined as confined particles. Estimating the
dynamic aperture for different cases shows that maximum
confinement can be achieved when the associated time aver-
aged Hamiltonian is integrable in the transformed coordi-
nates and hence the system is nearly integrable in the labo-
ratory frame. The dynamic aperture is shown to gradually
diminish in size as one deviates from this condition.

II. THE LIE TRANSFORM METHOD FOR AVERAGING
OVER FAST OSCILLATIONS

In this section we outline the Hamilton perturbation
method described in Ref.[12]. This method is based on pre-
vious work[13–17] that introduced Lie transform theory as a
convenient method to perform Hamilton perturbation analy-
sis. The Lie transformation is defined with respect to a phase
space functionw such that it satisfies the following Poisson
bracket relationship:

dZ

de
= hZ,wsZsz,t,ed,t,edj, s1d

where Z =sP,Qd is a phase space vector representing the
generalized positions and momenta of the system,w is the
Lie generating function, ande is a continuously varying pa-
rameter such thatZse=0d=z, the original phase space vector.
The above relationship resembles Hamilton’s equation with
respect to a “Hamiltonian,”w and “time,” e. This guarantees
that the transformation is canonical for all values ofe.

The Lie operatorL is defined such that it performs a Pois-
son bracket operation with respect tow. Symbolically,

L = hw,j. s2d

A transformation operatorT is defined such that its role is to
replace the variables of a function by the new canonical vari-
ables. For the identity function this is simply,

Tz = Zsz,e,td. s3d

The operatorT is analogous to the “evolution” operator with
respect toe. Using Eq.s1d it can be verified thatT satisfies

dT

de
= − TL. s4d

For a similar relationship involving the inverse transforma-
tion operatorT−1, we differentiate the equationTT−1=1 and
use the above equation to obtain

dT−1

de
= T−1L. s5d

The transformed HamiltonianK can be expressed in terms of
the original HamiltonianH as

Ksed = T−1sedsHd + T−1sedE
0

e

de8Tse8d
] w

] t
se8d. s6d

This expression was obtained by Dewarf16g.

To obtain explicit equations for each perturbation term,
every physical quantity and operator is expressed as a power
series ine known as the Deprit power series[15]. The origi-
nal and transformed Hamiltonians are given byHsz,e ,td
=on=0

` enHnsz,td, Ksz,e ,td=on=0
` enKnsz,td. The Lie generat-

ing function is represented a little differently because it ap-
pears as a derivative in Eq.(6). This is, wsz,t ,ed
=on=0

` enwn+1sz,td. The operatorsT andL are represented in a
similar way asTst ,ed=on=0

` enTnstd, Lswd=on=0
` enLn, where

Ln=hwn,j, the Poisson bracket with respect town. The param-
etere is used to keep track of the terms representing different
orders in the expansion and is usually set to one in the end.

By substituting the Deprit expansions into Eqs.(4), (5),
and (6), one can obtain relationships between the corre-
sponding terms for each order ofe. Doing this for Eq.(6), we
get, up to third order,

K0 = H0, s7ad

] w1

] t
+ hw1,H0j = K1 − H1, s7bd

] w2

] t
+ hw2,H0j = 2sK2 − H2d − L1sK1 + H1d, s7cd

] w3

] t
+ hw3,H0j = 3sK3 − H3d − L1sK2 + 2H2d

− L2SK1 +
1

2
H1D −

1

2
L1

2H1. s7dd

The expression]wn/]t+hwn,H0j is the variation ofwn along
the unperturbed trajectory described byH0. Setting H0=0
reduces this to a partial derivative with respect tot. Thus,
instead of integrating along the unperturbed trajectory, we
simply perform an integration over time to determinewn. At
each order,Kn is chosen such that it cancels the terms that
average to a nonzero value over fast oscillations. As a result,
the corresponding value ofwn will have a zero average. This
is necessary to preventwn from being secular(unbounded) in
time [12].

Using Eq. (5), and the Deprit series expression for the
operatorsL and T, the inverse transformation operator to
third order may be expressed as

T0
−1 = I , s8ad

T1
−1 = L1, s8bd

T2
−1 = 1

2L2 + 1
2L1

2, s8cd

T3
−1 = 1

3L3 + 1
6L1L2 + 1

3L2L1 + 1
6L1

3. s8dd

It may be noted that whenL, T, and T−1 act upon any
phase space function, they are expressed in the form of Pois-
son brackets, which are independent of the canonical vari-
ables used. This makes the whole formulation canonically
invariant. For a systematic derivation of all these relation-
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ships one may refer to Ref.[12] where they are given up to
fourth order. A shorter description of the same may be found
in Ref. [18].

III. APPLICATION TO A LINEAR SINUSOIDAL
FOCUSING SYSTEM

As an illustration and a test for the validity of the method,
we perform the analysis for a linear periodic focusing sys-
tem. The same example was used in Ref.[9] for the method
developed in that paper. The single-particle Hamiltonian as-
sociated with such a system is given by

H =
p2

2
+

kq2

2
sinsvtd. s9d

This Hamiltonian also describes the motion of a particle in
systems such as the Paul trap and the ponderomotive poten-
tial. We apply Eqs.s7d to perform the averaging. As ex-
plained in the preceding section, we setH0=0 andH1=H.
From Eq.s7ad we get

K0 = H0 = 0. s10d

Applying the first-order relationship, Eq.s7bd, we get

] w1

] t
= K1 −

p2

2
−

kq2

2
sinsvtd. s11d

The third term on the right averages to zero with respect to
time. In order that the net result average to zero, we require

K1 =
p2

2
. s12d

Since w1 is relevant only up to an additive constant, it is
sufficient to evaluate the indefinite integral to determinew1,
hence

w1 =
kq2

2v
cossvtd. s13d

The second-order equation, Eq.s7cd, gives

] w2

] t
= 2K2 −

2kpq

v
cossvtd. s14d

Since the second term on the right side averages to zero, we
choose

K2 = 0, s15d

and so,

w2 = −
2kqp

v2 sinsvtd. s16d

Applying the third-order relationship, Eq.s10d then gives

] w3

] t
= 3K3 +

3p2k

v2 sinsvtd−
k2q2

v2 sin2svtd −
k2q2

2v2 cos2svtd.

s17d

Note that the third and fourth terms on the right side do not
average to zero. In order that they cancel, we set

K3 =
1

4

k2q2

v2 s18d

and as a result,

w3 = −
3p2k

v3 cossvtd. s19d

Collecting the nonzero terms, the transformed Hamiltonian is
now given as a function of the new variables by

K =
P2

2
+

V2Q2

2
, s20d

whereV=k/Î2v. This is the Hamiltonian for a harmonic
oscillator with solution

Qstd = Qs0dcossVtd +
Ps0d

V
sinsVtd, s21d

Pstd = Ps0dcossVtd − VQs0dsinsVtd. s22d

To transform back to the original coordinate system, we use
the operatorT−1 for which we need to knowL up to the
desired order. The operatorsLn can be expressed in terms of
the values ofwn as

L1 = HkQ2

2v
cossvtd,J , s23d

L2 = H−
2kQP

v2 sinsvtd,J , s24d

L3 = H−
3kP2

v3 cossvtd,J . s25d

Using these to perform the inverse transformation as de-
scribed by Eqs.s8d, we get, up to third order,

q = Q +
kQ

v2 sinsvtd +
2kP

v3 cossvtd, s26d

p = P +
kQ

v
cossvtd −

kP

v2sinsvtd+
1

3

k2

v3Q sinsvtdcossvtd.

s27d

The above solution is compared with calculations from a
fourth-order symplectic integratorf19,20g and is shown in
Figs. 1 and 2. The parameters used were the same as those
used in Ref.f9g. The accuracy of the approximate solution
compares well with that obtained by Channelf9g using a
different method. That is, the solution given by Eqs.s26d and
s27d overlaps well with the numerical solution fork/v2

=1/16 and theaccuracy gradually decreases with decreas-
ing v.
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IV. SINGLE PARTICLE AVERAGING FOR A NONLINEAR
LATTICE

A. Alternate gradient sextupoles and quadrupoles

The external magnetic fields in the beam channel are ex-
pected to satisfy Maxwell’s equations in vacuum which are

given by¹W 3BW =0, ¹W ·BW =0. The two-dimensional multipole
expansion expression for such a magnetic field is

By + iBx = B0o
n=0

`

sbn + iandsx + iydn. s28d

Ideally,bn andan must be constants for the above to be valid.
However, when analyzing alternate gradient focusing sys-
tems, they are regarded as step functions of the axial dis-
tance. This is still valid if fringe effects are disregarded.

FIG. 1. q vs t with k=1, v=sad4 , (b) 3, (c) 2.5, and(d) 2. The solid line represents the numerical solution.

FIG. 2. p vs t with k=1, v=sad4, (b) 3, (c) 2.5, and(d) 2. The solid line represents the numerical solution.
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The orientation of the reference frame can be chosen such
that a1=0. Assuming the presence of only quadrupolesn
=1d terms and sextupolesn=2d terms, b1, a2 and b3 will
generally be nonzero. The velocity of the particle in thez
direction is assumed to be constant. The resulting Hamil-
tonian can be obtained from the Lorentz force. In cylindrical
coordinates it is,

H =
1

2
Spr

2 +
l2

r2D +
1

2
k2ssdr2coss2ud+

1

3
k3ssdr3coss3u + ad.

s29d

The variables is the distance along the axis, which is equiva-
lent to time for constant axial velocity. The momentum in the
radial direction ispr and l is the angular momentum. The
values ofk2ssd and k3ssd depend upon the strength of the
quadrupole and sextupole magnets, respectively, and also the
velocity of the particle in the axial direction. The anglea
depends upon the relative values ofa2 andb2, which is de-
termined by the orientation of the sextupoles with respect to
the quadrupoles. We use normalized units in which the
charge and mass of the particle are unity. It is assumed that
the Hamiltonian is periodic ins with periodicity S, i.e.,
k2ss+Sd=k2ssd and k3ss+Sd=k3ssd. It is further assumed
that the average ofk2ssd and k3ssd over a periodS is zero.
That is,

kk2l =
1

S
E

s

s+S

k2ssdds= 0 s30d

and the same fork3. The angular bracketsk¯l denote an
average over one period in the rest of this section. With these
conditions,k2 and k3 can in general be represented in the
form of Fourier series as

k2ssd = o
n=1

n=`

fn sinS2nps

S
D + o

n=1

n=`

gncosS2nps

S
D s31d

and

k3ssd = o
n=1

n=`

kn sinS2nps

S
D + o

n=1

n=`

ln cosS2nps

S
D . s32d

However, the analysis in this section will show that it would
be desirable for the above series to satisfy certain restric-
tions.

The averaging procedure to follow is valid when the av-
eraged orbits are slowly varying over one lattice periodS.
The procedure is identical to the one used in the preceding
section except that the algebra is more tedious since the
Hamiltonian is more complex. Once again, we setH0=0 and
H1=H. From Eq. (7b) we get K0=H0=0. Equation (7c)
yields

] w1

] s
= K1 −

1

2
Spr

2 +
l2

r2D −
1

2
k2ssdr2coss2ud

−
1

3
k3ssdr3coss3u + ad. s33d

From Eqs.s31d and s32d it follows that kk2
I l=kk3

I l=0. The
roman numerical superscript indicates an integral overs with
a constant of integration chosen so that the integral has a
zero average over one lattice periodS. Similarly, a super-
script “II” will indicate a double integration overs with the
same conditions, and so on. ChoosingK1 to cancel the terms
with a nonzero average value then gives

K1 =
1

2
Spr

2 +
l2

r2D . s34d

Integrating Eq.s39d yields

w1 = − f 1
2k2

I ssdr2coss2ud + 1
3k3

I ssdr3coss3u + adg . s35d

Proceeding to evaluate the second-order termw2 from Eq.
(7c) and noting thatL1=hw1,j, we get

] w2

] s
= 2K2 + 2prfk2

I ssdr coss2ud + k3
I ssdr2coss3u + adg

− 2lfk2
I ssdsins2ud + k3

I ssdr sins3u + adg. s36d

Given thatkk2
I l=kk3

I l=0, we must chooseK2=0 since there
are no nonzero average terms. On integrating the above
equation, we find

w2 = 2prfk2
IIr coss2ud + k3

IIssdr2coss3u + adg

− 2lfk2
IIssdsins2ud + k3

IIssdr sins3u + adg. s37d

Knowing w2, we can proceed to the next order to calculate
w3 andK3. Applying Eq. s7dd we get

] w3

] s
= 3K3 − 3pr

2fk2
IIssdcoss2ud + 2k3

IIssdr coss3u + adg + 3lprfk3
IIssdsins3u + adg

+ 3
prl

r
f2k2

IIssdsins2ud + 3k3
IIssdr sins3u + adg + 3

l2

r2f2k2
IIssdcoss2ud + 3k3

IIssdr coss3u + adg

+ fk2
IIssdr coss2ud + k3

IIr2coss3u + adgfk2ssdr coss2ud + k3r
2coss3u + adg

+ fk2
IIssdsins2ud + k3

IIssdr sins3u + adgfk2ssdr2sins2ud + k3ssdr3sins3u + adg
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−
1

2
fk2

I ssdr coss2ud + k3
I ssdr2coss3u + adg2 −

1

2
fk2

I ssdr sins2ud + k3
I ssdr2sins3u + adg2. s38d

From Eqs.(31) and (32) one can easily identify the terms
that average to zero over fast oscillations and those that do
not. Once againK3 is chosen such that it cancels the terms
that average to a nonzero value. On simplifying certain av-
eraged terms from integration by parts, the third-order trans-
formed Hamiltonian may be expressed as

K3 = 1
2ksk2

I d2lr2 − 1
3kk2

I k3
I lr3cossu + ad + 1

2ksk3
I d2lr4.

s39d

Since the HamiltonianK is defined in the transformed coor-
dinate system, the variables must be replaced by the corre-
sponding transformed variables, R andQ, in the above equa-
tion as well as in Eq.s34d.

In order forK3 to be independent ofQ, kk2
I k3

I l must van-
ish. It is clear from Eqs.(31) and(32) that one way this can
be accomplished is ifk2ssd can be expressed as a pure cosine
series andk3ssd as a pure sine series. Figure 3 represents a
practical design fork2ssd andk3ssd which satisfies this con-
dition. This is a specific case where the two lattices have
equal periodicity. In this case,k2ssd and k3ssd are periodic
step functions alternating in sign and with opposite parity,
which is equivalent to a phase lag of a quarter lattice period
with respect to each other. It may be noted that once theQ
dependence is eliminated, the nonlinear force is purely fo-
cusing and leads to a positive tune shift. This design is only
the simplest method of realizing optimum integrability and
need not necessarily be the most practical one for real ma-
chines. However, the formulation of this condition is general
enough to accommodate other designs that are possibly
easier to implement. The general procedure to apply this is to
first expressk2ssd andk3ssd of an existing design in the form
of Eqs.(31) and (32). Then the coefficientkk2

I k3
I l will need

to be evaluated. This would then tell us how to reposition the
magnets in order to minimize this. Numerical results in Sec.

IV will show that considerable improvement in the dynamic
aperture can be accomplished even ifkk2

I k3
I l does not com-

pletely vanish but is small enough.
The purpose of choosingK3 to be independent ofQ is to

look for a system with improved integrability and thereby
improve confinement by reducing chaos. According to the
Kolmogorov-Arnold-Moser(KAM ) theorem, a system per-
turbed from integrability will consist of regions of regular
motion and regions of chaos with the latter approaching zero
exponentially as the system approaches integrability. This
system would be perfectly integrable if theQ dependence
could be completely eliminated. However, the fourth-order
perturbation term will retain theQ dependence. Despite this,
the numerical results in the following sections will show that
restricting the integrability up to third order makes a signifi-
cant improvement in confinement in accordance with the
KAM theorem. It is likely that a few mutipoles or other
components such as undulators in synchrotron radiation
sources cannot be incorporated in the averaging procedure.
Another such example would be beam-beam interactions at
interaction point of a storage ring collider where there might
be many multipoles located at the same place. Superposing
these additional effects randomly to the existing lattice
would invariably make the system less integrable. In such a
situation, it becomes even more important to obtain a system
with optimum integrability since the KAM theorem would
still guarantee that there exists a region in phase space with
particles having regular trajectories. One could also consider
using the method in Ref.[21] to implement the additional
nonlinear components to a lattice that has already been de-
signed to be nearly integrable using the method suggested
here.

B. Alternate gradient quadrupoles, sextupoles, and octupoles

Although the analysis in the preceding section used only
sextupoles, this can be extended to include higher multi-
poles. For example, if octupoles are used in addition to the
sextupoles, the Hamiltonian would be

H =
1

2
Spr

2 +
l2

r2D +
1

2
k2ssdr2coss2ud+

1

3
k3ssdr3coss3u + ad

+
1

4
k3ssdr4coss4u + gd, s40d

where g represents the orientation of the octupoles. The
third-order transformed Hamiltonian will then be

K3 = 1
2ksk2

I d2lr2 + 1
2ksk3

I d2lr4 + 1
2ksk4

I d2lr6− 1
3kk2

I k3
I lr3cossu

+ ad − 1
3kk2

I k4
I lr4coss2u + gd− 1

3kk3
I k4

I lr5cossu + a + gd.

s41d

The conditionskk2
I k3

I l=0, kk2
I k4

I l=0, and kk3
I k4

I l=0 would

FIG. 3. A step function lattice that will lead to a near integrable
condition. The shorter steps represent the sextupole functionk3ssd
while the higher ones the quadrupole functionk2ssd.
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optimize the integrability of such a system. A practical but
idealized design for this to be satisfied is given in Fig. 4.

V. SINGLE-PARTICLE TRAJECTORIES WITH NONZERO
ANGULAR MOMENTUM

To show that particles are better confined when the 90°
phase difference condition is satisfied, numerical calculations
were performed using the original Hamiltonian. The results
are discussed in this and the following sections. Calculations
were performed using a fourth-order symplectic integrator
[19,20] in Cartesian coordinates. Cartesian coordinates are
more convenient for numerical calculations as they enable
one to avoid the singularity at the origin arising in the cylin-
drical coordinate system. The focusing channel consisted of
alternating gradient quadrupoles and sextupoles with various
phase differences betweenk2ssd and k3ssd. The sextupoles

were oriented such thata=−45°. In Cartesian coordinates,
the force due to quadrupoles is given by

FW = k2ssdsxx̂− yŷd. s42d

and that due to the sextupolesswith a=−45°d is given by

FW = k3ssdfsx2 − y2 + 2xydx̂ + sx2 − y2 − 2xydŷg. s43d

We define a radial distanceR= 1
3uk2u / uk3u, whereu−−u cor-

responds to the positive nonzero values of the respective step
function. The ratiouk2u / uk3u represents a measure of the po-
sition where the forces due to the linear and nonlinear com-
ponents become comparable. The tune shift due to the non-
linear force was close to 15% for a particle initially atr =R
andu=45°. The fill factorh is defined as the ratio between
the length of the magnets and the length of one lattice period.
This was set to 0.2 for both, the quadrupoles and sextupoles.
This is typical for most applications. For example, the stor-
age ring of the advanced photon source has a fill factor of
about 0.21 for quadrupoles. When expressed in units ofS, h
is the smallest time scale to be resolved and so the time step
in the computation needs to be much smaller thanh. In all
the computations, this time step was set to 0.01h. The pa-
rameterk2ssd has units of frequency squared so we can de-
fine another dimensionless quantity asuk2uS2 to which the
value of 8.0 was assigned for all calculations. This corre-
sponds to about seven lattice periods per betatron radial os-
cillation about the origin. The separation between the qua-
drupoles and sextupoles is represented by a term

FIG. 4. A step function lattice leading to a near integrable con-
dition. The shortest steps represent the octupole functionk4ssd,
while the higher ones the sextupole functionk3ssd, and the highest
ones the quadrupole functionk2ssd.

FIG. 5. Radial oscillation of particles for(a) c=90°, (b) c=60°, (c) c=30°, (d) c=0°.
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c =
2pDs

S
, s44d

where Ds is the spatial distance between the two of them.
The averaged HamiltonianK is independent ofQ when c
=90°, i.e., when the sextupoles are placed halfway be-
tween two quadrupoles of opposite sign. The values ofR,
h, uk2uS2, andc completely specify the focusing system.

When a system is azimuthally symmetric, angular mo-
mentum is conserved. In this system, whenc=90°, the an-
gular momentum is nearly conserved because the averaged
angular momentum is azimuthally symmetric. As one devi-
ates fromc=90°, the dependence onu becomes stronger and
the variation of angular momentum becomes more signifi-
cant. This would lead to increased chaotic motion. In order to
verify this, as an example, we examined the trajectory of a
particle atr =0.15R. The particle had an initial velocity of
0.05R/S in a direction perpendicular to its initial displace-
ment.

The results of these calculations with respect to different
values ofc are shown in Fig. 5. The rapid variation in am-
plitude represents the lattice oscillations. The values ofc
used were 90°, 60°, 30°, and 0°, respectively. It is clear that
there is a transition to chaotic motion asc deviates from 90°.
For c=90°, the maximum amplitude of oscillation is rela-
tively small. Whenc changes to 60°, the maximum ampli-
tude increases. Atc=60°, we see that additional frequency
components are added to the oscillation. Whenc=0, the
sextupoles and quadrupoles overlap. In this situation the mo-
tion is chaotic. There is no observable repetition in the mo-
tion of the particle and it travels well beyond the maximum

radial distance attained in thec=90° case. This transition
would have been more rapid if the initial position of the
particle was further away from the center. It is sufficient to
examine cases where the phase lag between the quadrupoles
and sextupoles,c, varies from 0° to 90°. Phase differences
outside this range can be mapped back to a corresponding
point between 0° and 90° by making an appropriate linear
transformation inu.

The requirement of reduced chaos becomes important
when sextupoles or other higher multipoles are present in
certain segments of a storage ring where this segment is pe-
riodically encountered by the particles. With reduced integra-
bility, the motion becomes sensitive to the initial conditions
of the particle at the entrance of the segment. This would
eventually lead to increase in oscillation amplitude in the rest
of the channel and consequently limit the dynamic aperture
of the storage ring.

VI. ESTIMATION OF DYNAMIC APERTURE FOR
DIFFERENT CASES

The dynamic aperture is defined as the volume in phase
space in which all particles remain confined throughout their
trajectories in the accelerator. The calculations in this section
estimate the projection of the dynamic aperture onto various
phase space planes for different values ofc. In order to
perform these calculations, we used 5000 particles that were
initially distributed uniformly over the respective plane in
phase space, and these were then evolved for 500 lattice
periods. It was assumed that particles that travel beyondr
=R at any time during this period are not confined. After

FIG. 6. Initial distribution of confined and unconfined particles lying on thex-y plane forc= (a) 0°, (b) 30°, (c) 60°, (d) 90°.

FIG. 7. Initial distribution of confined and unconfined particles lying on thepx-py plane forc= (a) 0°, (b) 30°, (c) 60°, (d) 90°.
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identifying the particles that remain confined and those that
do not, the initial distribution was separated and the positions
of these two sets of particles were plotted. In Figs. 6–8 the
left side represents the initial phase space positions of con-
fined particles and the ones on the right represent the uncon-
fined particles from the same initial distribution. It is impor-
tant to plot the confined and unconfined particles separately
in order to ensure that there is no overlap between the two
regions, which is true in these simulations. This is expected
because all the phase space variables other than those shown
in the respective plot were set to zero. Given that the dy-
namic aperture allows only confined particles and not a mix-
ture of the two, the left side plots represent the projection of
the dynamic aperture onto the respective plane.

Figure 6 shows particles lying in thex-y plane that were
all initially at rest and distributed uniformly within a circle of
radiusr =R. It may be noticed that whenc is 0°, a very small
number of these particles are confined. This is the case when
the quadrupoles and sextupoles completely overlap. The con-
finement increases very rapidly as one deviates fromc=0°.
The area containing the confined particles then gradually in-
creases, reaching a maximum whenc=90° as predicted by
the analytic result of the preceding section. Another interest-
ing feature revealed by these plots is that the area of confine-
ment acquires sharper corners with increasingc.

Figure 7 shows confined and unconfined particles from
the initial distribution spread out in momentum space. These
particles are all located initially atx=y=0 and distributed
uniformly within a circle of radiusP=0.44R/S. Once again,
a rapid improvement in confinement is seen as one deviates
from c=0° and there is then a gradual improvement asc
approaches 90°. Unlike the previous case, the boundary of
the region of confinement is smooth for all values ofc. We
also see that the dynamic aperture attains a more circular
shape forc=90° which could be attributed to weaker depen-
dence of the dynamics onu.

Figure 8 shows particles distributed over an ellipse such
that

x2

R2 +
px

2

s2Pd2 , 1, s45d

while all other phase space values are zero. Qualitatively, the
same behavior is noticeable as in the previous cases. The
figures also show that the shape of the dynamic aperture

exhibits less symmetry about the origin along thex axis asc
decreases from 90°.This is also a reflection of increased
symmetry in the dynamics alongu.

In contrast to the dramatic improvement in the dynamic
aperture seen whenf was close to zero, there was only a
small improvement whenc changed from 60° to 90°. This
phenomena is important in applications where it is not pos-
sible to achieve the idealized condition due to other practical
limitations often demanding that such theoretically derived
conditions be sufficiently robust to be useful. Improvement
in the region of confinement, which is directly related to
increased size of the dynamic aperture is an important aspect
in improving the performance of particle accelerators. It has
been shown how the presence of higher order poles can limit
the size of the dynamic aperture in circular accelerators[22].

VII. SUMMARY

In this paper, a condition for improved dynamic aperture
is derived for nonlinear lattices in particle accelerators. To
start with, the Lie transform perturbation method is presented
for averaging over fast time scales. The validity of the
method is first verified numerically for a linear periodic fo-
cusing system. This averaging procedure is then applied to
nonlinear focusing systems with quadrupoles and sextupoles.
The Hamiltonian of this system contains terms with mixed
variables, a situation in which the Lie transform method
greatly simplifies the analysis. This analysis yields a condi-
tion for the Hamiltonian to have increased symmetry thereby
reducing chaos and increasing the dynamic aperture. The
condition leads to a canonical transformation where the new
Hamiltonian is independent of its azimuthal variable up to
third order in the perturbation expansion. While the analysis
was performed explicitly for a lattice with quadrupoles and
sextupoles, it was straightforward to show that similar con-
ditions exist when even higher order mutipoles or combina-
tions of these are used. Unlike the traditional approach of
analyzing a nonlinear lattice, no assumption was made that
the nonlinear focusing was small compared to the linear fo-
cusing strength. Hence this analysis is valid even when the
nonlinearity is strong enough that the closed form Courant-
Snyder solutions are not valid.

Numerical calculations were performed for a particular
case in which the focusing components were quadrupoles
and sextupoles represented by periodic step function lattices

FIG. 8. Initial distribution of confined and unconfined particles lying on thex-px plane forc= (a) 0°, (b) 30°, (c) 60°, (d) 90°.
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of equal periodicity. In this case, the condition of azimuthal
symmetry in the transformed frame was satisfied by having a
phase difference ofc=90°, equivalent to a quarter of a lat-
tice period between the quadrupoles and sextupoles. Single-
particle trajectories of particles with angular momentum
showed increased chaotic behavior asc decreased from 90°
to 0°. The size of the dynamic aperture was estimated by
allowing the particles to drift up to a maximum radial dis-
tance which allowed a maximum tune shift of about 15%
when compared to arbitrarily small oscillations. Calculations
showed that the size of the dynamic aperture increased rap-
idly as c increased from 0° and gradually reached a maxi-
mum asc approached 90°. Results showed that the condition
was robust enough for possible practical applications.

While the parameters used in the calculations were real-
istic, they were also simplified. This theory remains to be
applied to parameters specific to real machines. For example,
it would be interesting to apply it in the use of sextupoles for
chromaticity corrections in storage rings with their lattice
periods different from that of the quadrupoles and also hav-

ing a different fill factor. This would still allow conditions for
a near integrable system and so one should expect improved
confinement by imposing the same.

The derivation of the symmetric transformed Hamiltonian
in this paper is expected to benefit various current and pro-
posed applications of nonlinear lattices in particle accelera-
tors. It would also add to previous work on increasing the
dynamic aperture of accelerator lattices in the presence of
nonlinear components[21]. The Lie transform perturbation
method presented here is easily applicable to other areas of
Hamiltonian dynamics as well where it is required to per-
form a time averaging over certain fast time scales.
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This paper demonstrates that transverse beam halos can be controlled by combining nonlinear
focusing and collimation. The study relies on one dimensional, constant focusing particle-in-cell
(PIC) simulations and a particle-core model. Beams with linear and nonlinear focusing are studied.
Calculations with linear focusing confirm previous findings that the extent and density of the halo
depend strongly upon the initial mismatch of the beam. Calculations with nonlinear focusing are
used to study damping in the beam oscillations caused by the mismatch. Although the nonlinear
force damps the beam oscillations, it is accompanied by emittance growth. This process is very
rapid and happens within the first 2-3 envelope oscillations. After this, when the halo is collimated,
further evolution of the beam shows that the halo is not regenerated. The elimination of the beam
halo could allow either a smaller physical aperture for the transport system or it could allow a beam
of higher current in a system with the same physical aperture. This compensates for the loss of
particles due to collimation.

PACS numbers: 29.17.+w,29.27.Bd,41.75.-i

I. INTRODUCTION

A major issue facing the functioning of high current ac-
celerators is beam halo formation. High current acceler-
ators find applications in heavy ion fusion, nuclear waste
treatment, production of tritium, production of radio iso-
topes for medical use and spallation neutron sources [1].
The halo is formed by a small intensity distribution of
particles surrounding the core of the beam. When such
particles drift far away from the characteristic width of
the beam, their loss will lead to the production of resid-
ual radioactivity of the accelerating system. Many of the
above applications require that the number of particles
lost to the system must be less that one part in 105 - 106.
With such a stringent requirement, methods to control
the beam halo can prove very useful. However there has
been relatively less effort spent on devising such methods
when compared to the extensive study that has already
been done to understand the physics of beam halo forma-
tion. The methods employed to study beam halos include
analytic models, multiparticle simulations using mainly
the particle-core model and PIC simulations [2–20] and
also experimental studies [21, 22].

The dependence of the extent of beam halos and the
initial beam mismatch has been studied by Wangler et al,
[15], where it been shown that the maximum dimension-
less particle amplitude Xmax, which is the distance with
respect to the matched beam width, can be described by
an approximate empirical formula, which is,

Xmax = A + B|ln(µ)|. (1)

Here, A and B are weak functions of the tune depression
ratio approximately given by A = B = 4 [15], and µ
is the initial beam mismatch ratio. This result is not a
good estimation for maximum amplitude for µ close to 1.
It has also been shown [23] that in addition to increased
halo extent, the number of halo particles grows with in-

creased initial mismatch ratio. Batygin [24] showed that
one can obtain a better match through nonlinear focusing
for a a prescribed charge distribution leading to reduced
halo. Thus, it is already well established that reducing
the beam mismatch can be an important factor in halo
mitigation.

O’Connell et al [3] traced the trajectories of various
test particles with different initial conditions for beam
in a constant, linear focusing channel. This led to the
discovery of hybrid trajectories, which undergo a reso-
nant interaction with the core which was later analysed
by Gluckstern [2]. The discovery of these hybrid trajec-
tories reveals the limitations on the effectiveness of a one
time beam collimation, an issue that will be addressed in
this paper. The removal of a halo using a multicollima-
tor system has been studied previously [23] for a periodic
linear focusing system.

In the present paper, we propose reducing mismatch by
damping the transverse oscillations of the beam through
nonlinear focusing before collimation to avoid the need
for repeated collimation. Collimation still becomes essen-
tial in this process due the emmitance growth accompa-
nying the nonlinear damping. Our studies are based on a
radial particle-in-cell (PIC) code along with some prelim-
inary studies using a modified particle-core model. This
paper is organized as follows. Section II describes a modi-
fied particle-core model for nonlinear focusing and exam-
ines the effect of nonlinear focusing on beams through
this model. In Sec III, the PIC algorithim and the physi-
cal model used to represent the beam has been described
and simulation results of beam halo formation with dif-
ferent initial mismatches has been presented. In addi-
tion, results showing damping and emittance growth due
to nonlinear focusing are also presented. The PIC sim-
ulation results are then compared with the particle-core
model results. Finally, Sec. IV shows results of a combi-
nation of nonlinear focusing and collimation.
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II. RESULTS FROM A PARTICLE-CORE

MODEL

The particle-core model in this paper serves the pur-
pose of obtaining a qualitatively similar result with a sim-
pler model, thus exhibiting the general nature of the phe-
nomena of damping and emittance growth due to non-
linear focusing. For a linear focusing system, the core is
generally represented by the envelope equation, which is
not valid for a nonlinear focusing system. Since nonlin-
ear focusing is used in this study, the core is simulated
using a different method.

The envelope equation will still be used as a reference
to determine parameters such as mismatch ratio and tune
depression ratio. Consider a uniform, round, thin beam
moving in the axial direction and with a constant axial
velocity in a linear and constant focusing channel. Under
these conditions, the envelope equation describes the os-
cillation of R, the radius of the beam with respect to the
axial distance s which is a time like variable for a beam
with constant axial velocity. This can be expressed as
(see for example [25, 26]).

d2R

ds2
+ k0R − ε2

R3
− K

R
= 0. (2)

The focusing force is represented by k0, K is the space
charge perveance which depends upon the intensity, axial
velocity and charge to mass ratio of the particles [25, 26].
The rms emittance of the beam ε is given by

ε = 4
√

〈x〉2〈vx〉2 − 〈xvx〉2 (3)

where the angle bracket represents an average over the
particle distribution in position space, x is dispacement
along the horizontal axis and vx = dx/ds. For a matched
beam, the radius remains constant at R = R0 satis-
fying the condition, d2R/ds2 = 0. It was shown by
Sacherer [27] that the envelope equation can be gener-
alized to even nonuniform distributions having elliptic
symmetry (in this case, azimuthal symmetry). In such
a case, the radius may be generalized to R = 2a and
R0 = 2a0, where a is the rms width of the beam, and
a0 is the matched rms width. We define a dimension-
less displacement by X = x/a0, a dimensionless velocity
by Vx = vx/

√
koa0, a dimensionless axial distance given

by S =
√

k0s and a dimensionless rms width given by
M = a/a0. The initial mismatch ratio, which is the ini-
tial value of M is represented as µ. All calculations will
be made with respect to these dimensionless quantities.

The tune depression ratio, η = ε/
√

k0R
2

0
is a dimen-

sionless quantity which gives a measure of the ratio be-
tween the wave numbers (or equivalently, frequencies) of
a particle oscillating with and without the effect of space
charge respectively. While this ratio is exact for any in-
core particle in a uniform distribution core, the definition
may be extended to provide information on a general
beam, especially to determine if a beam is space charge
dominated or emittance dominated. A tune depression

ratio close to unity represents an emittance dominated
beam while if η is much less than unity, it is a space
charge dominated beam.

In this paper, the core was simulated through a se-
ries of infinitely long charged cylindrical “sheets” which
could move radially inward or outward. The field on test
particles and the sheets of the core were calculated from
Gauss’ law using a flux weighted averaging scheme [28].
The test particles did not contribute to the field. The
sheets representing the core were advanced in the radial
direction while the test particles were moved along the
”x” and ”y” coordinates. In both the cases, a leap frog
scheme was used.

The sheets that represent the core and the test parti-
cles satisfy the following equation,

d2r

ds2
= F + Fsc, (4)

where r is the radial distance and s is the distance along
the axis. F is the focusing force and Fsc is the space
charge force. The purely linear focusing force had the
form

F = −kor, (5)

while the focusing force with the nonlinearity included
had the form

F = −k1r − k2r
3. (6)

The corresponding space charge densities that balance
the focusing force will be equal to

ρ =
ε0
e

2k0 (7)

and

ρ =
ε0
e

(2k1 + 4k2r
2) (8)

respectively for r < R0, and equal to zero for r > R0,
where R0 is the radius of the matched beam. Here, e
is the charge on the particle and ε0 is the permitivity
in free space. A mismatch is introduced by expanding
or contracting the core and uniformly scaling the charge
density to ensure conservation of charge. In performing
the calculations in this section, we used a core which was
expanded to 1.35 times its matched width. All the sheets
comprising the core were initially at rest. In the absence
of a nonlinearity, the density of the core is uniform, corre-
sponding to a Kapchinskij-Vladmirskij (KV) distribution
[29].

Based on the parameter a0, the matched rms width
according to the envelope equation, we set the linear and
nonlinear focusing parameters such that they satified the
conditions,

k0a0 = k1a0 + k2a
2

0
, (9)

and

k1

k2a2

0

= 4. (10)
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FIG. 1: Linear oscillations. (a) Oscillation of the rms width of
the core with µ = 1.35, (b) particle distribution at minimum
beam width, (c) distribution at maximum beam width.

Equation 9 indicates that the linear and nonlinear focus-
ing forces were equal at the characteristic distace a0, and
these equations together give a measure of how much the
linear force was reduced before introducing the nonlinear
component. To study the distribution of the particles,
5000 test particles were used which had an initial Gaus-
sian distribution with an rms width equal to half the
initial radius of the core. In the linear case, this makes
the core and particle distribution equivalent according to
the envelope equation. The initial distribution was iden-
tical for the linear and nonlinear case corresponding to a
tune depression of 0.1 in the linear focusing channel.

Figure 1(a) shows that the oscillations of the rms width
of the core are sustained in the linear focusing case. This
is because all the sheets in the core are oscillating in
phase and at the same frequency. Figure 1(b) shows the
corresponding phase space distribution of test particles
moving under the influence of this core at the end of these

FIG. 2: Nonlinear oscillations. (a) Oscillation of the rms
width of the core with µ = 1.35, (b) particle distribution at
minimum beam width, (c) distribution at maximum beam
width.

oscillations when the core was at a minimum rms width,
and in Fig 1(c), the core had a minimum rms width.

When nonlinearity is introduced, not only does the
density become nonuniform, but the frequency distribu-
tion of the oscillations of the charged sheets for a mis-
matched beam also becomes nonuniform. This is ex-
pected to lead to damping of the oscillation in the rms
width of the core as shown in Fig. 2(a). The mechanism
is well known in many branches of physics as Landau
damping. In the damping process, the velocity spread
of the beam increases (the beam is heated). Figure 2(b)
shows the corresponding phase space distribution of test
particles moving under the influence of this core at the
end of the oscillations when the core was at a minimum
rms width, and in Fig 2(c), the core had a maximum rms
width.

It is easily noticed that the width of the core does not
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change significantly due to the damping of the oscilla-
tions. This would simplify the task of collimating the
halo. Since the collimator radius has to be larger than
the radius of the core, the phase of the core osillation
becomes an important factor in the linear focusing case,
where the core is seen to expand to almost twice its min-
imum size. The figures 2(b) and (c) also show that the
beam spreads out in velocity space, while the spread in
position space is comparable to the linear focusing case.
The spread in velocity is due to a transfer of energy from
the mismatched core to the velocity distribution of the
particles. However, the particles having a higher kinetic
energy must also overcome a stronger potential gradi-
ent as they drift away from the core. This restricts the
spread in position space which helps restrict the radius
of the collimator in position space.

FIG. 3: Oscillation of the rms width of the beam for µ = (a)
1.5, (b) 1.35, (c) 1.2

FIG. 4: Phase space distribution after about 40 oscillations
at minimum beam width for µ = (a) 1.5, (b) 1.35, (c) 1.2

III. RESULTS FROM PIC SIMULATIONS

The evolution of the beam is now simulated using a
radial PIC code. In these calculations, the charge distri-
butions and forces used were azimuthally symmetric, a
simplified model for which a one-dimensional field solver
is sufficient. Since the fields vary along the radial di-
rection, they are solved using Gauss’s law over a radial
grid. The particles however, are advanced using the leap
frog scheme in cartesian coordinates along the ’x’ and
’y’ axis. This helps avoid problems arising due to singu-
larities at the origin if radial and azimuthal motion was
used [30]. The particles are distributed over the grid us-
ing area weighted averaging while the fields were assigned
to the particles using flux weighted averaging [28].

We examine the halo generated for beams with dif-
ferent initial mismatch ratios. The beam had an initial
Gaussian distribution in position and velocity space. The
tune depression calculated from the corresponding enve-
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FIG. 5: Phase space distribution after about 40 oscillations
at maximum beam width for µ = (a) 1.5, (b) 1.35, (c) 1.2

lope equation was chosen to be 0.1 for all the cases, which
implies that the beam is space charge dominated. We
used 100,000 particles in all the PIC simulations, which
was large enough for the particle distributions to retain
the desired azimuthal symmetry.

Figure 3 shows the oscillation of the normalized rms
width of the beam with an rms mismatch ratio µ of (a)
1.5, (b) 1.35, (c) 1.2. It may be noticed that there is some
initial damping of the oscillations after which a steady
pattern emerges. The small initial damping could be
attributed to the fact that a Gaussian distribution does
not correspond to a Vlasov-Poisson equilibrium, so in
the initial stage of the beam oscillation, one could expect
some remixing of the distribution in phase space.

To examine the halo formation in these beams, the
phase space distribution of the particles is then taken
toward the end of the oscillations for two cases, which are
(1) when the rms width of the distribution is a minimum,
shown in Fig.4 and (2) when it is a maximum shown in

Fig. 5. The relative change in the width of the core
agrees very well with that obtained using the particle-
core for the corresponding initial mismatch of 1.35. It
can also be seen that the extent and intensity of the halo
increases with increased mismatch, which confirms the
need to obtain a reduced mismatch in order to control
halo formation.

Figure 6 shows the damping of the oscilation of the
rms width of beams with nonlinear focusing. The non-
linear focusing is of the same form as Eq. (6) with
k0a0 = k1a0 + k2a

3

0
and k1/(k2a

2

0
) = 4, where a0 is the

matched rms width of the beam as predicted by the enve-
lope equation. The initial distributions were indentical to
the ones used in the linear focusing case. The parameter
µ when defined for a nonlinear focusing case corresponds
to the mismatch ratio in the linear focusing channel for
the same initial distribution. It may be noticed that the
damping takes place in the first 1 − 2 rms oscillations
while it takes about 5− 6 oscillations in the particle core

FIG. 6: Oscillation of the rms width of the beam with non-
linear focusing for µ = (a)1.5, (b) 1.35, (c)1.2
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FIG. 7: Oscillation of the rms width of the beam with non-
linear focusing at minimum beam width for µ = (a)1.5, (b)
1.35, (c)1.2

model. Also, the final amplitude of the oscillation after
the damping is seen to decrease with decrease in µ, the
initial “mismatch”.

Figures 7 and 8 show the corresponding phase space
distribution of the particles when the beam width was a
minimum and a maximum respectively. Similar to the
particle core model results, the rms width of the beam
does not change significantly while oscillating as a conse-
quence of the damping. Also, these figures show that the
particles spread far in velocity space while their spread in
position space is comparable to the linear focusing case.

The PIC simulation results in general show a similar
response to nonlinear focusing when compared to the
particle-core model, which is damping accompanied by
emittance growth. However, we see in Fig. 6 that the
damping is more rapid in the PIC simulations. In the
particle core model, we see a gap between the halo parti-

FIG. 8: Oscillation of the rms width of the beam with non-
linear focusing at maximum beam width for µ = (a) 1.5, (b)
1.35, (c) 1.2

cles and the core for linear focusing which is not seen in
the PIC simulation. This could be attributed to the fact
that the particles in the particle-core model do not con-
tribute to the field due to which they are influenced only
by the perfectly linear oscillations of the core. For the
same initial conditions used in both the models, which is
µ = 1.35, the size of the core and the extent of the halo
was the same for both linear and nonlinear focusing.

IV. COLLIMATION WITH NONLINEAR

FOCUSING

This section will show that the combination of nonlin-
ear focusing and collimation eliminates the beam halos
permanently. There is no established quantitative defi-
nition as yet of a beam halo although recent efforts are
being made to quantify such a halo [31]. The halo was
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FIG. 9: Phase space distribution of particles just before col-
limation for a beam with nonlinear focusing for µ = (a) 1.5,
(b) 1.35, (c) 1.2

visually identified and collimated in phase space over an
ellipse that satisfied the equation,

X2 + Y 2

c2
+

V 2

x
+ V 2

y

d2
= 1. (11)

The values of c and d are given in Table I. Care was
taken so that the high density area constituting core was
not scraped off by examination of enlarged figures of the
distribution. The table also shows that the number of
particles lost due to collimation reduces with reduced
mismatch. Thus, having a small initial mismatch is still
an advantage but this is not possible to achieve in most
practicle applications.

Figure 9 shows the distribution of the particles just
before collimation. The rms width of the beam was at a
maximum for all the cases. Although the collimation was
always perfomed when the rms beam width was a max-
imum, it has been shown previously in this paper that

FIG. 10: Phase space distribution of particles just after col-
limation for a beam with nonlinear focusing for µ = (a)1.5,
(b)1.35, (c)1.2

TABLE I: table specifying the parameters used for collimation
of the beam

µ=1.5 c=2.75 d=2.5 particle loss = 15.15 %
µ=1.3 c=2.75 d=2.5 particle loss = 10.1 %
µ=1.2 c=2.5 d=2.5 particle loss = 6.4 %

the phase of the oscillation is not a critical factor due to
the nonlinear damping. The distribution of these parti-
cles are very similar to the ones seen in Fig.8 although
they were taken at a much earlier stage after the damp-
ing. This shows that there is little change as the beam
propagates once the damping has been achieved.

Fig 10 shows the distribution just after collimatiom.
This distribution shows the that core has been retained
along with some particles surrounding it. For such par-
ticles lying close to the core, there is no existing method
to identify those with stable motion and potential halo
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FIG. 11: Oscillation of the rms width of the beam with non-
linear focusing showing collimation for µ =(a)1.5,(b)1.35, (c)
1.2

particles. We believe that sufficient number of these par-
ticles have been retained to allow this uncertainty.

Figure 11 shows the oscillation of the beam along with
the collimation. The rms size of the beam abrubtly drops
due to the elimination of particles far away from the cen-
ter. It may be noticed that the damping is not affected
and is sustained even after the collimation is performed
which is an important phenomenon that ensures that the
halo is not reproduced.

Figure 12 shows the distribution of particles at the
end of the oscillations shown in Fig. 11 when the rms
width was a maximum. It is clear that the particles that
stray far away from the core are completely eliminated.
These figures may be compared with the corresponding
ones in the previous section for the same mismatch with
linear focusing. Although the distributions were taken
when the rms width was a maximum, this would not
make a significant difference from another phase of the

FIG. 12: Phase space distribution at the end of of oscillations
shown in Fig. 11 for µ = (a)1.5, (b)1.35, (c)1.2

rms oscillation since their amplitudes are already well
damped. The extent of the beam remains the same after
this process regardless of the initial mismatch, while, the
number of particles lost in the collimation increases with
increased mismatch.

The large spread in velocity space which is a result of
the nonlinear damping implies that more particles need
to be collimated away if a small velocity distribution is
desired. Despite this drawback, the absence of a halo
would enable one to have a broader beam that would
more than compensate for the additional loss in parti-
cles. For example, assume that particles cannot be al-
lowed beyond a distance of X = 3. The particle distri-
butions shown in Fig. 12 clearly satisfy the restrictions,
while the ones shown in Figs. 4 and 5 do not because
of the extended halo produced due to linear focusing. In
addition to this, the core itself stretches to X = 3 for
linear focusing as seen in Fig. 5 while Fig. 12 shows that
even the at maximum rms width, the beam is restricted
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to well within a distance of X = 3. All this implies that
the initial beam will have to be considerably narrower in
the case of linear focusing in order to restrict the halo to
within a distance of X = 3 and thus allowing less par-
ticles in the channel. Another point to be noted is that
the nonlinear focusing requires only a localized collima-
tion system, while collimation with linear focusing will
require repeated collimation due to the regeneration of
the halo as already shown by Ikegami [23].

V. SUMMARY

In this paper, we have proposed a new method that
combines nonlinear damping and beam collimation to
control beam halos. Our results showed that particles os-
cillating with large amplitudes compared with the width
of the core can be completely eliminated with this mech-
anism making the need for repeated collimation unnece-
sary.

Particle-core and PIC simulations showed that nonlin-
ear focusing leads to damping thus reducing the beam
mismatch. However, the damping was accompanied by
the particle distribution spreading in the velocity space.
This is a result of transfer of energy stored in the mis-
match to the velocity distribution of the particles. The
high velocity particles are prevented from straying far
away from the beam due to the strong focusing force
exerted by the nonlinear component at large radial dis-
tances. The beam was collimated soon after the nonlin-
ear damping was achieved, and the damped oscillations
prevented further halo formation. Results showed that
the particles with large amplitude oscillations were com-
pletely eliminated. The apparent drawbacks of this pro-
cess is the spread of particles in velocity space because
of which the collimation process results in loss of parti-
cles. However, we argue that the knowledge that beam
halos are controlled would enable one to extend the beam
closer to the walls, thus increasing the beam current that
would more than compensate for the loss in collimation.

It must be mentioned that the model used here was ide-
alized in many respects because it had constant focusing
and was purely radial. While this system is nearly in-
tegrable in the absence of space charge, this would not
be true in real systems with nonlinear focusing compo-
nents. This is because the Courant-Snyder invariants [32]
are broken when nonlinear focusing components like sex-
tupoles or octupoles are used. This will cause the orbits

to be chaotic leading to poor confinement even in the
absence of space charges. However, it has been shown
that [33] it is possible to reduce the nonlinear system to
an equivalent, continuous and radially focusing one upon
averaging over the lattice period given that the nonlinear
components are arranged in a specific manner along with
an alternate gradient quadrupole focusing system. It has
also been shown that this symmetry can be retained in
the presence of space charge forces [34]. We propose the
use of such a lattice for further study involving a two
dimensional study.

Since the method proposed in this paper is not specific
to a particular application, diffret applications will de-
mand conditions that may be different to the ones used
in this paper. For example, collimation of the halo is
being studied for the SNS accumulator ring [35]. The
collimators use scrapers and absorbers to clean the trans-
verse halo. The accumulator ring already has a straight
section dedicated to the collimation system. Applying
the proposed method proposed to such a system will re-
quire more extensive study. This is beacause the tune
depression in this ring is close to unity, in contrast to the
ones chosen in this paper. In addition to this, includ-
ing nonlinear components in a ring will not be straight
forward due to the effect of resonances and beam insta-
bilities. However, one of the advantages of the proposed
method is the fact that the nonlinear damping is only a
transient process. Once the collimation is achieved, the
system may be adiabatically matched to a linear focus-
ing system. The possibility of such a matching has been
analyzed by Batygin [36] and could be considered in such
a study.

Less effort has been spent in devising methods to elim-
inate beam halos when compared to the extensive study
of the properties of halo production itself. This paper
could be an important step toward this direction. The
results are encouraging enough to perform simulations in
higher dimensions using nonlinear focusing components
such as sextupoles or octupoles along with realistic de-
signs for collimators.
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