GID instrumentation notes

Pseudo z-axis geometry

In this geometry, rather than tilting the whole goniometer (or bend the beam down), only the sample is tilted:







The question is now, what is the exit angle  as a function of the detector arm angle ? 

We introduce the rotational matrices for rotations about the x-axis and the z-axis:
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The surface normal can now be written as:
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The scattered wave vector is given by the detector position ():
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Evaluation yields
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The exit angle can now be obtained using the scalar product 
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yielding the final formula
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Special cases:

a) =0: 
sin() = cos() sin() - sin() cos() = sin(-) 
i.e.  = -
b) =90o: 
sin() = cos() sin() 




i.e.  = for small 
c) small ,,, arbitrary : 




 = - cos()

Formula c) will apply for most cases to the G2 setup with the horizontal diffractometer, where  is typically smaller than 10o.

A small correction also applies to the in-plane scattering angle  as compared to the diffractometer angle . In order to calculate , we need to find the projections of the wavevectors ks onto the surface plane. This is easy for the incident beam:
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For the exit beam, we have to calculate the projection of kf onto the surface plane using the Gram-Schmidt orthogonalization scheme:
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Now  can be determined from the scalar product of the in-plane projections:
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I cheated for the last two steps and did the somewhat lengthy calculation with MathCAD’s symbolic math feature. The exact result is
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Now we want to analyze special cases again, to check the formula:

a) =0: cos( cos(i.e., as it should be.
b) small: same as a)
We confirmed that the -correction is minute for the typical values of  below 1º. In this case the  correction is not needed.
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