
Cathodo-luminescence : Part III 40 I. 
The exponential processes require a more complex explanation than is provided 

by the usual mechanism assumed for crystal luminescence. It is suggested that 
Energy dissi- 

pation has proved to be a useful parameter in correlation of results in different 
sections of the work, but for its adequate exploitation requires a knowledge of 
voltage and current changes in phosphors which we do not possess. 

The simple hypothesis of linear voltage change in absorption accounts for some- 
of the experimental results : in view of the complicated nature of luminescence, 
even so far as it is understood, such apparently simple explanations are not to b e  
accepted too readily. There is a need for more experimental work on the lines of 
that recorded in these papers, and a more fundamental study of the electron, 
absorption process in phosphors. 

, the idea of electron traps might be applied to these phenomena. 
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ABSTRACT. Divergence of the incident x-ray beam produces appreciable phase differ- 
ences between Merent parts of a crystal, even in the size range for which h e  broadening 
occurs. It is ordinarily 
negligible, as the increase in the width of the line is of the order of 1-6 t cos 0, where tg 
is the volume of a crystal and 0 is the Bragg angle. The special case of film and source 
equi&stant from the crystal is investigated m greater detail. 

The broadening due to this phase chfference is calculated. 

§ 1. I N T R O D U C T I O N  

N the theoretical treatment of the diffraction of x rays by crystals it is usual to 
consider a parallel incident beam. I n  practice, however, the rays diverge I from a source a few centimetres from the specimen. The source may be real, 

the focus of the x-ray tube, or effective, part of the slit system of the camera. 
X-ray wave-lengths are sufficiently small for the divergence to introduce appreci- 
able phase differences between different parts of a crystal small enough to produce 
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line broadening. It seemed desirable, therefore, to investigate the diffraction 
of divergent x rays by crystals of this order of size, in case the divergence should 
have an appreciable effect on the line broadening, 

It is found that the broadening on the film is of the order of 1 a 6  t cos 0, where ta  is 
the volume of a crystal and 0 is the Bragg angle. T o  this approximation it is 
independent of the radius of the camera and the wave-length of the x rays. The 
broadening is thus negligible for crystals small enough to have their sizes measured 
by line broadening cm.), and it is not practically significant for the larger 
crystals used to give comparison lines. Debye-Scherrer lines would still have a 
finite breadth, due to the non-homogeneity of the incident x rays and imperfections 
in the experimental arrangement, even if diffraction broadening were entirely 
absent. Divergence broadening of the comparison lines would be indistinguish. 
able from broadening due to the finite diameter of the specimen, and would 
disappear in the elimination of the broadening due to experimental conditions by 
methods such as that of Jones (1938). 

The mathematical treatment is greatly simplified in the special case in which 
the Source and the film are equidistant from the specimen. The calculation of the 
integral breadths of reflections from spherical crystals is carried through in detail 
for this case, so that the transition from small-particle (diffraction) broadening to 
large-particle (divergence) broadening can be followed. For any particular 
angle of reflection the integral breadth, ,6, is a minimum for a particle size given by 
t=  ~.OO(Q~)*/COS 0, where Q is the camera radius and h is the wave-length of the 
x rays. This is too small to be 
detected with normal technique. 

The broadening on the film, QP, is 1*40(Qh)*. 

52. D I F F R A C T I O N  O F  D I V E R G E N T  X RAYS 

In figure 1, the source of the x rays is at 0, P is a vector joining the source to the 
centre of gravity of the crystal, Q is a vector from P to the point on the circum- 
ference of the camera at which it is desired to calculate the reflected intensity, 
I-, is a vector from P to thejth unit cell of the crystal, and 20 is the angle of deviation. 

Figure 1. 

T h e  path difference between the rays diffracted from P and P + 4 is 

IP+rjI - PI + I Q - s I  - IQI 
= {(P + rj) (P +I$}* - P+ {(Q -r5) (Q - I$>*- Q 
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. .. . . .(1) 

where p and q are unit vectors in the direction of P and Q. Let p - q = h(h+q), 
where h is the vector of the reciprocal lattice which makes smallest. Then 
4 - h is an integer and rj * M can be dropped from the expression for the path 
difference. Let 

. . . . . . (2) PP qq , p=u/S, and Y= - + - s = - - -  1 1 1 1 
U=- + - 

2Ph 2Qh' 2Ph 2Qh 2Ph 2Qh' 
where Y is a dyadic. 
factor '' being omitted for brevity) 

The amplitude of the reflected beam is then (the (' structure 

G =E, exp {2m'(r5 -q + orj r5 - r5 I. r5)} . . . . . * (3) 

. . . . . . (4) 6 V-lJexp {2.rri(r .- -q +or. r -r T- r>>dv, 

where Vis the volume of one unit cell and the integration is over the volume of the 
crystal. This integral may'be simplified somewhat by a proper choice of axes. 
Let 

a = (p -q)/2 sine, b = (p+ q)/2cos8, y= p x q/sin2@. 
It will readily be seen that a, b, y are unit and orthogonal. -Then 

\Y = U sin2 8aa + S sin 8 cos @ab 

. . . . . . . (5) 

+ 8 sin 8 cos 8ba +U cos2 ebb. . . . . . . (6) 

It is desired to find unit and orthogonal axes a, /3 such that 
YP-a=Aa, V *  p = B p ,  . . . . * . (7) 

where A and B are constants. It can be verified that 

. . . . . , (9) 
A = +{U - I (u2 cos2 28 + 62 sin2 28)* I }, 
B =I *{U + I (ua cos2 28 + a2 sin2 28)* I }, 

r =xa  +yP +zy, q =Sa + V I P  + Cy, 

G = V-lJexp{2n'[xS +yr] + z% + u(x2 +y2 + z2) - Ax2 - By2]}  dv 

and that a-ta and P+b as S+O. With axes in the directions a, p, y, 

= ~-1Jexpi~?ri(xg +yV + , ~ c  + B X ~  +  AY^ + oz2))dv . . . . . . (10) 

= V-lJexp{2m'[(B*x + 5/2B*)2 - S2/4B]}dx~exp{2m'[(A*y +7/2A*)' 

- q / 4 4  }dyJexp{2?ri[(u*z + 5/20*)2 - ~/4u]}dz. . . . . . . (1 1) 
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This integral is difficult tc evaluate for an arbitrary crystal shape, but for a sphere 
whose radius a is large compared with *, A-*, d, it may be evaluated approxi- 
mately by the use of properties of Fresnel integrals. It is well known that 

Xl x12, xa2B c-1, ...... (12) I IIzaexp{2rric3ea}dx I ‘-(2c)-l for x, and x2 of opposite sign and 

-0 for x1 and x2 of the same sign. 
For a sphere, the limits of integration of the three integrals in equation ( 1 1 )  are 
- + (a2 -y2 - 9)*, _+ (a2 - The modulus of the value of the 
first integral in equation (1 1 )  is, therefore, approximately (2B)3  for t2 <4B2{~8 
-ya - za} (i.e. for y2 <{aa - z2 - f2/4Ba)), 0 otherwise. Similarly the modulus of 
the product of the first two integrals is (4AB)-* for va <4A2{a2 - z2 - t2/4B2} (i.e. 
for x2<{a2 -52 /4B2-~2 /4A2) )  and zero otherwise, and the modulus of the triple 
integral is (8ABu)a for c2 <4u2{a2 - t2/4B2 -v2/4A2} (i.e. for ta/4B2 +qa/4A2 
+ c2J4a2 <a2) and zero otherwise. Then the intensity of reflection as a function 
of q is 

a respectively. 

...... (13) I- 1 E2 v2 la H.=VGG*= - 
8ABuV’ 472 + a + 4 0 2  

= 0, otherwise. 
In  other words, the intensity of reflection is approximately constant and equal to 
(8ABuV)-1 within an ellipsoid of semi-axes of lengths 2Ba, 2Aa, 2ua and directions 
a, @, y, approximately constant and equal to zero outside. The total intensity 
I is equal to (8ABuV)-1 times the volume of the ellipsoid : 

I = T. 2Ba. 2Aa. 2ua. (SABaV)-l= 4 71a3V-l, 3 

which is the total number of unit cells, as it should be. The intensity with0 
between 0 and 0+d0 is proportional to the volume of the ellipsoid contained 
between two planes perpendicular to a and a distance 2 cos 0dBjh apart. The 
maximum intensity is, therefore (figure 2), 

2 cos e . H . ~ . 2 u a . T  (g)o = h 
cos0 raT 

- 2h ‘ A B V ’  .(14) - -  - ..... 
where T i s  the semi-diameter of the ellipsoid in the direction of b. 
breadth is therefore 

The integral 

(15) 8s- ...... 1 6ha2AB 
(dI/dB), 3 T cos B 

@ a2 a a2 

4B2 + +m2 
This simplifies considerably for P = Q. For most cameras this is approximately 
true, and the simplified expression will give some estimate of the integral breadth 
due to the divergence of the x-ray beam. 

=- 21 

The explicit expression for T is rather complex ; it may be shown to be 

.=a{ q.a2 - @ . a 2 4  P-a2 a . a . 1 .  ...... (16 )  

The simplified expression is 
T = 2Aa, ...... (17) 
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and the integral breadth becomes 

8haB Sa cos0 cos e 
3cos8 3 ’ Q Q (3=- = -  - = 1.65t - . . . . . . . (18) 

The actual broadening on the film is equal to the camera radius times thp integral 
breadth, i.e. to 1.65 t cos 8. This becomes appreciable when a is a few hundredths 
of a millimetre. 

Figure 2. 

The actual value of the numerical factor in equation (18)  will depend on the 
shape of the crystal, and for non-spherical crystals on the indices of the reflection. 
Equation (1 1) can be evaluated similarly for other simple shapes ; reflectiQn from 
a face of a cubic crystal leads to a factor 2 instead of 1.65. Equation (18)  should, 
however, give the order of magnitude of the effect. 

5 3. DETAILED CALCULATION FOR EQUIDISTANT SOURCE AND FILM 

The whole calculation simplifiis considerably for P=Q, so it is perhaps 
worth while to examine in more detail the transition from small-particle 
(diffraction) broadening to large-particle (divergence) broadening for a spherical 
particle in this special case. Equation (10)  becomes 

G = V-l~exp{2&[& +yq + x5 + o(x2 cos2 e +ya sin2 0 + z2)]}dv, . . . . . . (19) 

where both x and 6 are measured in the direction of h. 
as a function of y1 is 

The intensity of reflection 

H = VGG” = V-1 suJ,, exp ( 2 ~ i  L} dv dv’ if 

LE[[( .  +q(y -y’) + t-(z - z’) + (j.2 -%Q} cos20 
+ (y2 -y’2} sin2 0 + 2 2  - x’2)j * . . . . . (20) 

so that 

- - 2 c o s 0 ~ m m ~ m  1 exp{2ni[l]}dt~dv’d~d~. ......( 21) xv’ - -a 1) 

27 PHYS. SOC. LVJII, 4 
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The integrals with respect to 7 and c are singular, being zero if y‘#y or z’fg, 
and infinite for y’=y and d = z ,  but “by  an appropriate limiting process” 
(Patterson, 1939a, p. 973) it may be shown that the double integrals with respect 
to r ]  and y‘, 5 and z’ each have the value unity. Equation.(21) becomes 

(f$o = y / J J l e x p {  27Tio cos2 O(xa - d2)}dx dy dx dx’. ...... ’ (23) 

This may be expressed in terms of Fresnel integrals and cylindrical coordinates 
(axis in the direction of h) as 

where 

ea*@ COB e 
[C2(u) + S2(u)]u du, 

T - 
- ~v~2cos3e .J  

C(u) + iS(u) = exp (niu2/2)du. 
0 

..... (24) 

T h e  integral breadth is, therefore, 

1-1 . [I:” [cy@) + S2(u)]u du 
21 k a 3  hvu2 cos8 e 

@ =  (drlde)o = 2* - 3 v  n 

(25) w 1 =- ...... 3a COS e * ~ ( 2 ~ * ~  cos e) 
where D(u) = 4 2 4  [CZ(u) + sy.)]u du. ...... (26) 

To progress further it is necessary to evaluate the function D(u). Since 
C2(u)+S2(u)+ua as u+O, its value for small values of U is 1. For large values 
of U, Ca(u)+SZ(u)+, so that the asymptotic value of D(u) is U-2. A series 
convenient for small values of U may be obtained as follows. It is known(Preston, 

0 

1895, p. 276) that ...... (27) 

where M and N are known series satisfying the differential equations 

and, therefore, 
= 2M, d(M2 + N2) 

du 
and 

...... (28) 

...... (29) 

D(u) = 2 ~ ~ 1 7 1 ~ ’  Mu-1d(u2)}d(u2). ...... (30) 
0 
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Integrating the series for M (Preston, p. 275) term by term gives 

2772244 2.rr4us 2GW2 + +.. . #  3 .4 .  -1.3.5 5 . 6 . 1 . 3 . 5 . 7 . 9  - 7.8.1.3.5.7.9.11.13 D(u) = 1 - 

. . . . . . (31) 
The ratio of successive terms in this series is 

- n2u4(2n - 1)(24 
(2n + 1)(2. + 2)(4n - 1)(48 + 1) ' 

which approaches 0 for sufficiently large n for any value of U. 
absolutely convergent for all values of U. 
greater than 2. 

It is therefore 
It is, however, inconvenient for U 

Those for u<2 Table 1 gives some numerical values of D(u). 

Table 1. Values of D(u) 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0-8 0.9 
0 1.0000 
1 0.8969 0.8534 0.8000 0.7373 0.6670 0.5917 0.5151 0.4413 0.3749 0.3190 
2 0.2753 0.2440 0.2226 0.2077 0.1951 0.1821 0.1669 0.1508 0:1371 0.1257 
3 0.1181 0.1118 0.1062 0.0992 0.0921 0.0856 0.0811 0.0774 0.0738 0-0695 
4 0.0653 0.0628 0.0595 0,0569 0.0540 0.0512 0.0491 0.0472 0.0452 0.0430 
5 0.0413 

were calculated from the series, those for u>2 by numerical integration of four- 
place tables of C(u) and s ( ~ ) .  In  the range 0-5-2.0 the greatest difference between 
the values calculated by the two methods is 0-0003 ; the mean difference is about 
0.0001. 

With these values of D(u), the integral breadth for any particular case can 
be calculated by equation (25). There is a minimum value of /3 which occurs 
for D + uD' = 0, i.e. for U = 1.24. 

1 ~ 2 4 / 2 0 * ~ 0 ~ e - 4 0 , 0 0 0 ~ .  for Q-10 cm., h = 2 ~ . ,  8=45". 
The minimum value of ,B is 1 . 4 0 d A i  the actual broadening on the film, 
88, is 1*40d&h = 0.006 mm., an amount undetectable with normal technique. 

Equation (25) and the discussion in the previous paragraph have been given 
in terms of the radius of the particle, a. In terms of the cube root of its volume, t ,  

0.99999 0.99982 0.99911 0.99720 0,99317 0.98590 0.97405 0.95624 0.93101 

The corresponding value of a is 

the expressions become 
1 -0747 h 1 p= - 
tcose * D ( I ~ ~ ~ * C O S ~ ) '  

. . . . . (32) 

t e: 1 .OO/o* cos 0 for minimum /3. 
The minimum values of 8 and Q/3 are unchanged. For t]d&h small, equation 
(32) becomes ,f3 = 1.0747h/t cos 8, in agreement with the results of Patterson 
(1939 b) and Stokes and Wilson (1942). 
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