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[Note added in proof. It has now been shown (Gaydon, 1944b) that the 
predissociation in the First Positive bands of N,, on which the value of 
7-38 ev. for D(N,)  is based, is capable of a different interpretation which leads 
to D (N,) = 9.76 ev., giving D (NO) = 6.49 ev. ( = 52500 cmT1). This is within 
the range of values (51 000 to 61 000 cm+) required by the results reported above. 

Dr. W. Jevons has kindly called my attention to a recent note by Gero, Schniid 
and Szily (1943) in which a rotational analysis of the (0,Z) and (0,3) E bands 
of NO, as obtained in absorption, is briefly reported. They agree in regarding 
the E and y systems as separate and giving B’ = 1.99, compared with the above 
value of 1*9g2. No details of the analysis or discussion of the nature of the 
upper electronic state are given.] 

REFERENCES 
APPLEYARD, E. T. S., 1932. 
DUNHAM, J. L., 1932. 
FLORY, P. J. and JOHNSTON, H. L., 1935. J .  Amer. Chem. Soc. 57, 2641. 
GAYDON, A. G., 1g44a. Proc. Phys. Soc. 56,gs .  1g44b. Nature, Lond., 153, 407. 
GAYDON, A. G. and PENNEY, W. G., 1942. 
GERO, SCHMID and SZILY, 1943. 
GUILLERY, M., 1927. 2. Phys. 42, 121. 
HUNTER, A. and PEARSE, R. W. B., 1936. J .  Sei. Instrum. 13, 303. 
JENKINS, F .  A., BARTON, H. A. and MULLIKEN, R. S., 1927. 
JEVONS, W., 1932. Report on Band Spectra of Diatomzc Molecules (Physical Society, 

London). 
JOHNSON, R. C. and JENKINS, H. G . ,  1926. 
KAPLAN, J . ,  1931. Phys. Rev. 37, 1406. 
MACDONALD, J. Y., 1928. J .  Chem.Y3oc. p. I .  

SCHMID, R., 1928. 2. Phys. 49, 428 ; 1930 a. Ibad. 64, 84 ; 1930 b. Ibid. 64, 279. 

Phys. Rev. 41, 254. 
Phys. Rev. 41, 721. 

Nature, Lond., 150, 406. 
Naturwzssenschaften, 31, 203. 

Phys. Rev. 30, 150. 

Phil. Mag. 2, 621. 

THE DIFFRACTION OF X RAYS BY DISTORTED 
CRYSTAL AGGREGATES-I 

BY A. R. STOKES, 
Senior Rouse Ball Student, Trinity College, Cambridge, 

AND A. J. c. WILSON, 
Cavendish Laboratory, Cambridge 

M S .  received 18 Decembev 1943 

ABSTRACT Broadening of the Debye-Scherrer lines in x-ray photographs of cold- 
worked metals has been attributed (1) to breaking up of the crystals into “ crystallites ” 
whose linear dimensions are 510-6  cm., (11) to the presence of crystal grains of different 
lattice parameters, and (iii) to distortion of comparatively large crystal grains. The 
broadening to be expected on the last hypothesis is worked out approximately. I t  1s 

.found that the “ apparent strain ” is given by 

7 4  cot e= 2/+Rk1(0), 
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where B is the (corrected) integral breadth of the hkl reflection, 0 is the Bragg angle, 
and dhil(e)de is the fraction of the crystal for which the tensherstrain in the hkl direction 
is between e and e t d e .  

In cubic crystals 
fairly plausible assumptions lead to the equation 

T o  relate 7 with the internal stresses requires some approximations. 

79 =A I- BH, 
where A and B are constants involving the elastic moduli and the mean square values of 
the direct and shear stresses, and H_=(k2Z2+Z2h2+h2k2)/(hz+kz~Z~)z. T h s  equation is 
verified within the rather large experiinental error for metal filings and wire. Details of 
the experimental work will be published elsewhere. 

S 1. I N T R O D U C T I O N  

I i~ E - B R 0 A D E N I N G in x-ray photographs of cold-worked metals has been 
Three suggestions have been made L as to its origin: 

(i) that the metal is broken up into “ crystallites” so small (10-5 to 10-8 cm. 
in linear dimensions) that diffraction broadening occurs ; 

(ii) that the metal is broken up into crystals cm. in linear dimensions) 
with different mean lattice parameters ; and 

(iii) that the broadening is due to distortion of fairly large crystals ( - le4  cm. 
in linear dimensions). 

The distinction between the second and third hypotheses is chiefly- in the 
distortion assumed to be present. In  the second hypothesis, the only “dis- 
tortion ” is a uniform expansion or contraction of the whole crystal, whereas 
in the third, non-uniform expansions and contractions, as well as twistsand bends, 
are allowed. 

The first hypothesis is found chiefly in the later papers of Wood (1941,1943), 
the second is associated with Brindley (1940)) and special cases of the third 
have been treated by Dehlinger (1927), Boas (1937)) and others. On the first 
hypothesis, pcos0/A (where p is the corrected integral breadth of the Debye- 
Scherrer line, 0 the Bragg angle and h the x-ray wave-length) should be inde- 
pendent of 8 and A, and on the second and third hypotheses pcote  should be 
independent of 8 and A. The  problem is complicated by the fact that, in addition 
to the general variation of j? with 0, /3 may vary in a complicated way with the 
indices of reflection. On the first (“ fragmentation”) hypothesis, the variation 
will depend on the shape of the fragments (Patterson, 1939; Waller, 1939; 
Stokes and Wilson, 1942), but can hardly be very great. On the second hypo- 
thesis, at any rate in the simple form stated above, no variation would be expected. 
On the third (“ distortion”) hypothesis, the variation would be zero only if the 
tensile strain were, on the average, independent of crystallographic direction. 
As, however, even cubic crystals are not elastically isotropic, this would involve’ 
a variation of stress with crystallographic direction. On general considerations 
of static equilibrium it seems more likely that the stress will be, on the average, 
independent of crystallographic direction. The  resulting variation of tensile 
strain will then produce a variation of p cot 8. 

In  the present paper certain consequences of the third hypothesis are investi- 
gated, In  his discussion of line-broadening by small crystals, Jones (1938) 

the subject of many investigations. 
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found it convenient to introduce a quantity, the (( apparent particle size", 
defined by 

which is independent of wave-length and angle of reflection, and depends only 
on the thickness of the crystal measured perpendicular to the reflecting planes 
(Waller, 1939 ; Stokes and Wilson, 1942). Similarly, in discussing line- 
broadening by internal strains, it is convenient to introduce the (' apparent 
tensile strain " defined by 

which is independent of the wave-length and angle of reflection, and, to the 
approximation to which it has been possible to carry the calculations, depends 
only on the distribution of tensile strains perpendicular to the reflecting planes. 
If the fraction of the crystal for which the tensile strain in the hkl direction lies 
between e and e+de is +,,(e)de, then ( $ 2  below) 

= xlp cos e, ...... (1) 

7 = p  cot 8, ......( 2) 

77 = 2/+hkI(O) ; ......( 3) 
i.e., the apparent strain is twice the integral breadth of the curve giving the dis- 
tribution of tensile strain in the hkl direction. It  is therefore possible to obtain 
+h,@) from measurements of integral breadth. In principle it is possible to 
obtain the whole curve +hkl(e) from photometry of both sharp and broadened 
lines, but it requires a rather complicated analysis of the photometer curves, 
involving the numerical evaluation of Fourier transforms. 

Thus, for any particular reflection, the consequences of hypotheses (ii) and 
(iii) are indistinguishable-to the approximation reached it does not matter 
whether the variation of lattice parameter takes place in a single crystal grain 
or from grain to grain, each grain having a constant lattice parameter. Hypo- 
thesis (iii), however, offers some hope of correlating the variation of 7 with the 
mean stresses and the elastic constants of the material. In  the present paper 
the consequences of the assumption that the stresses are statistically isotropic 
are worked out for two approximations to the stress distribution. Both lead to 
the result that 7 is a function of H~(K212 + Z2h2 + h2K2)/(h2 + K 2  + P ) 2  only. The 
second approximation seems preferable, and leads to the relation 

q2 = A+ BH, ...... (4) 
where A and B are constants depending on the elastic constants of the crystal 
and the mean square values of the direct and shear stresses. This equation is 
verified within the rather large experimental error for Cu and Cu,Ni filings and 
cold-worked Cu wire. The experimental results will be given in detail elsewhere. 

5 2. G E N E R A L  C A L C U L A T I O N  O F  T H E  I N T E G R A L  B R E A D T H S  

It has been shown (Wilson, 1943) that the apparent particle size of imperfect 
crystals is given by 

r + m  

e = ~ o - l J  ' J,d t ,  ......( 5 )  
-a 

where J t  is the mean value of the product FF* of the structure amplitudes of two 
cells separated a distance t in the hkl direction. In a distorted crystal the 
structure amplitude of the unit cell originally at r will differ from that a t  the 
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origin for two reasons: the cell is displaced bodily by an amount u(r), and 
suffers a rotation of +V x U. The effect of the rotation on the phase of the x rays 
scattered from the cell is small compared with that of the displacement, and may 
be neglected in a first approximation. The  structure amplitude of the cell at r 
for the hkl reflection becomes, therefore, 

F' = Fexp { - 2m.h. U} ; 
F is the structure amplitude of a unit cell of the undistorted crystal and 
h =  hb,+ kb,+Zb,, where the bs are the edges of the unit cell of the reciprocal 
lattice. The product of the structure amplitudes of two cells separated a distance 
t in the direction of h is therefore 

...... (6)  

F'F'*= FF*exp{ -2?rih.u(r)} exp{2m'h,u(r+th/l hi)} 

The  mean value of FF'" cannot be evaluated exactly without assuming a 
particular variety of distortion. It is, however, highly improbable that a cold- 
worked metal would contain periodic distortions, and for non-periodic distortions 
the following plausible arguments lead to an approximate general evaluation. 
For large values of t the relative displacements of the cells twill be large and 
random, so that the mean value of F'F" will vanish. For small values of t ,  
u(r + th/ I h ' )  may be expanded in a power series in t ,  and terms in t2 and beyond 
neglected. Then 

Jt = FF'" = FF" exp { 2 d h .  [U(.) + (t/l h J  ) h a  Vu + ... -U(.)]} 

= FF"exp(2rih.  [u(r+th/Ihl)-u(r)]}. ...... (7) 

=FF"exp{2dh: .  h . h / ( h l } .  ...... (8) 
In  this equation Vu is the tensor of which the strain tensor et, is the symmetrical 
part and the rotation tensor wij is the anti-symmetrical part. It is readilyverified 
that the tensile strain in the hkl direction, ehh, is equal to I hl --2 h . V u .  h, SO 

' 

J&FF"exp (27~2.1 hleh,t). ...... (9) 
- 

Equation (9) should therefore be a good approximation to F F *  for any dis- 
tribution of strains that makes J ,  approach zero rapidly for large t .  If the 
fraction of the crystal for which ehh lies between e and e+& is +h,,(e)de, then 

Jt= FF"I+m +hkl(e)exp(2.rrilhl &}de ...... (10) 
-m 

and 
+a 

E =  +,,~(e)exp{2.rrilhlte}dedt, 
-CO 

...... (11) 

p = A/, cos e = 2 tan e/+h,z(o), 
rl = p Cot  e = 2/+hk1(o). 

......( 12) 

....... (13) 
Measurements of integral breadths will therefore give +hkl(0). It is, however, 
possible to obtain +hkl(e) by a complete analysis of photometer curves of broadened 
and unbroadened lines. Suppose that the radiation reflected with an angular 
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deviation between 2 ( 0 + y )  and 2(O+y+dy)  is I(y)dy.  
this paper, equation (4) of Wilson (1943) may be written 

A. R. Stokes and A. J .  C. 1/2;'ilson 

Then, in the notation of 

J -CO 

where N is the number of unit cells in the crystal and M is 2 cos O/A. 
stituting the value of Jt from equation (lo), this becomes 

On sub- 

+ m  + m  
I ( y ) = N F F * I  q5,,z(e)exp{2.irilhIte} exp(2riMyt)dt 

-m --m 

=NFF"$h7d(-My/l h l  ) ...... (15) 
or 

$hkde) - I(- l h l e / M )  - .....( 16) 
$hkZ(O) - - I(0) 

Thus $hkl is the same function of e as I is of -etano. The  elimination of 
incidental broadenings from the observed photometer curves to obtain I ( y )  
involves Fourier analyses of both sharp'and broadened lines. It is being treated 
elsewhere by one of us (Stokes, 1944). 

53. C A L C U L A T I O N  O F  T H E  I N T E G R A L  B R E A D T H S  F O R  
P A R T  I C  U LA R M 0 D E L  S 

The  problem of calculating /3 is thus reduced to the problem of calculating 
the fraction of the crystal for which the tensile strain in the hkZ direction lies 
between 0 and de, i.e. $,,(O)de. This can be done if some particular model 
for the distortion is assumed, or by the use of approximations. Various approxi- 
mations which suggest themselves lead to the result that pcotO is a function 
of H=(K2Z2 + Z2h2 + h2K2)/(h2 + k2 + Z2)2, but the exact form of the function depends 
on the approximations. 

(i) all values of lehh] between zero and a maximum equally likely, and 
ehh = Direct Stress/Young's Modulus ; or 

(ii) mean value of exp ( i x }  equal to exp { -2/2}, where qz is the root mean 
square value of x, the stress being isotropic on the average in each case. 

The assumption (ii) is exact if x is distributed according to a Gaussian error 
curve, and is in any case true as far as terms in $3. One would expect, therefore, 
that (ii) would always be a fair approximation. 

Two of the simplest are 

On approximation (i), $(O) = 1/2(ehh)ma.ax, and 

7 = pcotO = 4(ehh)max. 
If the assumption that the maximum stress is independent of direction is made, 
the maximum value of ehh will be the maximum stress p,,, divided by the 
appropriate value of Young's Modulus, i.e. 

@ cot B = 4PmaL{s12 + 2s4, + (sll - s12 - 2s4,)(h4 + k4 + Z4)/(h2 + k2 + Z2)2}. 

Except that it contains the maximum stress instead of the yield stress, this is 
the expression used by Stokes, Pascoe and Lipson (1943) in interpreting their 

......( 17) 

......( 18) 
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Since h4 + k4 + Z4 = (h2 + k2 + P ) a  - 2 ( k V  + Z*h2 + h%*), results on copper filings. 

equation (18) may be written 

p cot 6 = 4pmaX{sl1 - 2(s1, - sla - 2 ~ , ~ ) ( k * P  + Zaha + h2k2)/(h2 + k2 +la)*} 
= A + B H ,  . . . . ..(19) 

where A and B are constants for a given specimen, and 

H=(k2Z2 + Z2h2 + h2k2)/(ha + K2 + Z2)2. 

Values of H for the reflections commonly appearing on Debye-Scherrer photo- 
graphs are given in the following table. 

hkl 
100 
110 
111 
200 
210 
21 1 

220 
300" 
221" 
310 
311 
222 
320 
321 

400 

- 

- 

Values of H =  (k*P + Z2h2 + h2ka)/(ha + ka + 
ha+ k2+ l a  H hkl ha+k2+Z* H 

1 o*ooo 410" 17 0.055 
2 0.250 322" 17 0.304 
3 0,333 330" 18 0.250 
4 0.000 41 1" 18 0.102 
5 0.160 331 19 0.274 
6 0-250 420 20 0.160 
7 - 421 21 0.190 
8 0.250 332 22 0.316 
9 0.000 - 23 - 
9 0-296 422 24 0.250 

10 0.090 500" 25 o*ooo 
11 0.157 430" 25 0.230 
12 0.333 510" 26 0.037 
13 0.213 431" 26 0.250 
14 0.250 333" 27 0,333 
15  - 511" 27 0.070 
16 0.000 

* Overlappmg reflections. 

On approximation (ii), equation (9) gives 

. . . . . . (20) Jt= FF*exp{ -2n21 h laTht2> ,  
and hence 

+a 
E = J,-l Jt dt = ( 2 ~  I h I 2xh)-f, 

-m 

= ( ~ / 2  sin e ) ( 2 T x ) - * y  
p = xi. COS e = 2(2rqh)* tan e, 
7 = p cot 0 = 2(2~e2,,)*. 

- . . . . . . (21) 

The same result is of course obtained by assuming that ehh is distributed 
according to a Gaussian error curve. Evaluating the constants in 

$ h k d e )  = exp { - ae2) 

in terms ofe2,h gives 

$ h k l ( 4  = ( 2 r G ) - *  exp { - e 2 / 2 m  9 

77 = 2/$hk,(O) = 2 ( 2 4 h ) ' I .  
- 

SO . . . . . . (21) 
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calls for some consideration. 

e h h  = (haell + K2e2, + Z2eS3 + 2KZe2, + 2Zhe3, + 2hkel2)/(h2 + K a  + Z2), 

The calculation of 
referred to the crystal axes, 

In terms of the strains 

or, in terms of the stresses referred to the crystal axes, 

eh h = [h2(sll?ll + '12P22 + ' ld33) + K2(sldll + s l d 2 2  + s12P33) 
+ 12(s12P11 + s12P22 + s1d33) + 4s44k423 
+ 4sPqZhp31+ 4s44hkp12]/(h2 + Ka + 12). 

In finding the mean value z h  of eih,  it is necessary to evaluate an expression 
containing mean values of products of pairs of the ps. It can be shown that, 
when the statistical distribution of stress is spherically symmetrical, 

PE = Pi2 =PE,, 

Pi3 = PS"1 = Pi29 

Pl"1 - PllP22 = 2PZ, 
Pld12 = p22P2-3 = PSdP31 I Pld13 = P22P21 = pad& = 0, 

...... (22) 

- - -  ..... (23) 

...... (24) 

...... (25) 

...... (26) 

(27) 
Pld23 = p22$31 = P.33p12 = 0, ...... (28) 

P3d12 = Pld2.3 P23P31 = O* ...... (29) 

- - -  
P2d33 = P33Pll = P l d 2 2 ,  - - -  
- -  

- - - - - -  
...... . - - -  

- - -  
Using these relations and equation (22) gives 

ef = { [(h2sll + K2s12 + Z2s12)2 + cyclic permutationslp:, 

+ 2[(h2sl2 + K2sll + Z2s12)(h2s12 + hasla + Z2sll) + cyclic permutations]p,,p,, 
+ 16~i,~(K~Z~ + Z2h2 + h2K2)px}/(h2 + K 2  + Z2)2, 

which becomes on reduction 
- 
e2hh = + 2 s 1 2 > 2 ~  - 4s12(s12 + 2sll)p:, 

- 4[(s11- ~ 1 2 ) '  - 4&](K2Z2 + Z2h2 + h2k2)(h2 + K 2  + Z2)-'p%, ...... (30) 

=A' + B'H, ...... (31) 
where A' and B' are independent of the order of reflection and depend only on 
the elastic constants of the metal and the mean square stresses. 

r] = /3 cot 8 = 2[27r(A' + B'H)], 
Then 

...... (32) 
= (A + BH),, 

q2 = A + B H ,  
...... (33) 
...... (34) 

where A and B are constants for a given specimen and 
H=(K2Z2 + Z2h2 + hW)/(h2 + K 2  + Z2)2. 

Experimental results obtained at this laboratory on metal filings and wire are 
in fair agreement with equations (19) and (34). The results are not sufficiently 
accurate to distinguish between them, but on the whole (34) seems preferable, 
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94. C R I T I C I S M S  

Since the calculation given above depends on a number of approximations 

(a) The d$ct  of the rotation of the cells has been neglected in finding F'F'*. 
(b) The distortion is assumed to be-such that the mean value of FF'* tends 

to zero as t increases,' 'and that u(r+th/IhI)-u(r) can be expanded without 
going beyond the term in t for  values of t for which F F "  is not negligible. 

(c )  (1) In  the approximation (i), leading to equation (19)) only the direct 
stresses are taken into account. This renders equation (19) somewhat less 
plausible than equation (34). 

(2) In  the approximation (ii), leading to equation (34), the distribution 
of stresses is assumed nearly normal. A different distribution of stresses would, 
however, only have the effect of changing the constant 2(2n)* in equation (21), 
and would not, therefore, alter the form of equation (34). 

This 
is open to two objections. First, it gives rise to geometrically incompatible 
strains in differently oriented crystals. The  true distribution is more likely to 
be something between isotropic stress and isotropic strain, but the variation 
of 7 with H should still be of the same general kind. Secondly, it neglects the 
fact that the shear stress in some directions is probably relieved by the actiofi of 
slip planes in the crystal. 

It seems certain, therefore, that with sufficiently precise measurements of 
integral breadths, equations (19) and (34) will be found inexact. The  manner 
in which they break down will perhaps indicate where the treatment is in 
greatest need of refinement. 

it wjl1,be well to feiterate them. They are as follows : 

(d )  It is assumed that the stress distribution is statistically isotropic. 
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