Cornell Linear Collider Detector Research

Cornell Interests:

The Cornell group proposes to contribute to development of charged particle tracking for the the N. American "Large Detector" design.

Detector Development (in collaboration with Purdue University) (funding requested through UCLC)

Personnel: R. S. Galik J. Miyamoto (Purdue) D. Peterson I. P. J. Shipsey (Purdue) & students

Event Reconstruction, Pattern Recognition

(funding through the LEPP base grant)

Charged Particle Tracking at the Linear Collider

The challenges:

Momentum resolution

 $\delta p_t/p_t = 4 \times 10^{-5}/\text{Gev} \dots$

(can be achieved with)

2 meter outer radius detector, 3 Tesla
120 μm spatial resolution
10 μm intermediate detector at R=0.4 m
10 μm vertex detector

Track density, Reconstruction efficiency

100 tracks/steradian ... "full" efficiency for "energy flow"

5% occupancy goal requires 1/2000 ster. segmentation example: 1.25cm(r-φ) x 1cm(z) at 50cm(R)

Noise density

"1% by volume" requires more segmentation

Schematic quarter-section of the N. American "Large Detector" including a 2 m radius Time Projection Chamber.

Detector Development, issues

GEM/MicroMegas amplification read-outs are expected to have advantages over traditional anode-amplification read-outs.

Signals are due to electron transport, rather than induction. The signal width is narrow, typically 1 mm, or less, providing improved segmentation and resolution.

ExB effects, present with anode-wire-amplification, are minimized; an improvement in resolution is expected.

But, there are many outstanding issues.

Resolution: How do we balance resolution with the size of the readout ?

GEM/MicroMegas signals may be small compared to the pad width. ⇒ minimal charge sharing e.g. 5mm (\$\$) x 1cm (r) pads (500 thousand pads) The resolution, without charge sharing, is 1.4mm (require < 120 µm).
e.g. 1mm (\$\$) x 1cm (r) pads (2.4 million pads !) ⇒ provides charge sharing The resolution *may* be sufficient but number of channels is prohibitive.

While the electron transport signal is fundamentally narrower than the induction signal, sufficient (anticipated) resolution, in a TPC, has not been demonstrated.

GEM readout: amplification is localized in the GEM holes. Signal is due to electron transport.

Detector Development, Cornell/Purdue Program

Systematic study **spatial resolution** and **signal width** using **GEM/MicroMegas TPC readout** devices

amplification device, details of spacings and gain, pad size and shape gas applied signal isolation/spreading (Signal may require spreading in \$\overline\$ and isolation in R.)

Signal spreading must be optimized for segmentation and resolution.

Spatial resolution and signal width studies using

traditional anode-wire-amplification read-out devices

Investigate a readout using smaller wire spacing to reduce the **ExB** effects.

Ion Feedback measurements

Instrument the high voltage plane, or an intermediate grid.

Tracking studies in a high radiation environment

Studies of signal distortion and electric-field break-down.

Tracking studies in a magnetic field

Cornell has the expertise and utilities to build and operate a superconducting test magnet.

Currently Active/Funded R&D TPC with GEM/MicroMEGAS

Carleton (GEM)

DESY (GEM) (printed cage)

Saclay/Orsay (MicroMegas)

Currently Active/ Funded R&D TPC with GEM or MicroMEGAS

Karlsruhe (fits in DESY magnet)

NIKHEF (GEM)

MPI Munich (wire ampl.)

Currently Active/Funded R&D TPC with GEM/MicroMEGAS

DESY

Saclay

what Purdue can offer

Years of experience with MPGDs, preparation and radiation hardness measurements

Micro Pattern Detector Aging (Radiation Hardness) Example: triple GEM with PCB readout Gas Ar/CO₂ 70/30 (99.99%)

GEM1= 400 V GEM2= 390 V GEM3 =380 V PCB as e⁻ collector

 $\begin{array}{l} Cr \ X\text{-}rays \ \ (5.4 \ KeV) \\ @ \ 6 \ x \ 10^4 \ Hz/mm^2 \ for \ 750 hrs \end{array}$

Gas gain 6,000

Detector performance small (~15% gain loss) after ~ 8 years @LHC 10 cm from IP. Minimal signs of aging.

Best result obtained with a GEM.

Similar result obtained with a MicroMEGAS + GEM

Stolen from I. Shipsey, NIM A 478 (2002) 263

Accumulated charge (mC/mm²)

TPC Test Chamber R&D at Cornell University and Purdue University Three Year Plan

		Plan	Purchases	
(at Cornell)	1 st Year	track definition scintillator trigger small drift chambers test device, TPC power supplies data acquisition	VME crate Computer and LabView controller discriminators for drift chambers TDCs for drift chambers FADCs for TPC (limited) power supply frame power supplies electronics boards \$ 52,000 equipment	
	2 nd Year	expanded TPC superconducting magnet	expanded DAQ	\$ 121,000 equipment
	3rd Year	expanded TPC superconducting magnet	expanded DAQ	\$ 74,000 equipment
(at Purdue)	1 st Year	MPGD readout modules	printed circuit pad read GEMs, MicroMegas	lout planes \$ 10,000 equipment \$ 16,000 student support
	2 nd Year	advances in MPGD readout modules		\$ 10,000 equipment \$ 16,000 estudent support
	3rd Year	advances in MPGD readout modules		\$ 10,000 student support \$ 10,000 equipment \$ 16,000 student support

Short Term Activities

Cornell:

Purchases of electronics, set-up and testing of electronics,

are delayed until we receive UCLC funding from NFS.

(That will be late spring 2003 under the absolute best conditions.)

construction of a first TPC device construction of telescope drift chambers and trigger scintillators

We can start when technical staff and machine shop staff are available, at the completion of the CESR-Wiggler/CLEO-inner-chamber installation, ~ June 2003.

Purdue:

may be ready to construct a readout module