

Mass Production of GEMs (Chicago/Purdue/3M)

Aging of mass produced GEMS (Purdue)

Operation of GEMS in Negative Ion Gases (Purdue/Temple/WSU)

Towards mass production of MICROMEGAS (Purdue/3M)

Jun Miyamoto, Ian Shipsey Purdue University

Reminder: GEM and Micromegas

GEM: o co er er ora ed oisse ara ed an ins a or

emi icaionaes aceine oes

s a e! en "

Micromegas: a micromes s s ained #\$%\$\$\$ µm % ig ins a ing i ars e m i ica ion a es ace e een e anode and e mes

ne s age

Slide stolen from P. Colas Amsterdam Tracking meeting March 31 2003

First Mass Production of Gas Electron Multipliers

(3M Proprietary Flex Circuit Fabrication Technique)

Summary Comparison CERN and 3M GEM

	3M GEM	CERN GEM	
I _{leak}	0.02nA/cm ² @ 600V in air at 40% R.H.	0.005nA/cm ² @ 500V in N ₂	00
Gain $\Delta E/E$ $\Delta G(x,y)/G(x,y)$	~1,000 @ 500V Ar/CO2 7:3 ~16% 9%	~1,000 @ 500V Ar/CO2 7:3 ~18%(typical) 	•••
Electron Transparency	0.9	0/9	••
Ion Feedback	0.9 0.1 at G=20 E _{drift=} 150V/cm	0.08 E _{drift=} 150V/cm	•••
Ageing	To be measured	25 mC/mm ² Triple GEM @ Purdue (2000)	? Table from

1.5mpsey ALC W Cornell, July '03

First mass production of ~2,000 GEMs Preliminary studiesŁ performance is equivalent to GEMs made at CERN. See hep-ex/0304013 & Imaging 2003 proceedings. An ageing study had yet to be done....

First Aging Study of a Single 3M GEM

X-ray beam parallel to the GEM surface Ł homogenous irradiation over a large area: provides a more realistic aging simulation (NEW)

Presented at IEEE 2003, Portland Oct 22 2003 by J. Miyamoto and extended here.

First Aging Study of a Single 3M GEM

Ambient conditions (P,T) gas quality & X-ray tube stability are accounted for with a single wire proportional monitor chamber in the *same* gas system receiving beam from the *same* X-ray tube

Beam to GEM

Spectra are obtained without pile up via an absorber & reduction in the X-ray current

Pulse height of monitor chamber and a single GEM with time

(The fluctuations in gain are due to changes in atmospheric pressure.)

Energy resolution remains constant throughout the experiment

Beginning of ageing study

After 400 hours of irradiation

Total accumulated charge 2.5 mC/mm² (corresponds to ~16,000 years at a LC [ref Lepeltier]).

3M GEM Leakage Current During Irradiation

Leakage current remains in the region expected for a normally functioning GEM throughout the period of irradiation Ł stability of the insulator.

New Application: 3M GEMs for Negative Ion TPC

Application: LC and axion searches (Purdue/Temple/WSU Sept. '03)

also tested)

Towards Development of Mass Produced MICROMEGAS

Development of mass produced MICROMEGAS November-December 2003

1st Spectrum with a Mass Produced MICROMEGAS

Successful operation in Ar-DME gas but the performance (energy resolution) is inferior to a traditional MICROMEGAS presumably due to an observed (severe) lack of uniformity and imperfections in the micromesh.

3M believe they know how to cure this and a new batch of micromesh foils is expected in the next few weeks.

Summary

Mass produced GEMs now tested by a variety of groups performance similar to CERN GEMS (Chicago/Purdue/3M)

NewMass produced GEMs are radiation hard (Purdue). Need
other groups to confirm this result.

NewGEMS operate in negative ion gases
(Purdue/Temple/WSU)

Very New The first steps towards successful mass production of a MICROMEGAS have been taken. In our opinion most of the challenges still lie ahead. However, we are cautiously optimistic. More news (hopefully) in a few weeks. (Purdue/3M)