Studies with the Cornell/Purdue Prototype TPC

Cornell University	Purdue University	Radford University
T. Anous L. Fields R. S. Galik	K. Arndt G. Bolla I. P. J. Shipsey	J. Inman
P. Onyisi		
D. P. Peterson		

Information available at the web site: http://www.lepp.cornell.edu/~dpp/tpc_test_lab_info.html http://www.physics.purdue.edu/msgc

* presentation at Berkeley TPC Workshop	08-April-2006
* presentation at ECFA 2005 Vienna	24-November-2005
* presentation at ALCPG Snowmass	23-August-2005
* presentation at LCWS05, Stanford	21-March-2005
* presentation at TPC mini-workshop, Orsay	12-January-2005
* presentation by Gino Bolla, at Berkeley	March-2005

This project is supported by

the US National Science Foundation (LEPP cooperative agreement, REU program) and by the US Department of Energy (Purdue HEP group base grant) and an LCDRD consortium grant

Topics

Modifications to the TPC since the Vienna meeting

Purdue-3M Micromegas

Description of the Micromegas

Resolution measurements with $Ar CO_2$ and $Ar iso-C_4H_{10}$

Preparations for the ion feedback measurements

Double layer field cage termination transparency

Ion feedback demonstration with wire gas-amplification

TPC

14.6 cm ID field cage - accommodates a 10 cm GEM64 cm drift field length22.2 cm OD outer structure (8.75 inch)

"field cage termination" and "final" return lines for the field cage HV distribution allow trimming the termination bias voltage. Read-out end: field cage termination **readout pad and amplification module** pad biasing boards CLEO II cathode preamps

Electronics upgrade

High voltage system:

-20 kV module, 2 channels available
-2 kV module, 4 channels available
+2 kV module, 4 channels (new)

previously used a NIM modules for +2kV

Readout:

VME crate PC interface card LabView

Struck FADC 56 channels 105 M Hz 14 bit +/- 200 mV input range (least count is 0.025mV) NIM external trigger input circular memory buffer

Purdue-3M Micromegas

Micromegas is commercially made by the 3M corporation in a proprietary subtractive process starting with copper clad Kapton.

Holes are etched in the copper 70 µm spacing (smallest distance) 35 µm diameter

Copper thickness: $9 \ \mu m$?

Pillars are the remains of etched Kapton.
50 μm height
300 μm diameter at base
1 mm spacing, square array

The shiny surface of the pillars is due to charge build-up from the electron microscope.

Title: Copper Electrodes Comment: Kirk Arndt

Date: 03–22–2004 Time: 14:57 Filename: PHYSICS2.TIF

Purdue-3M Micromegas

Devices are delivered on a roll.

There are 2 designs,with and without the extra stand-off ribs.(The designs alternate on the roll.)

Active area is 6 cm square.

We are testing a device without ribs.

D. Peterson, "Studies with the Cornell/Purdue Prototype TPC", Vancouver LC Workshop, 20-07-2006

200

Purdue-3M Micromegas

High magnification photo shows the flat contact section of the pillar.

Micromegas amplification

Plastic frame holds the Micromegas until electrostatic force pulls it in at about 250V.

The wrinkle flattens at about 400V.

56 pad readout

Pillars are located in a 1mm square array. All pads are located at integer x 1mm spacing.

The single 2mm pad layer (at top) is used to define the track angle.

We measure the residual difference from the pair of layers.

$Micromegas \ event-smoothed \ (but no \ common \ mode \ subtraction)$

charge width – pad distribution

The Ar iso- C_4H_{10} charge width is not increasing above 20 cm drift. This may be because the trigger only covers 26cm; tracks with drift > 26cm are due to other tracks in the event. These may be due to tracks at longer drift distance or may be due to delayed tracks correlated with the trigger track. The event selection includes requirements that may reject hits with width > ~ 3mm , thus leaving only the delayed tracks.

hit resolution (2mm pad)

find tracks

require time coincident signals in 5 layers

find PH center using maximum PH pad plus nearest neighbors (total 2 or 3 pads)

fit, deweighting the 5mm pad measurements

track selection

require all (3) 2mm pad layers "non-edge" hits in the adjacent 2mm layers charge sharing in the adjacent 2mm layers (< 95% of charge on one pad)

measure

RMS of difference in residual for the adjacent 2mm layers

correct with : $\sigma = RMS / \sqrt{2}$

As the charge width is less than the pad width, particularly for drift < 15 cm in ArCO₂, when charge is observed on adjacent pads, that charge is not centered on each on the pads.

The charge center of the pads for 2-pad hits is not the geometric center of the pads.

We use the center of an "effective pad width" which gives the best resolution.

Hit Resolution

Ar CO₂(10%) at 430 V

Gain is uncertain

 \simeq 10x gain of 1-GEM ArCO₂ at 410 V

 $\sigma_0 \simeq 170 \ \mu m$, with $C_d = .023 / \sqrt{cm}$, N = 18 (ignoring the low drift bin for 14% CO₂)

1000 1000 Purdue-3M MicroMegas 430 V / 50µm Purdue-3M MicroMegas, 410 V / 50µm 900 Ar-CO2 (~ 10%) 300V/cm drift field, B=0 Ar-C₄H₁₀ (10%) 200V/cm drift field, B=0 900 2mm pads 2mm pads from difference of residuals in 2 adjacent layers from difference of residuals in 2 adjacent layers 800hit selection requires charge sharing 800 hit selection requires charge sharing Preliminary 14-July-2006 700-Preliminary 14-July-2006 700 10% CO2 10% C4H10 600 14% CO2 600 500 500 resolution, μm resolution, μm 400 400 300 300 200 200 100 100 C 20 30 50 60 0 10 40 10 20 30 40 50 60 0 drift distance, cm drift distance, cm

D. Peterson, "Studies with the Cornell/Purdue Prototype TPC", Vancouver LC Workshop, 20-07-2006

Ar iso- C_4H_{10} (10%) at 410 V

(ignoring the low drift bin)

 \simeq 6x gain of Micromegas with CO₂ at 430 V

 $\sigma_0 \simeq 180 \ \mu m$, with $C_d = .048 / \sqrt{cm}$, N = 23

Gain is uncertain

Sparking / Discharging

There was an initial training period to get from 400 V to 430 V, \sim 2 hours.

The trip circuit was set at 40 μ A, for the minimum duration, less than 20 μ s.

Sparks that tripped the HV occurred about 1 per 2 days after the first couple days.

The trip setting was changed to $10 \ \mu$ A, for 0.2 sec.

A new occurrence are the events as shown. (Note 200mv scale)

These could be due to the Micromegas.

These could be an external problem.

They fake a scintillator trigger or are in-time with a scintillator trigger.

Ran for 10 days at 430 V, no trips.

Ion Feedback Measurement

Positive ions are created in the amplification and drift back into the field cage.

We will attempt to measure the ion feedback on the field cage termination plane, for individual tracks.

The method differs from that used by Saclay/Orsay on MicroMegas and by Aachen on GEM. For those measurements, a source was used to create ionization. Current was measured on the cathode.

Ion Feedback Measurement

Require small ion drift time to reduce diffusion. (Expect \sim 7 µs diffusion at 540 µs drift.)

Require large ion drift time because the amplifiers saturate during the voltage ramp. New amplifiers will have a recovery time within this drift time.

Ion Feedback Measurement, field cage termination

single wire-layer

double wire-layer 3.2 mm separation

The single wire-layer field cage termination (shown on slide 16 and above) would not have captured the ions.

When the bias is changed on the wires, it would only distort the neighboring field; it would not create a reverse direction field.

A new double wire-layer field cage termination ensures that there is a reverse direction field.

Field cage termination electron transmission

Tests were performed with the Purdue-3M Micromegas installed.

Installed double layer field cage termination.

Varied the voltage difference between the layers.

Measure pulse height at the anode pads.

~40% transmission at -450 V (150V more negative)

~60% of the ion feedback should be captured by the field cage termination wires

Use the wire amplification for initial tests because it has a predictable, and large, ion feedback fraction.

Use the partial transmission mode of the field cage termination because the bias pulsing circuit, and gated electronic amplifiers that can tolerate the pulsing, are not ready.

The ion feedback signal will be measured on the instrumented field cage termination layer.

Naively, the ion drift time is $T=(.5cm) / [1.535cm^2/(V sec) \times 3406 \text{ V/cm}] = 124 \,\mu\text{s}$, but this does not account for the potential difference in the radial field regions, which is necessary to see the signal.

Upper traces are the cathode pad rows. (25 MHz, 82 µsec full width)

Bottom traces are the instrumented field cage termination cathode wires. $(3.125 \text{ MHz}, 650 \mu \text{sec})$ The fast, in-time, wire signal is on all wires; it is inductive.

There is a second pulse, 203 μ sec later, with average relative pulse height of 5.5%. The delayed pulse is in one channel, typically the peak channel of the inductive pulse.

With +300V/cm between the layers of the field cage termination,

expect more transmission. (Measured full transmission for electrons.)

The pulse delay is 208 μ sec (vs 203).

The relative pulse height is 2.7% (reduced from 5.5%).

The channel with the delayed pulse is consistent with the track seen on the pads.

With +600V/cm between the layers of the field cage termination, expect to further increase transmission, and reduce collection.

The pulse delay is 210 µsec (vs 203).

The relative pulse height is 1.3% (reduced from 5.5%, 2.7%).

Ion Feedback, variation with ion drift distance

Test that the delay time increases with ion drift distance; any electronic source will have a constant time. Again, with ~40% transmission, -166V/cm, in the field cage termination, but with the field cage termination-to-anode spacing is increased to 7mm (from 5 mm), x 1.4.

Pulse delay increases to 246 uses $\sigma = 6$ uses (from 202 uses) x = 1.2

Pulse delay increases to 246 μsec , $\sigma = 6 \ \mu sec$, (from 203 μsec), x 1.2 .

Summary / Outlook

We have operated the Purdue-3M Micromegas in a TPC.

Observed charge width (95% containment/ 6σ) at drift=0 0.6mm in Ar CO₂ (10%) 1.3mm in Ar iso-C₄H₁₀ (10%)

Resolution extrapolates to about 170 μ m with B=0, in both Ar CO₂, Ar iso-C₄H₁₀ Sparking/discharging is not a serious problem.

We have completed initial studies for ion feedback measurements.

We see a signal with wire amplification (with about 50% feedback). A pulsing bias supply for the field cage termination is being developed. Gated preamps for the field cage termination are being developed.

The signals will be very small.

Comparative measurements of GEMs and Micromegas will require high gain, and may require averaging the signal of the predicted channels for many events.

A "bulk Micromaegas" is being prepared on one of our pad boards by Paul Colas.

We have a new display package and analysis program in Microsoft C++.

