LECTURE 10

Single particle acceleration:
Phase stability

Linear Accelerator Dynamics:

Longitudinal equations of motion:
Small amplitude motion
Longitudinal emittance and adiabatic damping
L arge amplitude motion
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We now begin to consider the interaction between the longitudinal
electric field in accelerating cavities or waveguides, and charged
particles.

The most important feature of thisinteraction is the principle of
phase stability.

This applies both to linacs and synchrotrons, both for standing
wave and traveling wave structures.
It isthis feature that allows us to accelerate simultaneously a group
of particles, with a spread in energies and a spread in time: abunch
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Consider 3 particles entering a string of rf cavities (the reasoning is
identical for atravelling wave structure). Oneis at the reference
energy (this particle is called the synchronous particle); one (b) is
slow, and one (@) isfast. The synchronous particle arrives at cavity

lattimetg= 9s and gains energy AEg = eV, Sings.
0]

V., ISthe effective accelerating voltage (includes the transit time
factor).
¢, is called the synchronous phase.

For synchronism, the rf cavities must be spaced by L =hfA,
where h isthe number of rf cycles between cavities (called the
harmonic number), f3, is the synchronous vel ocity after the cavity,

and Aisthe rf wavelength.
Thefast particle, a, arrives at t, <t and gains energy AE, < AEs.
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The slow particle, b, arrives at t, >t and gains energy AE, > AE.
The synchronous particle arrives at the next cavity at the same
phase ¢, (thisis the definition of the synchronous particle: itisin
perfect synchronism with the rf). But, particle a, having gained less
energy and velocity, slips later, while particle b, with a higher
velocity, dlips earlier.

In subsequent cavities, particles aand b will oscillate in phase
about the synchronous particle. This oscillation iscaled a
synchrotron oscillation.

Let’s see how this works out quantitatively.
Linear Accelerator Dynamics:
Longitudinal equations of motion
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The synchronous particle has energy E,, and always arrives at an rf
cavity at atimetg = 9s relative to the rf zero-crossing.
®

The rf cavities are numbered by the index n. We'll measure the
energy of non-synchronous particles relative to that of the
synchronous particle; then, at cavity n, the non-synchronous
particle’ stime and relative energy are

thy AEy=E;—Egp
in which the time is measured from the zero-crossing of therf in

cavity n.

The energy change between one cavity and the next is
. d .

Eni—En= ddEr: = eV, sin(at,), IdES'” = eV, sin(wts) =

d . .

an (AE,) = eV,[sin(at, ) — sin(awtg)]
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inwhichV , isthe effective accelerating voltage at cavity n.
Note that, strictly speaking, for rf cavities, this should be a
difference equation, not a differential equation. However, we'll be
focusing on cases in which the energy change per cavity isasmall
fraction of the energy, so the use of a differential is appropriate.

How does the time t, change from cavity to cavity?

The change in the transit time from one cavity to the next is due to
the change in energy that has occurred as aresult of the
acceleration in the cavity.

Let T, be the transit time from cavity n to cavity n+1.

Then we have
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th=th+Th— Ts,n

dt
thy—th= dirr]] = Tn - Ts,n
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We want to write thisin terms of the small energy difference AE,,
so we Taylor expand
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Cavity n+1




Tn(En):Ts,n(Es,n)+3;Es (En_Es,n)
-I-n(En)_Ts,n(Es,n):(Cj"-;ES AEn

From Lecture 6, p. 32:

dt=ncd;’, in which, for alinac, 11 =5

t
From relativistic kinematics, @ iOLE

P B°E
Putting these together, we have

\<

d_ndE AT L e
t ﬁz E de Esn =1 Es,nﬁs?,n

The transit time for the synchronous particleis

L _hBA_ha

s=
Bc Bc

in which the n subscript is understood. Then

din 1 79T A = Mo sp
dn dEES

S

The two differential equations that govern the longitudinal
dynamics are then

12/4/01 USPAS Lecture 10 9 12/4/01 USPAS Lecture 10 10
so we can ignore their derivatives. Then, we have the second order
dt, _ h/”tnc AE, nonlinear differential equation
dn - Egic

c;jn (AE,) = eV[sin(at,)—sin(ots)]

One second-order equation can be obtained by differentiating the
first equation and using the second:

2
d%t, _Mne d 0y e hd[/lnc]

dn®  EgB2cdn cdn| EjB2
thAnC [sin(aty,) - sin(wts ]+AE [lnc }
Eféc Egpe

We now assume that the energy of the synchronous particle, and
the rf wavelength, vary very slowly with n (compared to AE and t),
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d?t,, th/lnC
a? Bl

Small amplitude synchrotron oscillations

[Si n(wtn) —s n(a)ts)]

WEe're going to start by restricting ourselves to small variationsin
phase from the synchronous phase, to explore some features of this
eguation.

Let At, =t, —tg
If wAt, <<1, then we can expand and approximate
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sin(ot,) —sin(ats) = sin(w(Aty, +ts)) — sin(ots)
= SiNWAL,, COSttg + COSAL, Sinwtg — sin(wts)
~ WAL, COSPg

inwhich ¢g = wtg.

Thisgives usasimple linear differential equation

d2
?(Atn) + (zﬂQs)zAtn =0

_ eVhnc cosgs
2nE e
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This equation describes the small amplitude oscillations of a
particle about the synchronous particle, in both energy and time, as
itisaccelerated in the series of rf cavities.

Q. iscaled the small amplitude synchrotron oscillation tune. It is
the number of synchrotron oscillations between rf cavities. 1t must

be positive for stable motion. For alinac, n¢ = —iz and
S

2 _evheosgs 4 o —g <P < % We only have stable motion

Q = T rS

S 2mEBEYs
for this range of synchronous phase.

Provided that Q2 >0, the motion is simple harmonic:

Using dty _ hne AE,,, we get

dn - EgBic
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nchi

At, = Aty cos27Q.n+ AEy ——&———sn220Q.n
oS A g, T
2
AE,, = AEy cos2nQn — At Msi n27QN
ncha
This can be written in the form of amatrix:
Tlcha, i
cos2Q:n — = ———9n272Q.n
ME " onplEcq, "
= 2
AR | _2mBsEQs sin2zQsn cos2nQn
nchi

which, by analogy with the transverse case, suggests the
introduction of the longitudinal Twiss parameter f3,:
B = ‘T’C‘h/l :i _ nch
Z”ﬁsz EscQs CBs\ 2meVEscosgs
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(To keep B, positive, we need to define it in terms of n¢|. For 1¢
<0, thisrequires aredefinition of AE, to AE, = Eg, — Ey).
Then the longitudinal motionis

At ciosZann BLSIN27QsN ) At
( AE)n —|- ﬁ—si n27Qn  cos2aQNn ( AE)
L

An invariant of the motionis

ﬁlL(At”)z + BL(AE,)? = constant = &,

0

inwhich g_iscalled the longitudinal emittance.
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Longitudinal phase space is formed by the variables AE, and At, .

In this phase space, these variables, evaluated at subsequent rf
cavities, trace out an ellipse, whose arealis rg, .

s AE
AE).. = L
X( max = 5.

At

(At)max = gLﬁL
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The longitudinal emittance for a beam of particlesis defined in the
same way as for the transverse emittance:

The rmslongitudinal emittance is the area (divided by ) of the

ellipse containing 39% of the particles.
If the distri bution is Gaussian, then we have

Jl@0?) = JBrecms

2 gers AE
8=

The rms bunch length of this collection of particlesis given by

J(as?) = [[(BcAt? ) = Boc, BLe rms

=B
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Asin transverse phase space, the local phase space density in
longitudinal phase space is constant (Liouville€ s theorem).

This theorem does not hold in the presence of particle losses,
dissipative processes (like scattering), or damping processes (like
radiation damping or cooling).

For (AE, At) phase space, it does hold in the presence of

acceleration:
The longitudinal emittance g _is an adiabatic invariant: it remains

constant even if the synchronous energy, velocity and phase
change, or if the rf voltage or frequency changes, aslong asthe
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changes are slow compared to a synchrotron oscillation period.
Thus, we have

1
‘e, [ ef2nmc?eVp2ydcose

AE — siL L s/s S

(%Bmac= 5, ( ha? J

I

2mme eVﬁS ys COSQg

So, as we accelerate the beam, or if we increase the rf voltage V,
1

the energy spread(AE)max ( VS ys)4 increases, but the time

2
(At)max :\gLﬁL _( thA )

spread (At)qy o< (VBSYE) 4 4 decreases. Thisis called adiabatic
damping (in longitudinal phase space).
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Example: Fermilab Side-coupled linac
This machine accel erates a proton beam from 116 MeV (the output
of an Alvarez linac) to 400 MeV. There are about 450 cells
(cavities) in about 50 m, so each cell isabout 0.11 m long (the cells
actually vary from about 0.08 m at the low energy end, to 0.13 m
at the high energy end).

The accelerating gradient is about 8.4 MV/m; the transit time
factor is about 0.85; so the acceleration per cell is about
V=8.4x0.85x0.11= 0.78 MV.

The rf frequency is 805 MHz, so A=37.2 cm. The synchronous

phaseis ¢, = 58° The side-coupled cavity structure has  phase
advance per cell, so h=1/2. The longitudinal emittanceis g s =
6.4 eV-usec.
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Using these numbers, we find

Parameter 116 MeV 400 MeV Units
B 0.456 0.713
A 1.12 1.42
L 0.085 0.132 m
Qs 0.032 0.0089
Q. 30.4 1121
B, 9.9x10Y 2.79x10°Y geVv
(o 0.256 0.492 MeV
o/E 0.0022 0.0012
o, 25 13 ps
(o 3.46 2.82 mm
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Large amplitude synchrotron oscillations

We go back to two first-order nonlinear differential equations we
obtained on p. 11:

dtn h/lT]C
n A
an ~ EpZ
(;jn(AEn) = eV[sin(at,) - sin(wty)]
Using the chain rule, and dropping the n subscript in what follows,
we can write

d _d \pdndt
dTb(AE) = an A5 o do
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inwhich ¢ = wt isthe phase of the particle under consideration.
Then we have

d . . EsB2c
— (AE)=eV[sing - e
dq)( )=eVlsing Sn¢S]w)LhnCAE
: . 1
=—|sng-sings|— %5 —
[sing | cos¢sw2ﬁEAE
2

inwhich p2=— A

21 cospsEgfseVe

has been used. So

AEd(AE) = —[i;‘;; jzr;%S] do
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Assuming that ¢, w and 3, are approximately constant during a
synchrotron oscillation, we can integrate both sides to give

E(AE)Z _ [cosg + ¢sings| —[cosgg + go Sings|
2

This equation gives the curve in (AE, ¢) phase space corresponding

to alarge amplitude synchrotron oscillation. This curveis
sometimes called a phase space trajectory.

cosgem’ 37 What do these curves ook like? Here's atypical one
AE
inwhich ¢, is the phase for which AE=0. o .
This can be written as
OOﬁL(AE)Z—i2 (cosg+psings) TR § o
BLo cosgs
2 . ¢ -
=——————(CoSgy + PpSin
/3|_cocos¢s( Po + PoSiNgs) B 9,
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COSP + @SiNgg
The curve crosses the line AE=0 at the two points, ¢, and ¢,, where 1.5
¢, isgivenintermsof ¢, by the equation COSPg + P SiNPg Ul /\%
COS@; + Py SINPs = COSP( + P SINPg 6\ 4\\2 7 )
These two values of ¢ are the bounds of the motion, for this COSPo max
particular phase space trgjectory. +Pomax SNPs g Oy o
! 1,max !

Phase space trajectories corresponding to larger values of ¢, are
possible, up to a maximum @y e,

To seethis,
we plot cos¢ + ¢singg (for ¢, = 0.1).
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o mex ANA @1 1o COIrespond to the maximum extent of bounded
motion possible. For larger values of ¢, the motion is not bounded.

@omax OCCUrS at a minimum in the function cos¢ + ¢sings.
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By differentiating the function, we see that this occurs at
P max =T —Ps
The other bound to the motion may be found from
COSP1 max + P1.max Sings = Cos(” - ¢s) + (” - (bs)si N

=—COSPs + (7 — Ps)SiN s

The phase space trgjectory corresponding to the maximum
bounded motion

AE)? ——— % (cos¢+¢sin
P (AE) ﬂ._cocosqbs( o+¢ ¢s)
=——(c0s¢s — (7 —¢s)SiN
ﬁLa)COS(])S( ds—(m — 9s) q)s)
is called the separatrix: it separates bounded from unbounded
motion
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Separatrix

Bucket AE
AE, P = '
! (117 \ .
\_ﬁ//
q)l,max (I)

0,max

The synchrotron tune decreases as the oscillation amplitude
increases; on the separatrix, the tuneis zero, and the period is
infinite. The areain phase space within the separatrix is called the
bucket.
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The phase space area occupied by the beam (the longitudinal
emittance) must be inside the bucket (typically, well inside: it
would correspond to one of the small ellipsesin the figure above.)
The “height” of the bucket, AE,, determines the energy acceptance
of the accelerator. Thisis given by setting ¢=¢,, and AE=AE, in the

separatrix equation: theresult is

.- 2\1‘(72;; i’s)ta“‘”s

The bucket represents the maximum stable area in phase space.

For zero synchronous phase (no accel eration), the bucket spans
the whole range of ¢ from -xt to =.
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As the synchronous phase increases, the size of the bucket shrinks,
both in phase and in energy.

RF Waveform
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The bucket area, the area within the separatrix (in AE, At phase
space), can be found by integrating over the bucket; the result is
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in which the function f(¢s)is:
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For good performance, the longitudinal emittance of the beam
should be much smaller than the bucket area/r.
Example: Fermilab proton linac again:
$s=58° & ;=6.4 €V-us

Parameter 116 MeV 400 MeV Units
B 0.456 0.713
B. 9.9x10™ 2.79x10" geVv
D1 max 25 25 degrees
02 max 122 122 degrees
AE, 1.3 4.8 MeV
Og 0.256 0.492 MeVv
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