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LECTURE 11

Linear Accelerator Dynamics:
Electron Linacs

Prebunching

Longitudinal dynamics in synchrotrons
Acceleration

Matching and filamentation
Longitudinal “gymnastics”:

Debunching and Bunch rotation

Synchrotron radiation: introduction
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Linear Accelerator Dynamics:
Electron Linacs

In electron linacs, γs gets very large rapidly. From the adiabatic

damping relations, it would appear that ∆E would get very large,

and ∆t would get very small. This does not happen, because the

synchrotron frequency goes to zero for large γs. In electron linacs,

the synchrotron motion becomes “frozen” very rapidly as the beam
is accelerated. Particles remain at the same values of phase and

energy. The time spread ∆t and energy spread ∆E remain

essentially constant, and the relative energy spread ∆E/E decreases

as 1/E.
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What happens in the regime before the beam becomes relativistic?
To address this question, we must go back to the original equations

of motion: we can no longer treat ∆E as a small quantity, since a

particle’s energy will be changing by large fractions of itself in this
regime. We’ll consider the case of an electron travelling wave

linac, and write the equations in terms of the continuous variable s,
corresponding to the continuous acceleration in a travelling wave

linac.
Return to Lecture 10, p. 8:
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In this equation, Tp(s) is the transit time, and βp  is the  (constant)

phase velocity, of the travelling electromagnetic wave.

The energy equation, from Lecture 10, p. 7, becomes
dE s

ds
eE t s

( )
sin ( )= 0 ω

We’d like to get a relation between E and φ=ωt, which will

represent the motion in longitudinal phase space.

Using the chain rule
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we get
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in which φ0 is the phase for which β=βp. For an electron linac, the

phase velocity of the travelling wave is chosen to be vp=c, so βp=1

and we have

ω β φ φ
ceE

E
0

1−( ) = −∞cos cos

as the equation of the trajectories in longitudinal phase space.
φ0 has been renamed φ∞, the asymptotic phase. In terms of the

particle momentum p, and the rf wavelength λ π
ω

= 2 c , we have

2

0

2 2 2π
λ

φ φc
eE

m c p p+ −( ) = − ∞cos cos
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The following figure shows the phase space trajectories for the
case of the CESR Linac, for which λ=10.5 cm, E0 =11 MV/m
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The separatrix corresponds to the trajectory with cosφ∞ = ±1. The
minimum injection energy on this trajectory is for φ=0, for which

m c p p
eE

c
2 2 2 0+ − =min min

λ
π

For the CESR linac case, pmin=164 keV/c (kinetic energy about 26
keV).  Ideally, injection should occur at φ=0, but at an energy well

above the minimum, close to the trajectory with an asymptotic
phase of 90o.

This provides maximum acceleration and minimum phase spread
at the output.

The figures below show the evolution of a series of points in phase
space in the beginning of the CESR linac. The points are at

successive values of s, from 0 to 3 m, in steps of 0.1 m. The input
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phase space is a uniform distribution in φ from –34o
 to 34o (full

time spread 66 ps) and in kinetic energy from 225 to 275 keV.

-0.5 0.5 1 1.5 2
phi(rad)

5

10

15

20

25

30

35
KE (MeV)

1.5 1.6 1.7 1.8 1.9
phi(rad)

31.25

31.5

31.75

32

32.25

32.5

32.75

33
KE (MeV)

s=3 m

s=2.9 m

The output phase space has a full energy spread of about 1 MeV,
and a full phase spread of about 15o (14 ps).
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Note that the phase spread about φ=0 at injection is manifested as

an energy spread at the output. Consequently, it’s important to
have a minimum phase spread at injection. Very short pulses can
be obtained from photoinjectors, but thermionic DC guns with

pulsed grids give nanosecond time scale pulses. A prebuncher is
usually required to reduce the time spread further.

Gun Linac

Prebuncher cavity

Prebuncher rf

Beam from gun

The beam from the
gun is injected into
the prebuncher
cavity so that the
early particles are
decelerated, and the
late ones
accelerated.
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Longitudinal dynamics in synchrotrons

The longitudinal dynamics discussion in lecture 11, which was
given for (non-relativistic) linacs, applies directly, as long as the
appropriate value for ηC is used. For a synchrotron, we must use

the result from lecture 6, p. 32:

η α
γ γ γC C

t
= − = −1 1 1

2 2 2 ,

where α η
ρ γC

C tC
s
s

ds= =∫
1 1

2
( )
( )

 is the momentum compaction factor.

In contrast to linacs, ηC can be positive, and in fact it can change

from negative to positive during acceleration if the machine
crosses transition, i.e., the γ of the beam goes from below γt to
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above γt. What happens at transition crossing is a special topic to

be discussed later.
Above transition, the condition on φs for phase stability changes:

Since we always need to have

Q
eVh

E
s

C s

s s

2
22

= − η φ
π β

cos
>0,

if ηC is positive, cos φs must be negative, i.e., 
π φ π
2

3
2

≤ ≤s .

Note that above transition, higher energy particle take more time to
go around the machine than lower energy particles. This is

sometimes referred to as the “negative mass” effect: the revolution
time increases for faster particles. We will see later that this can, in

some cases, lead to a form of unstable motion.
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Typically more than 1 rf cavity is present in a synchrotron.
Nevertheless, the harmonic number h in a synchrotron is taken to
be the number of rf cycles per revolution (rather than per cavity).

Hence, for example, in our matrix equation
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n refers to the turn number, and the V in
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cos
, and in the expression for βL, refers to the

total voltage per turn (summed over all cavities).
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The shape of the rf buckets are “reversed” above transition (the
pointy end is at small values of φ):
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There are h such buckets around the machine, and there may be h
synchronous particles at the center of each one. Thus the machine

can contain at most h bunches.



12/4/01 USPAS Lecture 11 17
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The rf bucket corresponding to φs=π, for which there is no

acceleration, is called a stationary bucket.
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Acceleration
In a synchrotron, the magnetic field is ramped as the beam energy

increases, to maintain a constant orbit radius. The synchronism
conditions for the synchronous particle are a condition on the rf

frequency, and a relation between the rf voltage and the field ramp
rate.

The rate of energy gain for the synchronous particle is
dE
dt

f eVs
s s= sinφ

in which f
c

C
c

hs
s= =β

λ
 is the revolution frequency of the

synchronous particle, and C is the machine circumference. The rf
wavelength must satisfy the condition

λ
β

= C
h s

The rate of momentum change for the synchronous particle is
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dp
dt

eE
eV
C

s
s s= =0 sin sinφ φ

Using p e Bs = ρ 0, we get

dB
dt

V
C

s0 = sinφ
ρ

This stipulates how V ssinφ  must change during acceleration. If the

magnetic field has a uniform ramp rate, with 
dB
dt

0 = constant, then

V ssinφ  can remain constant during acceleration.
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If (as is typically the case in rapid cycling synchrotrons with
resonant magnet systems, like the Cornell synchrotron and the

Fermilab Booster), the magnetic field varies in time like

B t B
B B

f tc0 2
1 2( ) cosmin

max min= +
−( ) −( )π

in which fc is the machine cycle frequency (e.g., 60 Hz), then
synchronism requires that V ssinφ  have a sinusoidal time

dependence. Specifically, we have

eV C f p p f ts c csin sinmax minφ π π= −( ) 2

in which pmax and pmin are the maximum and minimum values of
the synchronous momentum during acceleration.
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Example: the Cornell synchrotron
This machine accelerates a 300 MeV electron beam to 5200 MeV
in about 8 msec, corresponding to a cycle frequency of 60 Hz. It

uses a fixed-frequency 714 MHz rf system, operating at a
harmonic number of h=1800, corresponding to a circumference of

about 756 m. The momentum compaction factor is αC =0.0096.

The synchronous phase is roughly constant during acceleration, at
about 150o. The rf voltage per turn has a roughly sinusoidal

dependence on time, with V= 1 MV at the beginning and end of the
cycle. In mid-cycle, at the maximum value of dp/dt, the required

voltage, from the above equation, works out to about 4.7 MV. The
injected longitudinal emittance is εL = 6.6 eV-µs. Synchrotron

radiation does not play much of a role in the dynamics. Using these
numbers, we find the following table for the parameters of the

longitudinal motion:
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Parameter 300
MeV

2500
MeV

5200
MeV

Units

V 1 4.7 1 MeV
γs 588 4893 9785

Qs 0.089 .0666 .021
1/Qs 11.25 15.1 45.8
βL 144 23 35 ps/MeV

σΕ 0.214 0.534 0.432 MeV

σΕ/Ε 713 213 86 x10-6

σt 30 12.3 15 ps

σs 9.3 3.7 4.6 mm

∆Eb 1.9 12.1 7.9 MeV

Ab/π 702 4376 2867 µs-eV
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Matching and filamentation

Beam transfer from one synchrotron to another, or from a linac
into a synchrotron, is often done “bucket-to-bucket”: the rf systems

of the two machines are phase-locked, and the bunches are
transferred directly from the buckets of one machine into the

buckets of the other.
This process can be quite efficient. However, growth of the

longitudinal emittance will occur unless (i) the injected beam hits
the middle of the bucket in the receiving machine, and (ii) the two
machines are longitudinally matched. By this, it is meant that they

have the same value of the longitudinal beta function βL, which

determines the aspect ratio of the longitudinal ellipse in phase
space.
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If the injected beam misses the bucket center, or the values of βL

are unequal, then the injected beam will rotate in the bucket after
injection. This rotation, coupled with the nonlinear phase space

trajectories, results in filamentation and an effective growth in the
emittance.

The following plots illustrate this. They were made by solving
numerically the exact differential equations of motion in the form:

d
dn

Q E

d
dn

E eV

L s

s

φ πβ

φ φ

=

( ) = −( )

2 ∆

∆ sin sin

with the longitudinal parameters for the Cornell synchrotron at
injection, and for a beam with εL = 100 eV-µsec.
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Example: a matched transfer, first hundred turns
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After this matched transfer, the emittance does not grow.
Mismatched transfers: phase error of 60o, first hundred turns (next

page); No phase error, βL error of factor of 3 (following page):
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Longitudinal “gymnastics”: Debunching and Bunch rotation
These are processes by which the time spread and energy spread of

a bunch can be manipulated.
They are illustrated in the following series of figures.

We start with a matched bunch in a stationary bucket. The rf
voltage is V0.
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The rf voltage is adiabatically reduced to a small value Vmin, over
many synchrotron oscillation periods. The bunch remains matched
to the bucket; the energy spread goes down like V 0 25. , and the time

spread (bunch length) goes up like V −0 25. . The product must
remain the same by Liouville’s theorem.
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If this process is continued, with the rf voltage eventually being
turned off, the beam is said to be debunched. The beam is then
distributed around the whole circumference, rather than being

contained in bunches by rf buckets. The energy spread is reduced
in the debunching process: if the process is truly adiabatic, the
longitudinal emittance is conserved, and the final (full) energy

spread is just

∆E fdebunched full s L, = ε   (per bunch)

where fs is the revolution frequency of the synchronous particle.
In the debunched state, no rf voltage is applied to the beam. At any
significant energy, it is impossible to debunch an electron beam, as

energy must be always be supplied to make for the synchrotron
radiation.
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Suppose that, after the rf voltage is reduced substantially but not
brought to zero, the rf voltage is suddenly snapped back up to the

original value, in a time much shorter than a synchrotron
oscillation. The mismatched bunch rotates in the bucket:
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After a quarter of a synchrotron period, the bunch is very narrow,
although with a large energy spread. If it is extracted from the

machine at this point, a beam with a very narrow time spread can
be provided.

The typical use of such a beam is for high intensity production of
secondary particles. The narrow time spread is carried over to the

time distribution of the secondary particles, and enhances the
longitudinal density of the secondary beam.

Exercise: show that the ideal overall bunch length reduction factor

in this process is 
V
V
min

.

0

0 25




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Synchrotron radiation

Up to this point, we have not considered the fact that charged
particles radiate energy when they are accelerated. This will turn

out not to be very important for linacs at any energy, or for
synchrotrons in which γ is not >>1.

However, when γ >>1 in a synchrotron, (such as in virtually all

electron synchrotrons, and in very high-energy proton
synchrotrons), there will be considerable radiation, which will play

a very important role in the particle dynamics.
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Two results from classical E&M will form the starting point of our
discussion:

1. The Lienard formula for the total power radiated by an
accelerated charged particle of charge e, having acceleration 

r
a,

velocity 
r
βc, and energy m c0

2γ

P
e

c
a a= − ×




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6 0

2

3
6 2 2
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γ β

r r

2. The acceleration experienced by such a particle in the fields
r r
E B  and

r r r r r r r
a

e
m

E E c B= − •( ) + ×[ ]
0γ

β β β
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Let us apply these equations to the reference particle in an
accelerator.

On the reference orbit, 
r r
E   and β  are always parallel, so the

acceleration becomes
r

r
r r
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
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0
2γ γ
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Let us consider first the acceleration due to 
r
E, and the resulting

radiation power:
r

r
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For linacs, in which the magnetic field on the reference orbit is
zero, this will give the radiated power. Note that the power is

independent of the energy. In terms of the classical radius

r
e

m c
0

2

0 0
24

=
πε

, the power is P
c
r

eEr

m c
E = ( )2

3 0

0
2

0
2 . For example, for

electrons, r0 = 2.82x10-15 m, and we have, for a large field E=100
MV/m, PE = 1.7 10-15 W. For a beam of 1012 electrons, this is only

about 1.7 mW.

Now consider the acceleration due to 
r
B (the centripetal

acceleration in synchrotrons). We have
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For synchrotrons, this will give the radiated power: that due to the
electric fields is negligible, as we’ve seen above. This type of

radiation, associated with the centripetal acceleration a charged
particle, is called synchrotron radiation. Note that the power
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depends quadratically on the energy for relativistic particles. In
terms of the classical radius, it is

P
c
r

eBcr

m c
B = ( ) ( )2

3 0

0
2

0
2

2βγ

In practical units, for electrons, we have
P BB = × [ ]( ) ( )−1 59 10 14 2 2.  T Wβγ

radiated per electron.
Note the strong energy dependence of this power.

For a 5 GeV beam of 1012 electrons in a 1 T field, the power
radiated is 1.59 MW. In addition to being a dominant concern for
the rf system, which must supply this power, the radiation has a
substantial impact on the beam dynamics, which we’ll discuss

next.


