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LECTURE 12

Synchrotron radiation: Longitudinal effects

Damping of synchrotron oscillations
Features of synchrotron radiation

Equations for the damping and quantum excitation of
synchrotron oscillations:

Energy damping time and equilibrium energy spread
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Damping of synchrotron oscillations

The power radiated by a particle due to synchrotron radiation
results in a damping of synchrotron oscillations.

Why?
Power radiated by a particle:
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(We take β=1 in what follows, as we will be dealing exclusively

with relativistic particles)
Consider a particle on an elliptical trajectory in longitudinal phase
space. When it is in a region of positive ∆E (energy greater than

Es), it radiates more than the synchronous particle and ∆E gets
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smaller. When it is in a region of negative ∆E (energy greater than

Es), it radiates less than the synchronous particle and ∆E still gets

smaller. So the trajectory spirals in toward the origin:
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The energy spread and bunch length are thus damped, and decrease
with time. There is a limit to this process, however. To understand

this limit, we must recognize that the radiation emitted by the
particle is emitted in the form of discrete energy quanta (photons).

The emission process is quantum mechanical, and hence has a
random character.  Statistical fluctuations in the number of photons

emitted will cause fluctuations in the energy of the particle.

These fluctuations increase the energy spread of the beam and
establish the limit to which it will ultimately damp.

Let’s try to quantify the effects of synchrotron radiation on the
energy spread. We will find two important results, which can be

stated (approximately) very simply:
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1. For a separated function lattice, the energy damping time is
approximately equal to the time required for a particle to radiate
all its energy. If Ts

 =revolution period, and Us = energy loss per
turn, then the energy damping time is

τ ∆E s
s

s
T

E
U

≈

2. The equilibrium rms energy spread is approximately the rms
photon energy times the square root of the number of photons
emitted during one damping time. If Ṅ=photon emission rate,

and u2  is the rms photon energy, then the rms energy spread

is

σ τ∆ ∆E EN u≈ ˙ 2

12/4/01 USPAS Lecture 12 6

Before we can see where these results come from, however,
we’ll need to introduce some information from electromagnetic

theory.

Features of synchrotron radiation

P=the total power radiated by an electron .The power spectrum  of
the radiation is
dP
d

P
S

c cω ω
ω
ω

= 





in which ω γ
ρc

c= 3
2

3
 is called the critical frequency. ρ = p

eB
 is the

bending radius of the electron. The function S x( ), called the
normalized spectrum, is shown in the next figure.
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This energy is radiated in the form of photons, each of energy
u = hω. Thus, the number of photons radiated per second, in the
energy interval du, is

˙( )n u du
dP
d

d=
ω

ω
ωh
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So the photon rate spectrum (photons per unit energy per second)
is

˙( )n u
P

u

u
u

S
u
uc

c

c
= 



2

 in which uc c= hω  is the critical energy.
The total number of photons emitted per second is

˙ ˙( )N n u du
P
uc

= =
∞

∫
15 3

80
The mean photon energy is

u
N

un u du
P
N

uc= = =
∞

∫
1 8

15 30
˙ ˙( ) ˙

and the mean square energy  is
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For the synchronous particle, the energy loss per turn is

U Pdt
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This energy loss must be restored by the rf system, in order to keep
the synchronous particle at a constant energy. Thus, assuming no

acceleration, as in a storage ring, we must have

eV Us ssinφ =
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For an isomagnetic lattice (one for which all the dipoles have the

same bend radius ρ), 
dsC

ρ
π
ρ2

0

2
∫ = . In this case,
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2 4
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.

Example: synchrotron radiation in CESR
In practical units, for electrons, we have (see Lecture 1, p. 24):

U
E

s MeV
GeV
m

[ ] = [ ]
[ ]

0 0885
4

.
ρ

For CESR, using E=5.29 GeV and ρ=98 m (arc dipoles), we get

Us =0.71 MeV.
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(CESR is not isomagnetic; the energy loss is actually larger than

this.)
The critical photon energy is

u
c

c c= =h
hω γ

ρ
3
2

3

In practical units, for electrons

u
E

c keV
GeV
m

[ ] = [ ]
[ ]

2 218
3

.
ρ

For CESR, this gives uc=3.18 keV. Using the other equations
above, we find, for the synchronous particle,

u u

u u

c

c

= =

= =

8
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The number of photons radiated in one turn is

N Ndt
U
uturn

s

c
= = =∫ ˙ 15 3

8
721

There are about 100 dipoles in CESR, so in each magnet, an
electron radiates only about 7 photons. It is thus not surprising, if

synchrotron radiation plays an important role in the beam
dynamics, that fluctuations due to photon statistics will have to be

included.

Rough estimates of the damping time and equilibrium energy
spread:



12/4/01 USPAS Lecture 12 13

 Number of turns for an electron to radiate all its

energy=
E
U

s

s
≈ 7300

damping time~rev period x 7300=2.6x10-6x7300=19 ms
energy spread~ 7300 720 2× ×  keV~5 MeV

Let’s now see how to get more accurate estimates for these
quantities.

Equations for the damping and quantum excitation of
synchrotron oscillations:

Suppose that we have a collection of particles in longitudinal phase
space, all having the same value of the longitudinal emittance, but

distributed randomly around the ellipse:
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In what follows, we will let ε=∆E, to simplify the notation. For the

ith particle, the dependence of ∆t and ε on the turn number n can

be written as
ε ε π ψ

β ε π ψ
i s i

i L s i

Q n

t Q n

= +( )
= − +( )

0

0

2

2

sin

cos∆
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The square of the amplitude of the energy oscillation is an
invariant of the motion:

1
2

2 2 2

β
ε ε

L
i i ot∆( ) + =

It won’t be an invariant once we allow synchrotron radiation,
which is a dissipative process. Let particle i emit synchrotron

radiation in the form of a photon of energy ui . This corresponds to
ε εi i iu→ −

The new value of the amplitude squared is

ε
β

ε

β
ε ε

0,new

=

2
2

2 2

2
2 2 2
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= ( ) + −( )

( ) + − +
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t u

t u u

∆

∆

The change in the amplitude squared is
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δε ε ε ε0
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2 22= - =,new i i iu u− +

If the rate of emission of photons is Ṅ , then the instantaneous rate
of change of the amplitude squared is

d
dt

Nu Nu

P Nu

i i i

i i i

ε ε

ε

0
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2

= − +

= − +

˙ ˙

˙

 in which P Nui i= ˙  is the power radiated by the ith particle. The rate
of change of the squared amplitude will vary at different points

around the ring; we will be interested in the long term behavior, so
we average over one turn:

d
dt T

dt
d
dt T

dt P
T

dtNu
s turn s turn

i i
s turn

i
ε ε ε0

2
0
2

21 2 1= − +∫ ∫ ∫= ˙
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To find the rate of change of the amplitude squared for the whole
beam, we average over all the particles, giving

d
dt T

dt P
T

dt Nu
s

i i
turn s turn

ε ε0
2

22 1= − +∫ ∫ ˙

in which we understand that ε0
2 corresponds to the one-turn

average, and Ts is the revolution period of the synchronous
particle.

For a large number of particles, the average over the ensemble of
particles  Ṅui

2  is the same as the average over the photon energy

distribution, so ˙ ˙Nu Nui
2 2= ; we have made this replacement in

the second term on the right. This term is always positive and
represents the amplitude growth due to the fluctuations in the

energy of the emitted photons. Since εi = 0, the first term on the
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right hand side would be zero, when we do the average, if Pi were
independent of the energy. But it is not: its dependence on energy

is precisely what causes damping. This energy dependence leads to
terms like εi

2 , which are not zero and give damping.

To proceed, we need evaluate the explicit energy dependence of
the integrand in dt Pi i

turn

ε∫  for a non-synchronous particle, and

then do the average over all the particles.
The general path length differential is

dl ds
x= +





1
ρ

and c
dl
dt

=

so
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dt P
c

dl P
c

ds
x

Pi i
turn

i i
turn

i i
turn

ε ε
ρ

ε∫ ∫ ∫= = +





1 1
1

The energy dependence of x, for the ith particle, is given by

x
Ei i

i

s
= =ηδ η ε

.

in which η is the dispersion function.

The energy dependence of the power results from the direct E2

dependence, and also indirectly from the field dependence:
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The energy dependence resulting from the field arises in locations

in which there is a field gradient
dB
dx

KB= 0ρ, and where there is

also dispersion, so x
Ei i

i

s
= =ηδ η ε

. Then

dB
dE

dB
dx

dx
dE

K
B

Es
= = 0ρη
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and we have

P P
E

Ki i s
i

s
( )ε ε ρη= + +( )
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
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Putting this into the equation above for dt Pi i
turn
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Since  ε ε π ψi s iQ n= +( )0 2sin , then ε ε ε ε
i i i= = =3 2 0

2
0

2
,   and ,

so the integral simplifies to
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Using the previously developed expressions for Ps  and Us gives

  
dt P

U
Ei i
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s

s
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in which
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Returning to the equation for the time derivative of the amplitude
squared, we have

  

d
dt

U
T E T

dt Nus

s s s turn

ε ε
0
2 0

2
22

1( ) = − +( ) + ∫D ˙

in which the amplitude is understood to be averaged over one turn.

The first term on the right represents the amplitude reduction due
to damping. The second term represents the amplitude growth due

to fluctuations in photon energy.
 We can integrate this equation to find the time dependence of the

average amplitude squared:
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The energy amplitude squared, ε0
2, damps at the rate 1/τ;

the energy ε εi ∝ 0
2  damps at half the rate:

  

1 1
2 2

2
τ τε

= = +( )U
T E

s

s s
D

For a separated function isomagnetic lattice, neglecting the dipole
focusing terms, when K is non-zero, ρ is infinite, so
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In this case, we see that the energy damping time τε is just the time

in which a particle would radiate away all its energy . Specifically,
we have

1 4
3

0
3

τ ρ
πγ

ε
= r

T
s

s
The damping rate grows like the energy cubed, and decreases like

the square of the ring radius.
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 The final mean square value of the energy spread will be
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The final value is called the equilibrium energy spread.

The equilibrium energy spread is proportional to the root mean
square fluctuations in the energy of the synchrotron radiation

photons. Because the radiation is a statistical process, the final
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distribution in energy will be Gaussian, with σε ,∞
2  as its mean

square deviation from Es

Example: damping of an injected electron beam.
The following figure shows the overall energy envelope of the

beam, as a function of time, for an electron beam with an energy
spread larger than the equilibrium energy spread, injected with an

energy error into a machine.
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del e

The same process is shown in the next figures: in this case, the
complete energy distribution is plotted, at various times:
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Evaluation of the equilibrium energy spread:

Using ˙ ,    ,   N
P
u

u u u
c

c
c c= = =15 3

8
11
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2 2
3hγ

ρ
, we get
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e c
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in which C
m cq = = × −55

32 3
3 84 10

0

13h
.  m (for electrons).

For an isomagnetic lattice, this simplifies to

  
σ γ

ρε ,∞ =
+( )

2
2 2

2
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E
q

s s

D

The mean square relative energy spread is then

  

σ
ρ

γε ,∞



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=
+( )E

C

s

q s
2 2

2 D

Note that, for a separated function isomagnetic lattice for which D
<<1, the relative energy spread depends only on the energy and the

ring radius. It grows linearly with the energy.
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The corresponding mean square bunch length is

  
σ σ σ β β γ

ρεs t L L q
s sc c c C

E
∞ ∞ ∞= = =
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2 2 2 2 2 2 2 2

2 2

2, D
This can also be written as
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The equilibrium rms emittance is

  
ε β γ

ρL L q
s sC

E
,∞ =

+( )
2 2

2 D

In contrast to the energy spread, the bunch length (and the
emittance) depend on many quantities: the slip factor, the rf

voltage and wavelength, the synchrotron tune, and the harmonic
number
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Example:
CESR operates as a storage ring at E=5.29 GeV. We’ll use the

following approximations:
Take the lattice to be a separated function isomagnetic lattice with
ρ=98 m. We are ignoring the “hard bend” regions, in which there

is considerable additional synchrotron radiation; hence the enrgy
spread and bunch length will be underestimated with this

approximation.

The rf frequency is 500 MHz, and the rf voltage is 6.5 MV. αC =

0.01077, h=1281.
Then we find the table below. The “true” column gives the

numbers including the hard and soft bend regions. 
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Parameter Isomag.
model

True Units

Us 710 1140 keV
τε 19 12 ms

φs 174 168 degrees

εL
93 200 eV-µs

Qs .052 .0514
1/Qs 19.3 19.5
βL 16 16 ps/MeV

σΕ 2.4 3.5 MeV

σΕ/Ε 456 673 x10-6

σt 38 57 ps

σs 11.6 17 mm

∆Eb 36.4 32.8 MeV

Ab/π 28982 eV-µs
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