LECTURE 12
Synchrotron radiation: Longitudinal effects

Damping of synchrotron oscillations
Features of synchrotron radiation

Equations for the damping and quantum excitation of
synchrotron oscillations:

Energy damping time and equilibrium energy spread
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Damping of synchrotron oscillations

The power radiated by a particle due to synchrotron radiation
resultsin adamping of synchrotron oscillations.
Why?
Power radiated b4y % particle:
P= i% y2
6y mpe
(Wetake B=1inwhat follows, aswe will be dealing exclusively
with relativistic particles)

Consider aparticle on an elliptical trajectory in longitudinal phase

space. When it isin aregion of positive AE (energy greater than

E,), it radiates more than the synchronous particle and AE gets
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smaller. When it isin aregion of negative AE (energy greater than
E)), it radiates less than the synchronous particle and AE still gets
smaller. So the trgjectory spiralsin toward the origin:

trajectory with no radiation

AE

0.5 At

A
Y

Damped trajectory with radiation power P [] y2
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The energy spread and bunch length are thus damped, and decrease
with time. Thereisalimit to this process, however. To understand
this limit, we must recognize that the radiation emitted by the
particleis emitted in the form of discrete energy quanta (photons).

The emission process is quantum mechanical, and hence has a
random character. Statistical fluctuations in the number of photons
emitted will cause fluctuations in the energy of the particle.

These fluctuations increase the energy spread of the beam and
establish the limit to which it will ultimately damp.

Let’stry to quantify the effects of synchrotron radiation on the

energy spread. We will find two important results, which can be
stated (approximately) very simply:
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1. For a separated function lattice, the energy damping timeis
approximately equal to the time required for a particle to radiate
al itsenergy. If T =revolution period, and U, = energy |oss per
turn, then the energy damping timeis

TAE = TsSS
S

2. The equilibrium rms energy spread is approximately the rms
photon energy times the sgquare root of the number of photons
mit@uring one damping time. If N=photon emission rate,

and \, <u2> is the rms photon energy, then the rms energy spread
is

Op = NTAE<U2>
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Before we can see where these results come from, however,
we' |l need to introduce some information from electromagnetic
theory.

Features of synchrotron radiation

P=the total power radiated by an electron .The power spectrum of

the radiation is
P OwlO

dw Q,CSH;
Y

inwhich ., = 2pr iscalled the critical frequency. p——B isthe

bending radius of the electron. The function §x), called the
normalized spectrum, is shown in the next figure.
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This energy isradiated in the form of photons, each of energy
u = hw. Thus, the number of photons radiated per second, in the
energy interval du, is

dP dw

d
n(u)du = dio i
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So the photon rate spectrum (photons per unit energy per second)
IS

)=, H

inwhich u, = A, isthe critical energy.
The total number of photons emitted per second is

N = [du=23 P
0 Ue
The mean photon energy is
P 8
el du=-— =
I HA(UAU = = 15 3k

and the mean square energy is
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o 1 ® 5, 115
<u > ——Ngu n(u)du —2—7uc
For the synchronous particle, the energy loss per turnis

4 2 C

Pdt = Bly2dt = ° Vs sBO
tin tinGmsonbc 67T£0mocI
_e%i0 o € ds eyé‘}:ds
6 &) p? 67y p?

This energy Ioss must be restored by the rf system, in order to keep
the synchronous particle at a constant energy. Thus, assuming no
acceleration, as in a storage ring, we must have

evVsng, =Ug
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For an isomagnetic lattice (one for which all the dipoles have the

C
same bend radius p) ds =2;T. In this case,
e Vs — c2
s~ 38();0 Vsmo p

Example: synchrotron radiation in CESR
In practical units, for electrons, we have (see Lecture 1, p. 24):

4
uMev] = 0.0885 % LCV]
plm]
For CESR, using E=5.29 GeV and p=98 m (arc dipoles), we get
U,=0.71 MeV.
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(CESR is not isomagnetic; the energy loss is actually larger than

this.)
The critical photon energy is

In practical units, for electrons

3
uc[keV] = 2.218M
plm]
For CESR, this gives u.=3.18 keV. Using the other equations
above, we find, for the synchronous particle,

8
U=u.—— =0.98 keV
< > C 1ESVE§

\/@:UCE =2.0 keVv
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The number of photons radiated in oneturnis

N= § th:1533h15 =721
C

turn
There are about 100 dipolesin CESR, so in each magnet, an
electron radiates only about 7 photons. It is thus not surprising, if
synchrotron radiation plays an important role in the beam
dynamics, that fluctuations due to photon statistics will have to be

included.
Rough estimates of the damping time and equilibrium energy
spread:
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Number of turnsfor an e ectron to radiate all its

energy=E = 7300

damping time~rev period x 7300—2 6x10°x7300=19 ms

energy spread~~/7300 x 720 x 2 keV~5 MeV

Let’s now see how to get more accurate estimates for these
quantities.

Equations for the damping and quantum excitation of
synchrotron oscillations:

Suppose that we have a collection of particlesin longitudinal phase
space, all having the same value of the longitudinal emittance, but

distributed randomly around the ellipse;
13
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In what follows, we will let &=AE, to ssmplify the notation. For the

ith particle, the dependence of At and € on the turn number n can
be written as

& = £oSn(2mQn + )

At =~ £ o5 27Qsn + Y1)
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2

The sguare of the amplitude of the energy oscillation is an

invariant of the motion:
1 2, 2_.2
—(B4) +ef = €5

L
It won't be an invariant once we allow synchrotron radiation

which is a dissipative process. Let particlei emit synchrotron
radiation in the form of a photon of energy u;. This corresponds to

555 = gg,naN' E(% =-28U +y
If the rate of emission of photonsis N, then the instantaneous rate
of change of the amplitude squared is

2
deg -2&Ny; + Nui2

dt
_ = 2R +Nu?
inwhich R = Nuy; isthe power radiated by theith particle. Therate

. ich P = Nuy
of change of the squared amplitude will vary at different points
around the ring; we will be interested in the long term behavior, so

& - & U
The new value of the amplitude squared is
2 1 )2
£0,new = [3L (At ) +(e-u) - we average over one turn:
ded _ 1 de
_1 2, .2 2 G _ = 0 dig;R + dtNu?
—(AG)” + &7 -2 +U; i i
2 (B1)" 7 =260 vy R R AR ¥
The change in the amplitude squared is
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To find the rate of change of the amplitude squared for the whole
beam, we average over al the particles, giving

da(%: — :f (dt&R) +— f dt<Nu >

S turn 5 turn

dt

in which we understand that 85 corresponds to the one-turn
average, and T isthe revolution period of the synchronous
particle.
For alarge number of particles, the average over the ensemble of

particles < Nui2> isthe same as the average over the photon energy
distribution, so <Nui2> = <Nu2>; we have made this replacement in

the second term on the right. Thisterm is aways positive and
represents the amplitude growth due to the fluctuations in the

right hand side would be zero, when we do the average, if P, were
independent of the energy. But it is not: its dependence on energy

is precisely what causes damping. This energy dependence leadsto

termslike <£,2> which are not zero and give damping.

To proceed, we need evaluate the explicit energy dependence of

theintegrand in f (dt&;R) for anon-synchronous particle, and
turn
then do the average over al the particles.
The general path length differential is

x
dl = ds@ e

d
energy of the emitted photons. Since (&; ) = 0, the first term on the and ¢= dt
S0
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1dB &0
dteR)=1 ¢ (digR) <ds§ > P(g) =P §+ p 1B, o8
tljf;n jf; turn BO dE ESE

The energy dependence of X, for theith particle, is given by

8'
=no; = OE'-
in which n isthe dispersion function.

The energy dependence of the power results from the direct E?
dependence, and aso indirectly from the field dependence:
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p = €'BiVs _ €y

6n£om§c 6118, p2

The energy dependence resulting from the field arisesin locations
in which thereisafield gradient(;"i = KByp, and where there is

also dispersion, so x; = nod; :néis. Then

dB _dBdx _ Bopn

dE dxdE = E
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and we have

R(g)= P% Kpn+1§

Putting this into the equation above for § (dt&;R) gives

2 I’]D
dt; R dsP2 + Kpn +—=
f (dt&R 2ES f P+ 0

turn turn

Using the previously developed expressions for P, and U, gives

turn 2U
2, (dtgR)=—""°(2+D)
/ds§ EE' > < % ﬁ “H(Ken +1§> tjn 2Es
turn tu rn in which
C
2n( Kpn +1) N g 0
dsP g + 5 %+Kpn+ g3 ST [ 2955 +2Ke
turn< Eg HF ) D= 0 p Cgi
S
Since & =gysin(2mMQgn + ¢4, then () =<£i >:O, and <si2> =50, j?
so the integral simplifiesto 0
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Returning to the equation for the time derivative of the amplitude 2 _ 2 [t 0 tm
squared, Weha\,e £0()” = £0(0)" expg-_ 5 eooogl P M
d(eg):_féu (2+D) +7 § dt{Nu?) 1-Y 04Dy &2,.= f dt Nu?)
dt TsEs Ts tarn T TsEs " Tsum

in which the amplitude is understood to be averaged over one turn.

The first term on the right represents the amplitude reduction due
to damping. The second term represents the amplitude growth due
to fluctuations in photon energy.

We can integrate this equation to find the time dependence of the
average amplitude squared:
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The energy amplitude sgquared, eo, damps at the rate 1/t;
the energy ¢ [ \?8 damps at half the rate:

1_1_ Ug

T, 21 2T.Eg

(2+D)

For a separated function isomagnetic | attice, neglecting the dipole
focusing terms, when K is non-zero, pisinfinite, so
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C C C
Indsml +25D J’ids iJ’st
3TpH 102 pPip ca
D=9 -0 — 0 C <1
Cds Cds 2n 27110
b e F

In this case, we see that the energy damping time 1, isjust the time
in which a particle would radiate away all its energy . Specifically,

we have
1 _To 47Ty§
e p 3l

The damping rate grows like the energy cubed, and decreases like
the square of the ring radius.
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The final mean square value of the energy spread will be

Sturn

2
03,00 :<£i2,m>:£02'°° 4_|_ :f dt<Nu >
2

2,(2D) f dt( Nu?)

tur n

Thefinal valueis called the equilibrium energy spread.

The equilibrium energy spread is proportional to the root mean
square fluctuations in the energy of the synchrotron radiation
photons. Because the radiation is a statistical process, the fina
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distribution in energy will be Gaussian, with agm asits mean
square deviation from E
Example: damping of an injected electron beam.
The following figure shows the overall energy envelope of the
beam, as a function of time, for an electron beam with an energy
spread larger than the equilibrium energy spread, injected with an
energy error into a machine.

del e
4

PN W

-2

The same proceés is shown in the next figures: in this case, the
complete energy distribution is plotted, at various times:
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time= 0

time= 47

time= 5r

tine= 7r

time= 1071
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55 7

Evaluation of the equilibrium energy spread: inwhich C, = " _384x108 m (for electrons).
5 32+/3mgc
Using N = 15f3£1 <u2> _11 02 U _3ny c, we get For an isomagnetic |aItICG,2'[h2ISS|mp|IerStO
Ug 27 2 p 2 _ YsEs
55 e’hcy’ € e =Cg (2+D)p
fodt(Nu?)= > [ds 5
turn 163 6mg o P . .
The mean square relative energy spread is then
and so
o Jds . H™ p(2+D)
2 - B aine)-c, BE o P =0
%o =iy ] MW =Cagi 5y
s turn ds Note that, f ed function i ic lattice for which
> ote that, for a separated function isomagnetic lattice for which D
oP <<1, the relative energy spread depends only on the energy and the
ring radius. It grows linearly with the energy.
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The corresponding mean sguare bunch Iength is Example:

V22
2+D)p

2 2 2 2
Ogo =C 0o =C GsooBL =c?B7C q(

This can also be written as
2 _2G y5 hne -E _Gq 1 D’Wsh'k:@2

o
e p (2+D) 2m eVeos@  p(2+D)H 2my
Theequilibriumrmsemittancels

_ A=
=BG 92+D)p

In contrast to the energy spread, the bunch length (and the
emittance) depend on many quantities: the dip factor, the rf
voltage and wavelength, the synchrotron tune, and the harmonic
number
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CESR operates as a storage ring at E=5.29 GeV. We'll use the
following approximations:

Take the lattice to be a separated function isomagnetic lattice with
p=98 m. We are ignoring the “hard bend” regions, in which there
is considerable additiona synchrotron radiation; hence the enrgy

spread and bunch length will be underestimated with this
approximation.

The rf frequency is 500 MHz, and the rf voltageis6.5MV. a. =

0.01077, h=1281.
Then we find the table below. The “true” column givesthe
numbers including the hard and soft bend regions.
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12/4/01

Parameter Isomag. True Units
model
U, 710 1140 keV
T, 19 12 ms
@ 174 168 degrees
£ 93 200 ev-us
Q, .052 .0514
1/Q, 19.3 195
B, 16 16 psMeV
O 24 35 MeV
o/E 456 673 x10®
g, 38 57 ps
o 116 17 mm
AE, 36.4 32.8 MeV
AT 28982 ev-us
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