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LECTURE 16

Linear coupling

Two coupled harmonic oscillators

Equations of linear coupling

Difference resonances

Sum resonances
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Two coupled harmonic oscillators

The motion of a particle in an accelerator may exhibit coupling
between the two transverse planes. Such motion is very similar to

the motion of two coupled simple harmonic oscillators. The
position of one oscillator is analogous to the particle’s x-motion,

while that of the other oscillator is analogous to the y-motion.
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The equations of motion for the masses are
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This can be written in matrix form as
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The standard technique for a solution is to find the normal modes
of the motion. The normal modes 

r
ζ are linear combinations of x

and y, given by the transformation matrix S:
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r r
z = Sζ

The normal modes are uncoupled, so that
r r˙̇ζ ζ+ =−S MS1 0

in which the matrix S MS− = = 





1 1

2

0

0
ΛΛ

λ
λ

 is diagonal. The

quantities λ1 and λ2 are the normal mode frequencies.

To find the normal modes and frequencies, we want to find the
matrix S which makes ΛΛ = −S MS1  diagonal.

 This problem is equivalent to that of finding the eigenvalues and
eigenvectors of the matrix M. If the two eigenvectors are

r r
e e1 2  and , and eigenvalues are λ1 and λ2, the eigenvector equation

is M
r r
e ek k k= λ .
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Then

M I−( ) =λk ke
r

0

For these linear homogeneous equations to have a solution, the
determinant M I− =λk 0: this is called the secular equation. It

provides a set of equations for the eigenvalues λk. Given these, the

solutions to M I−( ) =λk ke
r

0 can be found, which yield the
eigenvectors. If we construct a matrix S eik i k= ( )  (that is, with the
kth column of S equal to the kth eigenvector), then the eigenvector

equation becomes

M MS S S MS
r r
e ek k k= ⇒ = ⇒ =−λ ΛΛ ΛΛ1
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which shows that, if we find the eigenvalues and eigenvectors of
M,  we will know the normal mode frequencies, and the

transformation from the (x,y) to the normal modes.

Let’s carry this out for the two masses above. Solving the secular
equation gives
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The eigenvectors determine the matrix S. In terms of this matrix,
the conversion from normal modes to (x,y) is
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ζ λ φ

ζ λ φ
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A i t S x S y
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exp

exp

 The following figures show a numerical example, for ω2 = 3 Hz,

q=1 Hz. The normal mode frequencies, and the coupling matrix
elements, are plotted as a function of ω1 (in Hz).
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For ω1 < ω2, λ ω λ ω1 1 2 2≈ ≈  and . The situation is reversed for

ω1 > ω2. Note that the normal mode frequencies are never equal,

even for ω1 = ω2.  Coupling: left, mode 1; right, mode 2
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For ω1 < ω2, ζ ζ1 2≈ − ≈x y,  ; For ω1 > ω2, ζ ζ1 2≈ ≈y x,  . For ω1 =
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Equations of linear coupling

With this introduction to coupled oscillators, let’s see how the
coupled trajectory equations of motion can be understood in terms
of coupled oscillators. For simplicity, we’re only going to consider
the coupling resulting from a single skew quadrupole, located at a
position s0 in the ring. This simplifies the math, while maintaining

the essential physical features of coupling.

From Lecture 3, p 9: the coupling produced by a skew quadrupole
is given by

′′ = ′′ =x yk y xk˜;          ˜

in which ˜
˜

k
B

B
= ′

0ρ
 is the skew quadrupole strength. For a thin lens

of length Ls, these equations become
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∆ ∆′ = = ′ = =x ykL
y
f

y xkL
x
fs s

˜
˜     ˜

˜

in which ˜
˜f
kLs

= 1
 is the skew quad focal length. In Floquet

coordinates, using ∆
∆

∆
∆

′ = ′ =x
Q s

y
Q s

x

x x

y

y y

˙

( )
,   

˙

( )

ξ
β

ξ
β0 0

,

 gives

∆ ∆˙     ˙ξ κξ ξ κξx x y y y xQ Q= =

in which κ
β β

=
( ) ( )x ys s

f
0 0
˜  is a measure of the coupling.
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At s0, we can write the Floquet coordinates in phase-amplitude
form as

ξ φ ξ φ

ξ φ ξ φ

x x x y y y

x x x x y y y y

r r

Q r Q r

= =

= − = −

cos cos

˙ sin   ˙ sin  

So we have for the changes in the Floquet coordinates

∆ ∆˙ cos       ˙ cosξ κ φ ξ κ φx x y y y y x xQ r Q r= =

We want to get equations entirely in terms of the phase-amplitude
variables. Since

r
Q

2 2
2

= +






ξ ξ̇
, we have ∆ ∆ ∆

r
Q

r
Q

2
2

2 2= = −
˙ ˙ sin ˙ξ ξ φ ξ

, so
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∆

∆

r r r

r r r

x x y x y

y x y y x
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κ φ φ

κ φ φ
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For the changes in the phase, we have

tan
˙
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˙

cos
˙

φ ξ
ξ

φ φ ξ
ξ

φ ξ= − => = − = −
Q Q Qr

∆ ∆ ∆2 , so

∆

∆

φ κ φ φ

φ κ φ φ

x
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y
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y
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r

r

r
r

= −

= −
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cos cos

Now we’ve assumed only one coupling element in the ring. For the
motion in all the rest of the ring, rx and ry do not change, and φx and
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φy  advance by 2πQx and 2πQy  respectively. So, we can write

differential equations for the changes of the phase and amplitude
per turn (n=turn number)

dr
dn

r r

dr

dn
r r

d
dn

Q
r

r

d

dn
Q

r
r
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Difference resonances

We now expand the trigonometric functions to identify the
resonant coupling terms:

sin cos sin sinφ φ φ φ φ φx y x y x y= −( ) + +( )[ ]1
2

If Q Qx y≈ , then the first term is slowly varying and can drive
resonant coupling. This condition is referred to as the difference
resonance.  In this case, we can neglect the second term, which

will be rapidly varying, and the coupled equations of motion
become
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Combining the first two equations gives
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1 1
0

2 2

2 2 2 2

r
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x

x
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= − ⇒ + =

+ = + =constant

Although there can be exchange of motion from one plane to
another, the motion is bounded and thus stable. To see what the

motion looks like, we must solve both sets of equations. To do this,
we make a change of variables to

′ = − +( )
′ = − +( )

φ φ π

φ φ π

x x x y

y y x y

Q Q n

Q Q n
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This is a change of variables to a rotating coordinate system,

rotating with a frequency corresponding to the tune 
Q Qx y+

2
. The

equations of motion become
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r
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in which δQ Q Qx y= − .  These can be reduced to the form of two
complex linear coupled first order equations with the substitution

w r i w r ix x x y y y= ′( ) = ′( )exp    expφ φ

The result is the pair of complex equations

dw
dn

i Q w w

dw

dn
i Q w w

x
x y

y
y x

= −





= − +





δ π κ

δ π κ
2

2

We can now solve these equations just as we did for the coupled
harmonic oscillators earlier in the lecture. Written as a matrix

equation, the pair of equations above is
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dw
dn

i Q w
r

r+ = =
−





πδ
ε

ε
M M0

1

1
,      

in which ε κ
πδ

=
2 Q

The normal modes of the motion will be given by 
r
ζ , where

r r
w = Sζ

The equation of motion of the normal modes is

d
dn

i Q
d
dn

i Q

r
r

r
rζ πδ ζ ζ πδ ζ+ = + =−S MS1 0ΛΛ      

in which the matrix S MS− = = 





1 1

2

0

0
ΛΛ

λ
λ

 is diagonal.
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The solutions are      
ζ ζ πδ λ

ζ ζ πδ λ
1 10 1

2 20 2

( ) exp

( ) exp

n i Q n

n i Q n

= ( )
= ( )

The normal modes frequencies and the normal modes are the
eigenvalues and the eigenvectors of the matrix M. Since the matrix

is pretty simple, the eigenvalues and eigenvectors are relatively
simple also. The eigenvalues are

 λ ε λ ε1
2

2
21 1= − + = +    

so the normal mode solutions are

ζ ζ πδ ε

ζ ζ πδ ε

1 10
2

2 20
2

1

1

( ) exp

( ) exp

n i Q n

n i Q n

= − +( )
= +( )
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 These solutions have been found in the rotating coordinate system.
Therefore, we have to add back π Q Q nx y+( )   to get the motion in

the usual phase space. The tunes of the normal modes are then

Q Q
Q

Qx1 2
2 2 2

2
1

4
4, = + ± +δ

π
κ π δ

Example: Qx = 0.48, κ=0.05
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The tune split between the two normal modes is

Q Q Q1 2
2 21

2
2− = +( )

π
κ πδ

The minimum tune split, on the difference resonance at δQ=0, is

Q Q
f

x y
2 1 2 2

−( ) = =min ˜
κ
π

β β
π

Example: 1 mrad rotation of CESR permanent magnet quadrupole:
focal length 0.8 m: 1 mrad roll=> ˜ .

.  f = =0 8
0 002 400 m. βx = 10

m, βy = 84 m. Then

∆Qmin .= ×
×

=84 10
2 400

0 011
π

 .
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 Normal mode orientations:
r rζ = −S 1w  implies that

ζ α α

ζ α α

1 11
1

12
1

1 1

2 21
1

22
1

2 2

= + = +

= + = +

− −

− −

S w S w w w

S w S w w w

x y x y

x y x y

cos sin

cos sin

These angles are given by from the eigenvectors by

tan   tan  α ε
ε

α ε
ε1

2

2

21 1 1 1= − + = + +

The following is a plot of the angles, for κ=0.05, as a function of

δQ:
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Left: δQ<0.  Right: on resonance (for δQ ≤ 0).
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Emittance exchange:

The amplitude of the motion in the x and y planes oscillates:

The transformation from w to ζ is given by 
r r
w = Sζ . In terms of the

angles α1 and α2 defined above,

S =
−

−






sgn
sin sin

cos cos
ε

α α
α α

2 1

2 1

r w

r w

x x

y y

2 2
2 1 1 2

2

2 2
2 1 1 2

2

= = − +

= = −

sin sin

cos cos

α ζ α ζ

α ζ α ζ

Using ζ ζ πδ εi in i Q n( ) exp= +( )0
21m , (i=1,2), and simplifying to

the case of real ζ i0, we have
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r

Q n

r

Q n

x

y

2
20
2 2

1 10
2 2

2

10 20 1 2
2

2
20
2 2

1 10
2 2

2

10 20 1 2
2

2 2 1

2 2 1

= +

− +( )
= +

− +( )

ζ α ζ α

ζ ζ α α πδ ε

ζ α ζ α

ζ ζ α α πδ ε

sin sin

sin sin cos

cos cos

cos cos cos

So that the amplitude squared is modulated with a period of

n
Q

κ
δ ε

π
κ

=
+

≈1

1

2
2

  near  the resonance. This corresponds to

about 100 turns in our previous example.
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Suppose that we start a betatron oscillation with amplitude in the
x-plane only. Then w w wx x y= =0 0,   . From the equations on p.

23, the initial values of the normal modes are

ζ α ζ α10 0 1 20 0 2= =w wx xcos     cos

Plugging these values into the equations for the emittances, and
using the expressions given above for the angles in terms of ε,

gives

r w
Q n

r w Q n

x x

y x

2
0

2
2 2

2

2
0

2
2

2
2 2

2 1 2 1

2 1

1
1

=
+ + +( )( )

+( )
=

+
+( )

ε πδ ε

ε

ε
ε

πδ ε

cos

sin
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Thus, x-amplitude appears as y-motion; the peak value of the y-
emittance is

ε
ε

ε
ε

κ
κ πδ

y

x

y

x

r

w Q
= =

+
=

+( )

2

0
2

2

2

2

2 21 2

For example, with κ=0.05, and δQ=0.003, we have

ε
ε

y

x
≈ 0 066.

This would be unacceptably large for an electron-positron collider
operating with flat beams.
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Sum resonances

Returning to our trig expansion

sin cos sin sinφ φ φ φ φ φx y x y x y= −( ) + +( )[ ]1
2

If Q m Qx y≈ − , then the second term is slowly varying and can
drive resonant coupling. This condition is referred to as the sum

resonance.  In this case, we can drop the first term, which will be
rapidly varying, and the coupled equations of motion become
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dr
dn

r

dr

dn
r

d
dn

Q
r

r

d

dn
Q

r
r

x y
x y

y x
x y

x
x

y

x
x y

y
y

x

y
x y

= − +( )
= − +( )
= − +( )

= − +( )

2

2

2
2

2
2

κ φ φ

κ φ φ

φ π κ φ φ

φ
π κ φ φ

sin

sin

cos

cos

Combining the first two equations gives

11/26/01 USPAS Lecture 16 31

1 1
0

2 2

2 2 2 2

r
dr
dn r

dr

dn
dr
dn

dr

dn

r r a a

y

x

x

y x y

x y x y

= ⇒ − =

− = − =constant

In this case, the amplitude of the motion is unbounded, as both rx

and ry may grow, provided their difference is bounded. Unstable
motion can result from a sum resonance. A complete analysis

shows that one of the eigenmodes will have an n dependence of the
form

exp − ( ) − 











i n Qπ δ κ

π
2

2

2
,
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with δQ m Q Qx y= − +( ). If δ κ
π

Q <
2

, this gives exponential

growth, independent of the initial amplitude: all particles are
unstable. This is the stopband width of the linear sum resonance.


