LECTURE 16

Linear coupling

Two coupled harmonic oscillators
Equations of linear coupling
Difference resonances
Sum resonances

Two coupled harmonic oscillators

The motion of a particle in an accelerator may exhibit coupling
between the two transverse planes. Such motion isvery similar to
the motion of two coupled simple harmonic oscillators. The
position of one oscillator is analogous to the particle’ s x-motion,
while that of the other oscillator is analogous to the y-motion.
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The equations of motion for the masses are 2=5C
mX = —k X —Kk(x +y) The normal modes are uncoupled, so that
my = —kay —k(x +y) 7 +sIMSZ =0

This can be written in matrix form as

5+Mz =0, 2:@@

_lpkatk kg Q?  ¢?O0

mo k  k+kD Hg? el

The standard technique for a solution is to find the normal modes
of the motion. The normal modes { are linear combinations of x
and y, given by the transformation matrix S:

M

11/26/01 USPAS Lecture 16 3

. . Clae_ A M 0O
in which the matrix S MS—A—E ElsdlagonaI.The
0 A
quantities /A, and /A, are the normal mode frequencies.

To find the norma modes and frequencies, we want to find the
matrix S which makes A = S™*M Sdiagonal.

This problem is equivalent to that of finding the eigenvalues and
eigenvectors of the matrix M. If the two eigenvectors are

g and &, and eigenvaluesare A, and A,, the eigenvector equation
isM q = /\ka(
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Then
(M =12 )8 =0
For these linear homogeneous equations to have a solution, the
determinant M —1A,| = 0O: thisis called the secular equation. It
provides a set of equations for the eigenvalues A,. Given these, the
solutionsto (M -1 )&, =0 can be found, which yield the
eigenvectors. If we construct amatrix Sy =(g )k (that is, with the

kth column of S equal to the kth eigenvector), then the eigenvector
equation becomes

Mg =A& 0 MS SAI SiMs A
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which shows that, if we find the eigenvalues and eigenvectors of
M, wewill know the normal mode frequencies, and the
transformation from the (x,y) to the normal modes.

Let’s carry this out for the two masses above. Solving the secular
equation gives

03 +f - Jac’ +( o )
@3 +af + 4 +(of )

The eigenvectors determine the matrix S. In terms of this matrix,
the conversion from normal modesto (x,y) is

1
A==
172

1
A==
272

11/26/01 USPAS Lecture 16 6

¢y = Avexp(is Mt + 1) = Six + SRy
02 = AgexpliAgt + ) = Six + Sy
The following figures show a numerical example, for w, = 3 Hz,

g=1 Hz. The normal mode frequencies, and the coupling matrix
elements, are plotted as afunction of ¢, (in Hz).

BN w s oo N ®
\
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For oy < oy, \/A; =0 and /Ay = w,. The situation is reversed for
w; > . Note that the normal mode frequencies are never equal,
even for w; = w,. Coupling: left, mode 1; right, mode 2

-0.5

For w; <y, {1=-X, {o=y; Forw, > wy, {1 =Y, {,=X.Forw, =

@ G1= (=X (o= (y+X).
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Equations of linear coupling

With thisintroduction to coupled oscillators, let’s see how the
coupled trgjectory equations of motion can be understood in terms
of coupled oscillators. For simplicity, we' re only going to consider

inwhich T =Ri iss the skew quad focal length. In Floquet
S

the coupling resulting from a single skew quadrupole, located at a _ ) A Aéy
position s, in the ring. This simplifies the math, while maintaining coordinates, using AX' = Wﬁ Ay' = O (=)’
the essential physical features of coupling. X\ Px (%0 Ay (%
From Lecture 3, p 9: the coupling produced by a skew quadrupole . gves
is given by N =Quéy  DEy=Quéy
X" = ylz; y" [ XR N
-t inwhichk = \’BX— {SO)'BV st isameasure of the coupling.
inwhich k = ’ is the skew quadrupole strength. For athin lens f
of length L, these equations become
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At s,, we can write the Floguet coordinates in phase-amplitude ArX2 = =211k sing, cos@,
form as ) _
&y =T, COS@, & =r,c05Q, Ary = =2ryrk Sng CoS g
: . : . For the changes in the phase, we have
Ex:_erxsm(pX Ey :'erys'n% f ° Sszé Aé
So we have for the changes in the Floguet coordinates tang= TQf =>4 = o (p& - _COS(D&’ 0

Aéx =Q« ry COSQy, Aéy = Qyer COSPy

We want to get equations entirely in terms of the phase-amplitude
variables. Since

r? =& +%§ wehave Ar?= ZgAzE = _2rSig(PA5, so
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.
A, = - kcos@, cos
@ " @ ®

X

Ag, = —:; K COS @, COS ¢

Now we' ve assumed only one coupling element in the ring. For the
motion in all the rest of thering, r, and r, do not change, and ¢, and
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@, advance by 2mQ, and 2mnQ, respectively. So, we can write
differential equations for the changes of the phase and amplitude
per turn (n=turn number)

dr2
e _ .
— = ~21,rK Sing, cos@,
dry2 B .
an —2rXryK sing, cos ¢

d(PX =210y — KCOSQQ( Cos @

Difference resonances

We now expand the trigonometric functions to identify the
resonant coupling terms:

sin(pxcosqg,:;[sin((g— cp)+sin( Q-+ )g)]

If Qx =Qy, thenthefirst term is slowly varying and can drive
resonant coupling. This condition isreferred to as the difference
resonance. In this case, we can neglect the second term, which
will be rapidly varying, and the coupled equations of motion

dn Ix become
d
% =2mQ, - U KCOS(Q( CoS ¢
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dry _ : d 2 gr2
o Estm(ch—(/;,) ldn_ 10y pdng Ay
i ry dn rdn —dn dn
d*r)]/:*XKS'n((Px‘(R/) Iy +1y =ag +a; =constant
deg, _ Iy B Although there can be exchange of motion from one plane to
dn Qx 2r, K COS((& (@) another, the motion is bounded and thus stable. To see what the
q motion looks like, we must solve both sets of equations. To do this,
A _ we make a change of variablesto

Combining the first two equations gives
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&= - r(Qx +Qy)n
¢ =@ - HQ +Qy)n
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Thisis achange of variables to arotating coordinate system,
+
rotating with afrequency corresponding to the tune QXZQV The

eguations of motion become

= ysn(ek - g)
= ks (<vx %)
d:& na - Kcos((g( cp)
C:l{/ -mX —Zr;; Kcos((g( - 49)
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inwhich 6Q = Q, —Q,. These can be reduced to the form of two
complex linear coupled first order equations with the substitution

wy =reexpligh) wy =1y exp(i qg,)

The result isthe pair of complex equations

dw _
—X |§5anx 5 YD

y=—|%§Q7‘w + WXD

We can now solve these equations just as we did for the coupled
harmonic oscillators earlier in the lecture. Written as a matrix
equation, the pair of equations above is
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aw . 1 ¢
-+ Mw = M =
dn QMW =0, gs 1@

in which S:L

2n&)
The normal modes of the motion will be given by ¢, where
w=5{
The eguation of motion of the normal modesis

%HmQS‘lM s*z:% +iTQA L =0
dn dn

0
in which the matrix SIMS= A = épg %isdiagonal.
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{1(n) = {yo exp(imQ An)
{2(n) = Lapexp(imd An)

The normal modes frequencies and the normal modes are the
eigenvalues and the eigenvectors of the matrix M. Since the matrix
is pretty simple, the eigenvalues and eigenvectors are relatively
simple aso. The eigenvalues are

M=-V1+e2 Ay =+1+g?

s0 the normal mode solutions are
24(n) = Cag exp(~im&Q1.+ &%)
25() = Ca explima 1+ £n)

The solutions are
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These solutions have been found in the rotating coordinate system.

Therefore, we have to add back n(QX + Qy)n to get the motionin
the usual phase space. The tunes of the normal modes are then

The tune split between the two normal modesis

Q-Q =k +(2r)?

Qo =Qu+ 5;? + 4171 \Kz + 42 &2 The minimum tune split, on the difference resonance at dQ=0, is
K _+BxBy
Example: Q, = 0.48, k=0.05 Q) ==
ple: Q, K (Q2 = Qi 2m  2rf
-0.03 0,02 ~0.01 0.01_# 02 0.05° Example: 1 mrad rotation of CESR permanent magnet quadrupole:
0.49 focal length 0.8 m: 1 mrad roll=>f = 0-80_002 =400 m.3,=10
—/%4/8/ _______ m, 3, = 84 m. Then
/&47 e B Y
- —Q V84 %10
. AQnin=-—--=0011.
// 0. 46 len 27Tx400
i< 7 0. 45
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Normal mode orientations: .
¢ =S w impliesthat —/fé _:
Z1:S[1]WX+S_[2]Wy =W, COSa +Wy sinaq l’j T
ZZ - SZ_]:_I-VVX * %_Z:IWy :WX Cosaz +Wysnaz Og_meg 0.01 0.02 O O?Q
These angles are given by from the eigenvectors by
2 y y
_1-1+¢€? C14+1+€? 2 1
tangy =—— tana, =———
& & a, 1
The following is a plot of the angles, for k=0.05, as a function of ag
X X

oQ:

11/26/01 USPAS Lecture 16 23

Left: 5Q<0. Right: on resonance (for Q< 0).
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Emittance exchange:
The amplitude of the motion in the x and y planes oscillates:

The transformation from w to {is given by w = SZ In terms of the
angles a, and a, defined above,

B sina, sna;
S=ggn sE H
cosa, —COsdq

2 | : 2
e =y” =|-sinayly +sina gy

2
ry2 = ‘Wy‘ =|cosar,{, —cosa £ 2\2

Using ¢;(n) ={jo exp(?in@\51+ szn), (i=1,2), and simplifying to
the case of real {jq, we have
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2 _ 72 2 2 2
rx ={3sin“ay +{jpsin“a

=201 20SIN 1 SINA 5 005(2115le + szn)
ry2 = 5220 cos’ aq +le0 cos’a 2
=210 20 COSU 1 CO 5 cos(eréQJ 1+ ezn)
So that the amplitude squared is modulated with a period of
1 2T near the resonance. This corresponds to

about 100 turnsin our previous example.
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Suppose that we start a betatron oscillation with amplitude in the
x-plane only. Then wy =Ww,q, W, =0. From the equationson p.

23, theinitial values of the normal modes are
{10 =Wx0C0Say {0 =Wy COSO 7

Plugging these values into the equations for the emittances, and
using the expressions given above for the angles in terms of ¢,

gives
, 2+32(1+cos(2nd)vl+ azn))
re =W
X x0 2(1+ 82)

2
£
ry2=w)2(0£25|n2(nc‘12\/1+ n)

1+
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Thus, x-amplitude appears as y-motion; the peak value of the y-

emittanceis
2
o £2 B P
& W 1+& Kk?+(2nX)?

For example, with k=0.05, and 6Q=0.003, we have

E
Y = 0.066

€x

This would be unacceptably large for an electron-positron collider
operating with flat beams.
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Sum resonances

Returning to our trig expansion

sin@g cos@, = [sm((g cg)+sm P+ g)]

If Q= m-Qy, then the second term is slowly varying and can

drive resonant coupling. This condition is referred to as the sum
resonance. In this case, we can drop the first term, which will be
rapidly varying, and the coupled equations of motion become
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((jj %lKSIH((pX +¢§,)
Z ;KSIH((pX +¢§,)

(Z(px—ZTQX chos(q;(+ )

d
9 -0, 1 oo+

Combining the first two equations gives
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2 2

rydn r,dn dn dn
e — 1y =a5 —aj =constant

In this case, the amplitude of the motion is unbounded, as both r,

and r, may grow, provided their difference is bounded. Unstable

motion can result from a sum resonance. A complete analysis
shows that one of the eigenmodes will have an n dependence of the
form

)2 Ok DZD

o0 H

expg—l nn\

11/26/01 USPAS Lecture 16 31

with &Q = m—(QX +Qy) If 5Q<%T, this gives exponential

growth, independent of the initial amplitude: al particles are
unstable. Thisisthe stopband width of the linear sum resonance.
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