LECTURE 2

Review of basic electrodynamics
Magnetic guide fields used in accelerators
Particle trgjectory equations of motion in accelerators
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Review of basic electrodynamics
Maxwell’s equations: Electric field E(r,t), magnetic field B(r,t),
charge density p(F,t), current density J(r,t)
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G B O

k E- 08 => fE-dF: —f@-da Faraday's Law
ot o Sat

- 0E
DB fod Hofo o =

fBedl'= tolenciosed *  Hoo jf?:‘da Ampere's Law
C s
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Electrodynamic potentials: A(Ft), V(F,t)
B=Cx A E-0OV ‘Z?
Conservation of charge:
53 %=o
ot
Ohm's Law:
J=0E
Lorentz Force Law: force on charge e
F=¢(E+vxB)

The Lorentz force generated by the accelerator’s guide field
determines the trgjectory of particles in the accelerator. Before we
discuss the trajectory equations, we should make some remarks
about the guide field.
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Magnetic guide fields used in accelerators

The simplest guide field for acircular accelerator isauniform
field.

B

0 orbit

Pole
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The Lorentz force provides the centripetal acceleration
Vi _eBy 1_eBy
p m’'p v
E[m‘l] = 02008 BlT]
p p[GeV /
Using this relation, we sometimes measure momentum in units of
T-m:
_ p[GeV /(]
Bo)|T-m=——7"——
(Be)l ] 0.2998
The (Bp) product is called the magnetic rigidity.

More than a simple uniform bending field is required. Focusing
fields are required to insure stability to small displacements from

In asynchrotron, the guide field (including bending and focusing
fields) is achieved by a series of separate magnets.

\Y

bending fields

focusing fields

the orbit.
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The focusing fields may be separate from the bending fields Magnetic lens:
(* separated function” machine) or may be combined with the
bending fields (* combined function” machine). = p e
If the bending fields all have the same design value, the machineis : e Ap=FAt=evB g q=eByl
called isomagnetic. x :QZENAP oo _BL
V P -~ =
s .- 0 p
M agnetic focusing fields: oy P 8 =% - my then g BX = X
Optical analogy: Thin lens, focal length f B (&) By = gx X=Ex hend f
4 o Thefield acts like afocusing lens of
— focal length
g== L 1. eBL_PBL
x 0 _ f f (Bp)
4—»\

f
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Thislinear dependence of field on position can be generated by a
guadrupole magnet

11/21/01 USPAS Lecture 2 8




General description of the guide fields in the region of the particle

beam
For typical accelerator magnets, the magnet length is much larger
than the transverse dimensions of the field gap
(L>>G)

apply to solenoids, and is a poor approximation for wigglers or
undulators).

In the region of the beam,

The magnetic scalar potential isasolution to LaPlace’ s equation.
For the idealized fields, the magnetic potential is only afunction of

xandy.
The idealized fields extend only over the length L (* effective Inthis case, the general solution to LaPlace’s equation in Cartesian
length”) and are independent of z and transverse to the beam. coordinates
|dealized fields ignore the fringe fields. (Note that thisis does not
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2
gxg) ayq)—Ocan be written as By =—g¢=—Re z mCp, (X +iy)™” -1
dp < . - am-1
it . =——=-Re Y iImC(x +i
o(x,y)=Re Z Cry(x +iy)™ By dy mzzl m(X +iy)

m=
where C,, is a(complex) constant determined by the boundary
conditions.

The vector potential has only one component and it is
A,(x,y)=Re 3 iCp(x+iy)™

m=0

Then
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These can be combined to give
B, +iBy = ZlmC (x +iy)™ 2,

Thisisthe general multi pole expanson for the two-dimensional
magnetic field in a current-free region.
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Since ~
- =% . g0_pg-%Bk
m-1 m-1 O aX x=y=0 aX x=y=0
-imCy, = 1 IB) m—B_‘Ly +ia m—B_’LX U 5 5
O T I -8 g0 .5
ox? ox? | _ _
it x=y=0 x=y=0
we can write m
gm =98 . m _0"B
B = 3 L BM 4iEMm)(x +iy)™ X | e X" |, yeg
By +iB, = 5 — (B +iB")(x +iy) x=y=0 e
m=o M Vector potential in this language:
where A, (x,y)=-Re z i(B(m—l) +il§(m'1))(x +iy)m
m:lm
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Let uswrite out the first few terms: y

n

B ~
> (x2 - y2) -B"xy+...

B, =By +Bx-By+
B, =By +Bx+ B’y+BZ(x2 —y2)+B" Xy +...

The terms without the twiddle are called “normal” terms; the terms
with the twiddle are called “ skew” terms. The O coefficients are
pure dipole terms, the linear are quadrupole terms, the quadratic

are sextupole terms.
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AN \, ----- : Integration path
o) =

s — E
1 \
g ; / x
N
@ E
Pure dipole: NI turng/pole
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Evaluate § He dl = lgngoseg @0Uund the integration path shown.

For infinite permeability iron H -5 - Oinsidetheiron, soin the
u

gap

2NI 2NI

H=""0B uh g~
G HoF+  Ho G
B[T] = 2.52 NI[KA —turng|
G[mm]
This dipole bends a positive particle moving in the z-direction to
the left.

If the dipoleisrotated clockwise by 90° about the z-axis, it
becomes a pure skew dipole.
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Ay

Integration path

Iron

Pure quadrupole, NI turns/pole
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Evaluate {H * dI = Igngoseq @round the integration path shown.

For infinite permeability iron H =E’ - Oinsidetheiron, sointhe

gapRz
- =~ 1R B' 2NI
Hedl =— B'rdr= =NI0O B = uy—-
f /~lo'[O 24g ° R
B’[I] _ 2_51NI[A —tu;nsj

m R mm|

p _(Bp)
adrupole focal length f =——=
Quadrupole focal leng Bl BL

Note that (for a positive particle moving in the z-direction),
this quadrupoleisfocusing in x, but defocusinginy.
If the quadrupoleisrotated clockwise by 45°about the z-axis, it
becomes a pure skew quadrupole.
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Iron \

Pure :
sextupole i —
NI turns/pole —~& ’\
Integration path
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Evaluate {H * dl = Igngioseq @round the integration path shown.

For infinite permeability iron H _B - Oinsidetheiron, sointhe
u

gap
Godgre L RB 2 B'R3 6NI
Hed = dr = =NIO B —
f IO 2 6L Ho RS
B"[I] — 7540 NI[A —tu;nﬂ
m R mm|

If the sextupole is rotated clockwise by 30°about the z-axis, it
becomes a pure skew sextupole.
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v

x

Gradient magnet (for combined function machines): provides both
abending field and a gradient (due to changing gap dimension).
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Solenoid: produces an axial
field

NI
| Bz‘ﬂo*

N 3NI[kA turng|
3 B,[T]=1.26x10" e

y N turns

The transverse fringe fields at the solenoid ends are crucial to the
solenoid focusing action, so in this case the idealized fields must
include end fields. Maxwell’ s equations allow the end fields to

havetheform B, = _;a;zx B, = ;aaBzZ
Solenoid focal Iength

20p 0 _20Bp)f
LEe%ZELpE
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Particle trgjectory equations of motion in accelerators

Consider aparticle of charge e, rest mass my, momentum

p=myw (y2 -1 EF) moving under the action of the Lorentz
mo

force:

The trgjectory equation of motion is given by Newton's Law:

dp_d ~ _ _
d? (moyv F=¢(E+v xB)

Solution isthis equation is the trajectory r(t)
11/21/01 USPAS Lecture 2 24




Write r (t) in terms of the “reference trajectory”:

B

Reference
trajectory

bending fields

focusing fields

The “reference trajectory” ry(t) isthe trajectory of a*“reference
particle” of momentum py that passes through the center of
symmetry of al the idealized magnetic guide fields. The reference
tragjectory is an idealization.
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For acircular accelerator, thistrgjectory is closed (i.e., it repeats
itself exactly on every revolution)

Actual trajectory

Reference trajectory

F(t) = (1) +r (1)
We want to write the trgjectory equation of motion in the “ natural”
coordinate system of the reference trajectory.
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From differential geometry: “natural” coordinate system of a curve

in space
b=fxA b,f and A areunit vectors
6:‘f‘:‘ﬁ‘:1
df
A= -p(s)—
P

dry
ds

t=

Reference trajectory
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For any space curve ry(s), where sisthe arc length along the

~_diy . .
curve, the vector t = O(ljg isaunit vector tangent to the curve. The

A

vector gt measures the rate at which the tangent vector changes,
S

whichisinversely proportional to p(s), the radius of curvature:

dt = , Where fi (called the principal normal to the curve) isa

ds  p(s)
unit vector normal to f. The vectors f, A, and b= xA form an
orthogonal, right-handed coordinate system which moves (and may
rotate) as we progress along the space curve.

The change in the unit vectors with sis given by the
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Frenet-Serret relations:
of _ A di_ ~ f db_
= I = Tb + —
ds p ds o} ds
where 1(s) is called the torsion.

For most accelerators, the reference orbit liesin aplane: this
corresponds to 1(s)=0. For circular accelerators, since the orbit is
cl osed

o ds f s = 277

p(s) 7 ds
Take the space curve to be the reference trgjectory, and write the
trajectory equations using the Frenet-Serret co-ordinate system:

F =Ty +0 =fy +xA +yb
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(drliesin x-y plane since coordinate system moves with the
particle)

Actual trajectory

y
g df _dsdf _ df
° dt dtds ds
Reference/
trajectory E/\X
dr ary dn dg .., .di .~
V=—= +XA +X— +yb +XA +XS— +b
ot X YR IS gg PO BS i Y

=& + A+ & +yb ;éf@ +X§+>‘<ﬁ+y6
p P
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sLaw: P-4 —F=¢E +V xB
Newton's Law: "= dt(moyv)— F=¢(E +v xB)

< move] :;’t[nwxﬁ]+§t[nw6]+§t§m s@uj}@ﬁ

.2 ..
= g o] =" S B o] € e e TS

Aob o f
vxB=x 's§+x

P

B« By B
_ AU xd, O -~0
_nB/BS—s§+pEByH+b§§+pEBX—xBSHH[xBy—yBX]
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Three trgjectory equations:

d : _moy'52 xQ . o . xg
&[m"”"]' P §+pg+ye85 S§+pEEBy+eEX
:t[”bW] = S§+XEBBX - XeB; +eE,
oltH“OySE1

Write derivativesin terms of arc length s along the reference curve
as the independent variable:

. df
with f'=—
( ds)

X mOyXS+xeBy JeB, +eE,
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df _df . ,
—&8=1f%
dt  ds

and introduce |=the path length of the particle along the orbit

Idsgnoyl' g DVDZ@ p% yl'eBS I'§+:EEBV+6EX

,|:|_ X ,V
T dsgnoyl’ YE I @J'EEBX TX | eBs ey

ds—a
vdQ @ X myx’ DVD2 Y Y
, = X eBy —y eBy +eks
s 7 R i R
Trajectory
Divide by |¥ use p = Moy, and expand LHS;
ﬂ:v ﬂ s=I's O I'-
dt ds S
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E + 7|:BD_ @ e @ +6E b " r " 1@ + |'_§;..|_X§'eBy
I'X X dsd' g p% y'ehs - EEBV E y pd p
P, d (P I' " |" @ ,
P Bl o 'eB. + eE - | -
AT X Y HH X

xdd pg EH xO px' o, I
%”)Ed»sﬂ Id% pE_ o’ Xy yeBX+eESV

Let the electric field be zero: the particle energy is then constant.
d EH.D_ I"
a8 12

Dividebylg and use
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KD'"_Q O_x'_ eBy , €B¢
§+pET’ dsa pH p A

From the relation for the velocity,

U
:'32(1+Kx)2+)'(2+y2 =& +X§+x'2+y’zm
p B

Solvefor S
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. \'% J“‘ Xl:F 2 2
S=— ad |I'=-= §+ +X'+y
=l

L=
\/§+;§+X,z+y,z

Approximation:
“paraxial” motion=> the derivatives x'2, y? <<1s0

n n

I’ -~1+; and we neglect x’L and y’||, terms in the trgjectory

<

II
equations
(These neglected terms are called “kinematic terms’)

X(S) = Xmax cos%%@

Typical values of
,:%:xmax 10 mm

ds 10 m
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=1073

Trajectory equations in the paraxial approximation:

p p
"= @+XD
pH
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