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LECTURE 2

Review of basic electrodynamics
Magnetic guide fields used in accelerators

Particle trajectory equations of motion in accelerators
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Review of basic electrodynamics
Maxwell’s equations:  Electric field 
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Electrodynamic potentials: 
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A r t V r t( , ),  ( , )
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Conservation of charge:
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∂
=J

t
ρ

0

Ohm’s Law:
r r
J E= σ

Lorentz Force Law: force on charge er r r r
F e E v B= + ×( )

The Lorentz force generated by the accelerator’s guide field
determines the trajectory of particles in the accelerator. Before we

discuss the trajectory equations, we should make some remarks
about the guide field.
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Magnetic guide fields used in accelerators

The simplest guide field for a circular accelerator is a uniform
field.
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The Lorentz force provides the centripetal acceleration
v evB
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Using this relation, we sometimes measure momentum in units of
T-m:

B
pρ( )[ ] = [ ]

T - m
GeV / c
0 2998.

The (Bρ)  product is called the magnetic rigidity.

More than a simple uniform bending field is required. Focusing
fields are required to insure stability to small displacements from

the orbit.
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In a synchrotron, the guide field (including bending and focusing
fields) is achieved by a series of separate magnets.
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The focusing fields may be separate from the bending fields
(“separated function” machine) or may be combined with the

bending fields (“combined function” machine).
If the bending fields all have the same design value, the machine is

called isomagnetic.

Magnetic focusing fields:
Optical analogy: Thin lens, focal length f

θ
x

f

θ = x

f
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Magnetic lens:

x
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This linear dependence of field on position can be generated by a
quadrupole magnet
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General description of the guide fields in the region of the particle
beam

For typical accelerator magnets, the magnet length is much larger
than the transverse dimensions of the field gap

 (L>>G)

x

y

z
L

G
Pole

poleB

The idealized fields extend only over the length L (“effective
length”) and are independent of z and transverse to the beam.

Idealized fields ignore the fringe fields. (Note that this is does not
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apply to solenoids, and is a poor approximation for wigglers or
undulators).

In the region of the beam,

r r
∇ × =B 0 so 

r r
B = −∇ φr r

∇ • =B 0 so ∇ =2 0φ

The magnetic scalar potential is a solution to LaPlace’s equation.
For the idealized fields, the magnetic potential is only a function of

x and y.
In this case, the general solution to LaPlace’s equation in Cartesian

coordinates
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x y
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φ( , ) Re ( )x y C x iym
m

m= +
=

∞
∑

0
where Cm is a (complex) constant determined by the boundary

conditions.

The vector potential has only one component and it is
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These can be combined to give
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=

∞
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1

1.

This is the general multipole expansion for the two-dimensional
magnetic field in a current-free region.
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Let us write out the first few terms:

B B B x B y
B

x y B xy

B B B x B y
B

x y B xy
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0
2 2

0
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2
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˜ ( ) ˜ ...

˜ ˜
˜

( ) ...

The terms without the twiddle are called “normal” terms; the terms
with the twiddle are called “skew” terms. The 0 coefficients are
pure dipole terms, the linear are quadrupole terms, the quadratic

are sextupole terms.
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Evaluate 
r r
H dl Ienclosed• =∫  around the integration path shown.

For infinite permeability iron 
r

r

H
B= →
µ

0 inside the iron, so in the

gap

H
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G
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= ⇒ = =
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[ ]
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2 52

0 0µ µ

[ ] .T
kA turns

mm
This dipole bends a positive particle moving in the z-direction to

the left.
If the dipole is rotated clockwise by 90o about the z-axis, it

becomes a pure skew dipole.
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Evaluate 
r r
H dl Ienclosed• =∫  around the integration path shown.

For infinite permeability iron 
r
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Note that (for a positive particle moving in the z-direction),
this quadrupole is focusing in x,  but defocusing in y.

If the quadrupole is rotated clockwise by 45o about the z-axis, it
becomes a pure skew quadrupole.
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Evaluate 
r r
H dl Ienclosed• =∫  around the integration path shown.

For infinite permeability iron 
r

r

H
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µ
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If the sextupole is rotated clockwise by 30o about the z-axis, it
becomes a pure skew sextupole.
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Iron

y

x

Gradient magnet (for combined function machines): provides both
a bending field and a gradient (due to changing gap dimension).
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The transverse fringe fields at the solenoid ends are crucial to the
solenoid focusing action, so in this case the idealized fields must
include end fields. Maxwell’s equations allow the end fields to

have the form  B
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Solenoid focal length:
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Particle trajectory equations of motion in accelerators

Consider a particle of charge e,  rest mass m0, momentum
r r
p m v= 0γ  (γ 2

2
1

1

=
− 





v
c

),   moving under the action of the Lorentz

force:

The trajectory equation of motion is given by Newton’s Law:

dp
dt

d
dt

m v F e E v B
r

r r r r r
= ( ) = = + ×( )0γ

Solution is this equation is the trajectory 
r
r t( )
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Write 
r
r t( ) in terms of the “reference trajectory”:

e

p

B0

B0

B0

B0

bending fields

focusing fields

0

Reference
trajectory

ρ

The “reference trajectory” 
r
r t0( ) is the trajectory of a “reference

particle” of momentum 
r
p0 that passes through the center of

symmetry of all the idealized magnetic guide fields.  The reference
trajectory is an idealization.
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For a circular accelerator, this trajectory is closed (i.e., it repeats
itself exactly on every revolution)

Reference trajectory

r
r
r
r0

δr
r

Actual trajectory

r r r
r t r t r t( ) ( ) ( )= +0 δ

We want to write the trajectory equation of motion in the “natural”
coordinate system of the reference trajectory.
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From differential geometry: “natural” coordinate system of a curve
in space

Reference trajectory

r
r0

s

t̂
dr

ds
=

r
0

ˆ ( )
ˆ

n s
dt

ds
= −ρ

ˆ ˆ ˆb t n= × ˆ, ˆ   ˆ  

ˆ ˆ ˆ

b t n

b t n

and are unit vectors

= = =1
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 For any space curve 
r
r s0( ), where s is the arc length along the

curve, the vector t̂
dr
ds

=
r
0  is a unit vector tangent to the curve. The

vector 
dt
ds

ˆ
 measures the rate at which the tangent vector changes,

which is inversely proportional to ρ( )s , the radius of curvature:
dt
ds

n
s

ˆ ˆ
( )

= −
ρ

 , where n̂ (called the principal normal to the curve) is a

unit vector normal to t̂ . The vectors t̂ , n̂, and ˆ ˆ ˆb t n= ×  form an
orthogonal, right-handed coordinate system which moves (and may

rotate) as we progress along the space curve.

The change in the unit vectors with s is given by the
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Frenet-Serret relations:
dt
ds

n dn
ds

b
t db

ds
n

ˆ ˆ
   

ˆ ˆ ˆ
    

ˆ
ˆ= − = + = −

ρ
τ

ρ
τ

where τ(s) is called the torsion.

For most accelerators, the reference orbit lies in a plane: this
corresponds to τ(s)=0. For circular accelerators, since the orbit is

closed,
ds

s
d
ds

ds
ρ

θ π
( )

= =∫∫ 2

Take the space curve to be the reference trajectory, and write the
trajectory equations using the Frenet-Serret  co-ordinate system:

r r r r
r r r r xn yb= + = + +0 0δ ˆ ˆ
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(δr
r lies in x-y plane since coordinate system moves with the

particle)

r
r r r

v
dr
dt

dr
dt

xn x
dn
dt

yb s
dr
ds

xn xs
dn
ds

yb

st xn
x

st yb st
x

xn yb

= = + + + = + + +

= + + + = +



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+ +

0 0

1

˙ ˆ
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˙ ˆ

˙ˆ ˙ ˆ ˙ˆ ˙ ˆ ˙ˆ ˙ ˆ ˙ ˆ
ρ ρ

s

y

x

r
r0

δr
r

Reference 
trajectory

Actual trajectory

˙ ˙f
df
dt

ds
dt

df
ds

s
df
ds

≡ = =
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Newton’s Law: 
dp
dt

d
dt

m v F e E v B
r

r r r r r
= ( ) = = + ×( )0γ

d
dt

m v
d
dt

m xn
d
dt

m yb
d
dt

m s
x

t

n
d
dt

m x
m s x

b
d
dt

m y t
d
dt

m s

0 0 0 0

0
0

2

0 0

1

1

γ γ γ γ
ρ

γ γ
ρ ρ

γ γ
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











= [ ] − +




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










 +











x m xs
ρ

γ
ρ

˙˙

r r
v B

n b t

x y s
x

B B B

n yB s
x

B b s
x

B xB t xB yB

x y s

s y x s y x

× = +





= − +













 + +





−








 + −[ ]

ˆ ˆ ˆ

˙ ˙ ˙

ˆ ˙ ˙ ˆ ˙ ˙ ˆ ˙ ˙

1

1 1

ρ

ρ ρ
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Three trajectory equations:

d
dt

m x
m s x

yeB s
x

eB eE

d
dt

m y s
x

eB xeB eE

d
dt

m s
x m xs

s y x

x s y

0
0

2

0

0
0

1 1

1

1

γ γ
ρ ρ ρ

γ
ρ

γ
ρ

γ
ρ

˙
˙

˙ ˙

˙ ˙ ˙

˙
˙˙

˙

[ ] = +





+ − +





+

[ ] = +





− +

+













 = − + xxeB yeB eEy x s− +˙

Write derivatives in terms of arc length s along the reference curve
as the independent variable:

(with ′ ≡f
df
ds

)
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df
dt

df
ds

s f s= = ′˙ ˙

and introduce l=the path length of the particle along the orbit

ds

dlReference
trajectory

Trajectory

dl
dt

v
dl
ds

s l s l
v
s

= = = ′ ⇒ ′ =˙ ˙  
˙
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v
l

d
ds

m
v
l

x
m v

l
x

y
v
l

eB
v
l

x
eB eE

v
l

d
ds

m
v
l

y
v
l

x
eB x

v
l

eB eE

v

s y x

x s y

′ ′
′





=
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



 +





+ ′
′

−
′

+





+

′ ′
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
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

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′

+

′

0
0

2

0

1 1

1

γ γ
ρ ρ ρ

γ
ρ
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d
ds

m
v
l

x m x v
l

x
v
l

eB y
v
l

eB eEy x s0
0

2
1γ

ρ
γ
ρ′

+













 = − ′

′




 + ′

′
− ′

′
+

Divide by 
v
l′

, use p m v= 0γ , and expand LHS:
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p
l

x x
d
ds

p
l

p
l

x
y eB

x
eB eE

l
v

p
l

y y
d
ds

p
l

x
eB x eB eE

l
v

x d
ds

p

s y x

x s y

′
′′ + ′

′






=
′

+





+ ′ − +





+ ′

′
′′ + ′

′






= +





− ′ + ′

+



 ′

ρ ρ ρ

ρ

ρ

1 1

1

1
ll

p
l

d
ds

x px
l

x eB y eB eE
l
vy x s







+
′

+





= − ′
′

+ ′ − ′ + ′
1

ρ ρ

Let the electric field be zero: the particle energy is then constant.

Divide by 
p
l

d
ds l

l

l′ ′






= − ′′
′

    and  use
1

2
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′′ − ′ ′′
′

= +





+ ′ ′ − +





′

′′ − ′ ′′
′
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

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
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′′
′

− +





= ′ − ′

x x
l
l

x
y l

eB
p

x
l

eB

p

y y
l
l

l
x eB

p
x l

eB
p

x l
l

d
ds

x x

s y

x s

1
1 1

1

1 1

ρ ρ ρ

ρ

ρ ρ ρ
xx l

eB

p
y l

eB
p

y x′ + ′ ′

From the relation for the velocity,

v s Kx x y s
x

x y2 2 2 2 2 2
2

2 21 1= +( ) + + = +





+ ′ + ′












˙ ˙ ˙ ˙
ρ

Solve for ṡ
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˙     
˙

s
v

x
x y

l
v
s

x
x y=

+





+ ′ + ′

′ = = +





+ ′ + ′

1

1
2

2 2

2
2 2

ρ

ρ
and

Approximation:
“paraxial” motion=> the derivatives ′ ′ <<x y2 2 1,    so

′ ≈ + ′ ′′
′

′ ′′
′

l
x

x
l
l
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Trajectory equations in the paraxial approximation:
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