LECTURE 20

Collective effects in multi-particle Beams

Tune shifts and spreads:
Transverse space charge: direct and indirect
Beam-beam interaction
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Collective Effectsin multi-particle Beams

To this point in these lectures, we have not considered the effects
of the electromagnetic fields generated by the beam itself. The
effects of these fields are called collective effects, because they

depend on the field of a collection of charged particles (the beam).

For intense beams, these collective effects can be very important:

the fields of the beam can be comparable to or larger than the
magnetic guide fields or the rf accelerating fields.

The fields of the beam can cause static effects (such as tune shifts,
lattice function distortions, resonance excitation) just like any
perturbing field in the machine. Since the collective fields follow
the motion of the beam, and can also affect it, they can also have
dynamical effects, leading to damping or growth (instability) of
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beam motion. We'll start the study of collective effects with the
simplest topic, the static effects of the collective fields.

Transverse space charge.

Thisisthe ssimplest collective effect: the beam constitutes a charge
and current distribution, and the fields generated by this
distribution will act on the trajectories of the individual

constituents of the beam. We can understand what happens by
inserting the beam’ sfields into the trgjectory equations that govern
the motion of the individual particlesin the beam.

Direct space charge effect

Consider a highly relativistic bunch of length L, with N particles of
charge e, which has around Gaussian charge distribution in the
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To find the electric field a distance r from the axis of the bunch,
we surround the bunch with a Gaussian surface and apply Gauss
Law:
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Thisfield is directed radially outward.
Similarly, Ampere’s Law will give the magnetic field
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Thisfield is directed in the ¢ direction. Now consider a particle of
charge ein the beam. The Lorentz force it feels from these fieldsis
called the space charge force.
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For large y, the forces due to the electric and magnetic fields tend
to cancel; the space charge forces goes like 1/)~.
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The effect of thisforce on the trgjectory equations, from Lect 2, p
35,is
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where, from the result above,
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Theforceis nonlinear in x and y, and introduces coupling.
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Plot of the space charge force F(x,0) vs. x
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so the trgjectory equations become
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The space charge force is equivalent to a quadrupole error, with
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For small x, the forceislinear in X, but it reaches a maximum at 2
about x=20, and then falls off slowly. where 1 = eiz
4rggmyC
For small x and y, we have .
\e? Such a quadrupole error produces a tune shift
Ne?
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Q= fB (Hkds =~ VO Bx(S) ds treatment given aboveis valid for non-relativistic beams also, if
X f X anf y3|_if they are not bunched. In thiscase, L = 27R, and N represents the
Nro CNR total number of particles in the machine:

T TanpPLel T 2ppL g

S
where R= %T is the mean radius of the machine, and
2

&n = Bye= Bya— is the normalized rms emittance. The negative

X
sign indicates the space charge force is defocusing. Thereisan
equal tune shift in they direction.

Example: an unbunched proton beam, containing 6x10™ particles,
with anormalized rms emittance of 2 mm-mrad, isinjected into the
Fermilab Booster at 400 MeV. This beam is not relativistic, but the
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Nrp 6x10% x1.53x10718
4By & 4mx0.713x1.4262 x2 x10°°

Because of the nonlinear form of the space charge force (for a
Gaussian beam), the tune shift will depend on the amplitude of the
particle' s oscillation. The tune shift will be proportional to the
local gradient of the force.

=-0.252

AQ, =-

Plot of the gradient of F(x,0) vs. X
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The largest tune shift occurs for particles at small x; particles at
large x see asmaller tune shift. Thisresultsin atune spread in the
beam, roughly equal to the small amplitude tune shift. Thistune
spread can cause problems if some parts of the beam are shifted
onto resonances. Amazingly enough, it has been found that beams
can survive (for a short time: the acceleration cyclein arapidly
cycling machine) with space charge tune spreads as large as 0.4.
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The space charge effect just discussed is called the direct space
charge effect. The tune shiftsit produces are called incoherent tune
shifts, because they are shifts of the tune of individual particlesin
the beam. The oscillation frequency of the beam asawhole (a
coherent oscillation) is not affected by the direct space charge
effect.

There is another effect of space charge, called the indirect space
charge effect, which can cause both incoherent tune spreads and
coherent tune shifts.

Indirect space charge effect

This effect is due to the fact that the beam istraveling inside a
vacuum chamber with conducting walls, and generally also inside
the poles of amagnet. Thefields of the beam will produce induced
charges in the vacuum chamber and induced magnetization in the
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magnet poles. The induced charge and magnetization produces
fields that can act on the beam. The effect of these is called the
indirect space charge effect.

The induced charges and magnetization can be found by requiring
solutions of Maxwell’ s equations to satisfy the boundary
conditions: = 0 at a conducting surface, and B; =0 at an
magnetic surface.

For the case of parallel conducting walls:

h 5 \Conducting walls

Beam ——— *© /
| ——

The additional electric and magnetic fields in the region of the
beam can be obtained through the use of image charges to find
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solutions that satisfy the boundary conditions. The result, for small
xandy,is

e OUNO1 720 Ny 70
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Thefirst two termsin brackets are due to the ac image charges and
currents, and have the suppression factor 1/y? due to electric-

magnetic field cancellation. The last term is due to the dc current,

F(x,0) = x

proportional to the average line density lz\l;;’; , with N, the total

number of particlesin the machine. Static magnetic fields from the
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dc beam current can penetrate the conducting walls. There are no
induced dc currents, and so this term has no 1/y? suppression

factor. It will dominate at high energies.
The associated incoherent tune shifts are
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For the permeable magnet poles.
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The additional magnetic fields in the region of the beam can be
obtained through the use of image currents. Only the dc component
of the beam current contributes. The incoherent tune shifts,
including both the direct and indirect fields, are

é
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Example: Indirect space charge tune shift in CESR, due to magnet

poles (dominant term). For 45 bunches with 1.5x10™ per bunch,
N,,=6.75 10'%; { ,BX>=20 m, g=3 cm=>

AQ =

Niot 7T B¢ )
AQ, = ‘°;4ig%> 0 =0.0054

Coherent tune shift
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For abeam oscillating as a whole in the vertical direction between
horizontal plates or poles, the image charges and currents oscillate
also, and produce aforce on the beam that is proportional to the
averagey position of the beam

N € 7201 ﬁZD
F.con(0:y) = y27‘R7T@16ET E

resulting in a coherent tune shift

_ _roNtot7T<.3y> U1 ﬁzD
AQyc0h = 16/32y % 25

This tune shift affects the beam as awhole (like a standard
guadrupole error). If the beam is given akick and the oscillation
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frequency measured with a spectrum analyzer, this tune shift can
be measured.

Beam-beam interaction

We have discussed the long range beam-beam interaction in
Lecture 19. We'll now consider the “head-on” interaction, when a
particle in one beam passes through the charge distribution of the

opposing beam. This problem is essentially identical to the one that
we have just examined: the fields from the bunch are those
obtained above on p. 5 and 6; the force experienced by the particle
in the opposing beam, which has a charge —e and a velocity in the
=S8 direction, is
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The electric and magnetic forces add in this case, and are amost
equal for arelativistic particle (we will take =1). The trgjectory

equations, x" = \I/:X y' = W‘; can be integrated over the effective

F
length of the fidlds 4s, giving AX' = \I/:E)AS by = > dsasthe

11/27/01 USPAS Lecture 20 22

angular kicks. Asexplained in Lecture 17, p 30, the effective
length of thefieldsis As= ;: so the angular kicks are

,__2Nr, X O (x?+y?)
BT ey Hl "PH 20t H
Ay = - 2Nr (X +y)|:D
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Asin the case of space charge, the kicks are nonlinear inx and y,
and introduce coupling. Linearizing for small x and y gives

1 _ X _ Nr
fy X oy
resulting in a tune shift

AQXZL&_ NrOBX —

Aty And’y b

WhereB; isthe value of S, at the collision point, and &, is called the
tune shift parameter.

This expression can be written in terms of the rms normalized

emittance £, = &Y = ya2
nx —exy — Y
Ax' = —%L Ay’ = _%l BX
y o y o
This corresponds to an effective focal length
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NI, _ N[f
AQ, =—19— Similarly, AQ, =—9—.
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For round beams, the beam-beam tune shifts are independent of
the beam size and lattice functions at the collision point, and
depend only on the number of particles per bunch and the
normalized emittance.

Example: the Tevatron collider operates with about 2x10™ protons

per bunch with a normalized emittance of about 2.5 mm-mrad. The

beam-beam tune shift per collision experienced by the antiprotons
is

_ N _2x10"x153x107*8
Ame,x  4mx25x107°

AQ, =0.01
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Just like the case for space charge, because of the nonlinear form
of the beam-beam force (for a Gaussian beam), the tune shift will
depend on the amplitude of the particle' s oscillation. The tune shift
will be proportional to the local gradient of the force.

Plot of the gradient of F(x,0) vs. X
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The largest tune shift occurs for particles at small x; particles at
large x see asmaller tune shift. Thisresultsin atune spread in the
beam, roughly equal to the small amplitude tune shift. Thistune
spread can cause problems if some parts of the beam are shifted
onto resonances.

The quadrupole part of the beam-beam force also causes a
distortion of the lattice functions. Thisis sometimes called the
“dynamic beta effect”.

Experimentally, it has been found that proton-antiproton colliders,
which operate with round beams, can tolerate up to atotal beam-
beam tune shift of about 0.025.

Electron-positron colliders (perhaps because of radiation damping)
can be operated with beam-beam tune shifts as large as 0.06.
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For electron-positron colliders, radiation damping resultsin flat
beam. For such flat beams, in which the charge distribution has a
different sizein the horizontal and vertical directions, the
expression for the beam-beam tune shift is alittle more complex.

nQ =g, = 2NioB N,
X 4nax(ax+ ay)y 2ndy
2Nr, [3* NI B*

AQ, =&, Y = O

4n0y( oy + oy) y 2moyoyy
If the machine is operated with Bx = & , then the tune shift will
Oy Oy
be the same in both planes and can be written in terms of the rms
horizontal emittance ¢, as
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Example: CESR, with 2x10™ electrons per bunch with an rms
horizontal emittance of about 0.2 mm-mrad. The beam-beam tune
shift per collision experienced by the positrons and the electrons is

11 -15
AQ= Nrp _2x10™ x2.82 x10 ~0.044

2ryg,  2mx2x1077 x10%

The focal length of the beam-beam “lens’ in the y-plane
.. _ By _18cm
isfy = =

4mAQ 47mx0.04

=3.26 cm
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which can be compared with the focal length of the strongest
guadrupole in CESR: about 80 cm.

Coherent beam-beam effect

The tune shifts discussed above are incoherent tune shifts,
affecting individual particlesin abunch. There are also coherent
beam-beam effects, which involve the interactions of one entire
bunch with the opposing bunch. In the simplest model of the
coherent collective interaction, we consider each bunch to be a
rigid “macroparticle’, interacting as a whole with the other bunch.
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L et the displacement of the two bunches as they pass the collision
point be x, and x,. These displacements are assumed to be non-zero
because of a coherent betatron oscillation of each bunch, driven by
the electromagnetic forces exerted by one bunch on the other. The

angular kick given to bunch 1 by bunch 2 can be obtained by
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averaging the force seen by bunch 1 due to bunch 2 over the
charge distribution of bunch 1. For equal size round beams, with x;
and x, <<g, we find

Axg = —2715%5()(1 %) M= Zni)i(xl %)
X X

This represents a pair of coupled equations, which describe the
coupled motion of the two bunches. Anticipating the result for the
form of the coupled motion, we define new variables

1 1
U v2( 1+ %) U 4\’,2( 1 %)

The changesin the slopes of these variablesis
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Ay =0 Au, = —4712;’,5 U,

X

The one-turn matrix for the two-bunch system can be written as

Mgt =MM:
(th [bh
Ehl :MtotEIJl
B, i
> C+IP > P

M represents the standard one-turn matrix at the interaction point
(IP), expanded to describe the motion of the centroid of the two
bunches:
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[ cos2mQ, B.sin2 16, 0 0
= Ldn2mQ,  cos2mm), 0 5
M - |:| ﬁX . |:|
o o 0 cos2mQ,  fBsin276, 0
E 0 0 —i*SiHZTlQX cos2 1), ﬁ
Bx
(we assume a'=0). The coupling is represented by

M o 0 0O

o 1 0 OE

M= 0 1 ;O

EJ 0 -4m>% 1%

Bx
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The product matrix M, = MM . takes us once around the

machine, including the coupling due to the beam-beam interaction.

Theresultis
[0 Cos2mQy B,sin2 0, 0 0 O
ELBl sn2mQ,  cos2 70, 0 0 g
_ X
M R 0 fosanX—4n<;?'n2 e fsn2 Bl
U 0 0 -——€in2mQ, —4 % cos2 cos2 U
g 5 mQy 5 mQy R g

The absence of off-diagonal terms shows that the modes u, and u,
are uncoupled. The submatrix associated with the u, variable

has the unperturbed tune. This corresponds to a mode in which
both bunches move together: thisis called the c mode.
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The mode u,, in which the displacements of the bunches are equal
and opposite, is called the Ttmode. It has atune given by

CoS27mQ,; =Ccos2 70, —2 m&sin2 @y
For small values of the tune shift parameter ¢, we have
cos27Q;; = cos2 {Q, +AQ,) = c0s2 1Ry —2 #Q,sin2 @
S0 AQp = éx

The frequency shift of the coherent Tt mode can be observed on a

spectrum analyzer and is an approximate indicator of the beam-
beam parameter.
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Tune shift parameter and luminosity

It is very often the case that the beam-beam effect is the limit to the
attainable peak luminosity in a particle-antiparticle collider. In this
case, it is useful to cast the luminosity formulainto a different
form that explicitly includes the beam-beam parameter.

For round beams, we have for the luminosity
2
L=t BN
ano®
in which N is the number of particles per bunch, B the number of

Nrof)’*
471102 y

, we have

bunches. In terms of the tune shift parameter & =
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¢ BN&y
roB
This shows that, for afixed beam-beam parameter, the luminosity
is proportional to the number of particles per bunch, the energy,
and the number of bunches, and inversely proportional 8 at the
interaction point. For flat beams, for which the beam-beam

Nrof3,
parameter is &, = leoﬂy’ the luminosity is

x Oy Y

BN? ¢ BNy
4moy oy 2rOB:,

Lround =

Liiat = f
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Examples:
Tevatron collider

f=47 kHz, B=36, N=2x10", £=0.01,=1066, r,=1.53x10®m, =35
cm=>L,,,,<=6.8x10%* cm? s*

CESR

=390 kHz, B=45, N=2x10", é=0.05,)=10% r,=2.82 x10"°m,
B=1.8 cm=>L,,=1.8x10* cm? s*
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