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LECTURE 20
Collective effects in multi-particle Beams

Tune shifts and spreads:

Transverse space charge: direct and indirect

Beam-beam interaction
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Collective Effects in multi-particle Beams

To this point in these lectures, we have not considered the effects
of the electromagnetic fields generated by the beam itself. The
effects of these fields are called collective effects, because they

depend on the field of a collection of charged particles (the beam).
For intense beams, these collective effects can be very important:

the fields of the beam can be comparable to or larger than the
magnetic guide fields or the rf accelerating fields.

The fields of the beam can cause static effects (such as tune shifts,
lattice function distortions, resonance excitation) just like any

perturbing field in the machine. Since the collective fields follow
the motion of the beam, and can also affect it, they can also have
dynamical effects, leading to damping or growth (instability) of
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beam motion.  We’ll start the study of collective effects with the
simplest topic, the static effects of the collective fields.

 Transverse space charge.

This is the simplest collective effect: the beam constitutes a charge
and current distribution, and the fields generated by this
distribution will act on the trajectories of the individual

constituents of the beam. We can understand what happens by
inserting the beam’s fields into the trajectory equations that govern

the motion of the individual particles in the beam.

Direct space charge effect

Consider a highly relativistic bunch of length L, with N particles of
charge e, which has a round Gaussian charge distribution in the
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To find the electric field a distance r from the axis of the bunch,
we surround the bunch with a Gaussian surface and apply Gauss’

Law:
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This field is directed radially outward.

Similarly, Ampere’s Law will give the magnetic field
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This field is directed in the φ̂ direction. Now consider a particle of
charge e in the beam. The Lorentz force it feels from these fields is

called the space charge force.
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For large γ, the forces due to the electric and magnetic fields tend

to cancel; the space charge forces goes like 1/γ2.
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The effect of this force on the trajectory equations, from Lect 2, p
35, is
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The force is nonlinear in x and y, and introduces coupling.
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Plot of the space charge force Fx(x,0) vs. x
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For small x, the force is linear in x, but it reaches a maximum at
about x=2σ, and then falls off slowly.

For small x and y, we have
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so the trajectory equations become
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Such a quadrupole error produces a tune shift

11/27/01 USPAS Lecture 20 11

∆Q s kds
Nr

L

s
ds

Nr

L
ds

Nr R

L

x x
x

n n

= = −

= − = −

∫ ∫

∫

1
4 4

4 2

0
2 3 2

0
2

0
2

π
β

πβ γ
β
σ

πβγ ε βγ ε

( )
( )

where R
ds

= ∫
2π

 is the mean radius of the machine, and

ε βγε βγσ
βn

x
= =

2
 is the normalized rms emittance. The negative

sign indicates the space charge force is defocusing. There is an
equal tune shift in the y direction.

Example: an unbunched proton beam, containing 6x1012 particles,
with a normalized rms emittance of 2 mm-mrad, is injected into the
Fermilab Booster at 400 MeV. This beam is not relativistic, but the
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treatment given above is valid for non-relativistic beams also, if
they are not bunched. In this case, L R= 2π , and N represents the

total number of particles in the machine:
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Because of the nonlinear form of the space charge force (for a
Gaussian beam), the tune shift will depend on the amplitude of the

particle’s oscillation. The tune shift will be proportional to the
local gradient of the force.

Plot of the gradient of Fx(x,0) vs. x
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The largest tune shift occurs for particles at small x; particles at
large x see a smaller tune shift. This results in a tune spread in the
beam, roughly equal to the small amplitude tune shift. This tune
spread can cause problems if some parts of the beam are shifted

onto resonances. Amazingly enough, it has been found that beams
can survive (for a short time: the acceleration cycle in a rapidly
cycling machine) with space charge tune spreads as large as 0.4.
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The space charge effect just discussed is called the direct space
charge effect. The tune shifts it produces are called incoherent tune
shifts, because they are shifts of the tune of individual particles in

the beam. The oscillation frequency of the beam as a whole (a
coherent oscillation) is not affected by the direct space charge

effect.

There is another effect of space charge, called the indirect space
charge effect, which can cause both incoherent tune spreads and

coherent tune shifts.

Indirect space charge effect

This effect is due to the fact that the beam is traveling inside a
vacuum chamber with conducting walls, and generally also inside

the poles of a magnet.  The fields of the beam will produce induced
charges in the vacuum chamber and induced magnetization in the
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magnet poles. The induced charge and magnetization produces
fields that can act on the beam. The effect of these is called the

indirect space charge effect.

The induced charges and magnetization can be found by requiring
solutions of Maxwell’s equations to satisfy the boundary

conditions:E|| = 0 at a conducting surface, and B|| = 0 at an
magnetic surface.

For the case of parallel conducting walls:

h Conducting walls
Beam

The additional electric and magnetic fields in the region of the
beam can be obtained through the use of image charges to find
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solutions that satisfy the boundary conditions. The result, for small
x and y, is
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The first two terms in brackets are due to the ac image charges and
currents, and have the suppression factor 1/γ2 due to electric-

magnetic field cancellation. The last term is due to the dc current,

proportional to the average line density 
N

R
tot

2π
, with Ntot the total

number of particles in the machine. Static magnetic fields from the
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dc beam current can penetrate the conducting walls. There are no
induced dc currents, and so this term has no 1/γ2  suppression

factor. It will dominate at high energies.

The associated incoherent tune shifts are

∆

∆

Q
r R N

L h

N
R h

Q
r R N

L h

N
R h

x
n

x tot x

y
n

y tot y

= − −








 −








= − +












+










0
2

2

2

2

2

0
2

2

2

2

2

1
2 24 2 24

1
2 24 2 24

β γ ε
π β

βγ π
π β

βγ

β γ ε
π β

βγ π
π β

βγ

    

For the permeable magnet poles:
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g Magnet poles
Beam

The additional magnetic fields in the region of the beam can be
obtained through the use of image currents. Only the dc component

of the beam current contributes. The incoherent tune shifts,
including both the direct and indirect fields, are
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Example: Indirect space charge tune shift in CESR, due to magnet
poles (dominant term). For 45 bunches with 1.5x1011

 per bunch,
Ntot=6.75 1012; βx =20 m, g=3 cm=>
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Coherent tune shift
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For a beam oscillating as a whole in the vertical direction between
horizontal plates or poles, the image charges and currents oscillate

also, and produce a force on the beam that is proportional to the
average y position of the beam
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This tune shift affects the beam as a whole (like a standard
quadrupole error). If the beam is given a kick and the oscillation
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frequency measured with a spectrum analyzer, this tune shift can
be measured.

Beam-beam interaction

We have discussed the long range beam-beam interaction in
Lecture 19. We’ll now consider the “head-on” interaction, when a
particle in one beam passes through the charge distribution of the

opposing beam. This problem is essentially identical to the one that
we have just examined: the fields from the bunch are those

obtained above on p. 5 and 6; the force experienced by the particle
in the opposing beam, which has a charge –e and a velocity in the

−ŝ direction, is
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The electric and magnetic forces add in this case, and are almost
equal for a relativistic particle (we will take β=1). The trajectory

equations, ′′ = ′′ =x
F
vp

y
F

vp
x y      , can be integrated over the effective

length of the fields ∆s, giving ∆ ∆ ∆ ∆′ = ′ =x
F
vp

s y
F
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angular kicks. As explained in Lecture 17, p 30, the effective

length of the fields is ∆s
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2

: so the angular kicks are
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As in the case of space charge, the kicks are nonlinear in x and y,
and introduce coupling. Linearizing for small x and y gives

∆ ∆′ = − ′ = −x
Nr x

y
Nr y0

2
0

2γ σ γ σ
      

This corresponds to an effective focal length
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tune shift parameter.
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 For round beams, the beam-beam tune shifts are independent of
the beam size and lattice functions at the collision point, and

depend only on the number of particles per bunch and the
normalized emittance.

Example: the Tevatron collider operates with about 2x1011 protons
per bunch with a normalized emittance of about 2.5 mm-mrad. The
beam-beam tune shift per collision experienced by the antiprotons

is
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Just like the case for space charge, because of the nonlinear form
of the beam-beam force (for a Gaussian beam), the tune shift will

depend on the amplitude of the particle’s oscillation. The tune shift
will be proportional to the local gradient of the force.

Plot of the gradient of Fx(x,0) vs. x
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The largest tune shift occurs for particles at small x;  particles at
large x see a smaller tune shift. This results in a tune spread in the
beam, roughly equal to the small amplitude tune shift. This tune
spread can cause problems if some parts of the beam are shifted

onto resonances.

The quadrupole part of the beam-beam force also causes a
distortion of the lattice functions. This is sometimes called the

“dynamic beta effect”.

Experimentally, it has been found that proton-antiproton colliders,
which operate with round beams, can tolerate up to a total beam-

beam tune shift of about 0.025.

Electron-positron colliders (perhaps because of radiation damping)
can be operated with beam-beam tune shifts as large as 0.06.
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For electron-positron colliders, radiation damping results in flat
beam.  For such flat beams, in which the charge distribution has a

different size in the horizontal and vertical directions, the
expression for the beam-beam tune shift is a little more complex.
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=  , then the tune shift will

be the same in both planes and can be written in terms of the rms
horizontal emittance εx as
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Example: CESR, with 2x1011 electrons per bunch with an rms
horizontal emittance of about 0.2 mm-mrad. The beam-beam tune
shift per collision experienced by the positrons and the electrons is
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which can be compared with the focal length of the strongest
quadrupole in CESR: about 80 cm.

Coherent beam-beam effect

The tune shifts discussed above are incoherent tune shifts,
affecting individual particles in a bunch. There are also coherent
beam-beam effects, which involve the interactions of one entire

bunch with the opposing bunch. In the simplest model of the
coherent collective interaction, we consider each bunch to be a

rigid “macroparticle”, interacting as a whole with the other bunch.

11/27/01 USPAS Lecture 20 31

x

s

x
x

1
2

12

Let the displacement of the two bunches as they pass the collision
point be x1 and x2. These displacements are assumed to be non-zero
because of a coherent betatron oscillation of each bunch, driven by
the electromagnetic forces exerted by one bunch on the other. The

angular kick given to bunch 1 by bunch 2 can be obtained by
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averaging the force seen by bunch 1 due to bunch 2 over the
charge distribution of bunch 1. For equal size round beams, with x1

and x2 <<σ, we find
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This represents a pair of coupled equations, which describe the
coupled motion of the two bunches. Anticipating the result for the

form of the coupled motion, we define new variables
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The changes in the slopes of these variables is
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 M represents the standard one-turn matrix at the interaction point
(IP), expanded to describe the motion of the centroid of the two

bunches:
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M =
−

−






















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sin cos

cos sin
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*

*

*

*

2 2 0 0
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2 2 0 0

0 0 2 2

0 0
1

2 2

π β π

β
π π

π β π

β
π π

Q Q

Q Q

Q Q

Q Q

x x x

x
x x

x x x

x
x x

(we assume α*=0). The coupling is represented by

Mc

x

x

=

−



















1 0 0 0

0 1 0 0

0 0 1 0

0 0 4 1π ξ
β*
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The product matrix M MMtot c=  takes us once around the
machine, including the coupling due to the beam-beam interaction.

The result is

M =
−

−

− −





















cos sin

sin cos

cos sin sin

sin cos cos

     

*

2 2 0 0
1

2 2 0 0

0 0 2 4 2 2

0 0
1

2 4 2 2

π β π

β
π π

π πξ π β π

β
π πξ

β
π π

Q Q

Q Q

Q Q Q

Q Q Q

x x x

x
x x

x x x x x

x
x

x

x
x x

The absence of off-diagonal terms shows that the modes u1 and u2

are uncoupled. The submatrix associated with the u1 variable
has the unperturbed tune. This corresponds to a mode in which

both bunches move together: this is called the σ mode.
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The mode u2, in which the displacements of the bunches are equal
and opposite, is called the π mode. It has a tune given by

cos cos sin    2 2 2 2π π πξ ππQ Q Qx x x= − .

For small values of the tune shift parameter ξx, we have

cos cos cos sin    2 2 2 2 2π π π π ππ π πQ Q Q Q Q Qx x x= +( ) ≈ −∆ ∆

so ∆Q xπ ξ≈   

The frequency shift of the coherent π mode can be observed on a

spectrum analyzer and is an approximate indicator of the beam-
beam parameter.
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Tune shift parameter and luminosity

It is very often the case that the beam-beam effect is the limit to the
attainable peak luminosity in a particle-antiparticle collider. In this

case, it is useful to cast the luminosity formula into a different
form that explicitly includes the beam-beam parameter.

For round beams, we have for the luminosity

  
L = f

BN2

24πσ
in which N is the number of particles per bunch, B the number of

bunches. In terms of the tune shift parameter ξ β
πσ γ

= Nr0
24

*
, we have
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Lround = f

BN

r

ξγ
β0

*

This shows that, for a fixed beam-beam parameter, the luminosity
is proportional to the number of particles per bunch, the energy,
and the number of bunches, and inversely proportional β at the

interaction point. For flat beams, for which the beam-beam

parameter is ξ
β

πσ σ γy
y

x y

Nr
≈ 0

2

*

, the luminosity is

  
Lflat = =f

BN
f

BN

rx y

y

y

2

04 2πσ σ
ξ γ
β*
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Examples:

Tevatron collider

f=47 kHz, B=36, N=2x1011, ξ=0.01,γ=1066, r0=1.53x10-18 m, β*=35

cm=>Lround=6.8x1032 cm-2 s-1

CESR

f=390 kHz, B=45, N=2x1011, ξ=0.05,γ=104, r0=2.82 x10-15 m,

β*=1.8 cm=>Lflat=1.8x1033 cm-2 s-1


