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LECTURE 23
Collective instabilities

Types of instabilities

An instability driven by narrow-band rf cavities: the
Robinson instability
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Collective instabilities

Types of instabilities

The various wake potentials we have discussed constitute
forces on the beam; these forces will alter the trajectory

equations of motion. Depending upon the phase relationship
between the forces and the dynamical variables of the beam,

the only result may be tune shifts and lattice function
distortion, or a loss of stability may occur. In such cases, the

beam is said to be subject to a collective instability.

Collective instabilities can be present in both bunched beams
and unbunched beams, in either or both the transverse and the

longitudinal planes. Because of the absence of synchrotron
motion, the longitudinal and transverse dynamics of

unbunched beams are quite different from that of bunched
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beams, and the instability mechanisms are likewise quite
different. Although the bunched beam case is more complex,

we will start the discussion of instabilities with those of
bunched beams, because they are by far the most common

and important case.

An instability driven by narrow-band rf cavities: the
Robinson instability

We have seen that the single strongest impedance in a
machine is the fundamental narrow band rf cavity

longitudinal impedance. The associated wake fields can cause
an instability called the Robinson instability. This is one of
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the most important instability mechanisms in accelerators.
Fortunately, the control of this instability is relatively

straightforward.

To see how this works, consider a “macroparticle”: a point
charge of magnitude Ne, circulating in a synchrotron. This

macroparticle will create a wake field when it passes through
the rf cavity. The macroparticle undergoes synchrotron

oscillations; the wake potentials introduce additional forces
into the synchrotron equations of motion. These additional

forces can lead to an instability.

The wake fields generated by the macroparticle can be
expressed in terms of a voltage drop across the rf cavity. The

voltage drop due to a pure harmonic current of the form
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I t I t0 0( ) ˜ cos= ( ) ( )ω ω , from Lecture 21, p 19, can be written in
terms of the cavity impedance as

E t I t Zs( ) ˜ cos ( )||= − ( ) ( )0 0ω ω ω

To use the above equation, we need to know the Fourier
spectrum of the current, which consists of a single circulating
macroparticle of charge Ne. Let us consider for the moment

that the macroparticle is not undergoing synchrotron
oscillations. The current due to the point charge Ne is a series
of impulses, which occur at times t nT= 0, where n is the turn
number, an integer running from −∞ to ∞. This current can

be represented as a sum of Dirac delta-functions

I t Ne t nT
n

0 0( ) = −
=−∞

∞
∑ δ( )
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in which T0  is the revolution period. The sum is over all
turns.

tT
0 T0

 The Fourier transform of this is
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˜ exp ( ) exp ( )

exp

I dt i t I t Ne dt i t t nT

Ne i nT

n

n

0 0 0

0

ω ω ω δ

ω

( ) = −( ) = −( ) −

= −( )

−∞

∞

−∞

∞

=−∞

∞

=−∞

∞

∫ ∫∑

∑

The Fourier transform has the form of a series of
exponentials. We can convert this into a series of Dirac delta-
functions, using a fundamental result from Fourier transform

theory, called the Poisson sum formula:

exp inx x p
n p

( ) = −( )
=−∞

∞

=−∞

∞
∑ ∑2 2π δ π

Using this, we have
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exp −( ) = +( ) = +( )
=−∞

∞

=−∞

∞

=−∞

∞

∑ ∑ ∑i nT T p
T

p
n p p

ω π δ ω π π δ ω ω0 0
0

02 2
2

in which ω π
0

2=
T

 is the revolution frequency. So, finally, we

have

Ĩ
Ne

T
p

p
0

0
0

2ω π δ ω ω( ) = +( )
=−∞

∞

∑
The Fourier spectrum of the current due to the circulating
macroparticle is just a series of discrete lines at integral

multiples of the revolution frequency.
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The current for the circulating macroparticle may now be
written in terms of pure harmonic components as

I t d i t I
Ne
T

d i t p

Ne
T

ip t

p

p

( ) exp ˜ exp

exp

= ( ) ( ) = ( ) +( )

= −( )
−∞

∞

−∞

∞

=−∞

∞

=−∞

∞

∫ ∫∑

∑

1
2 0

0
0

0
0

π
ω ω ω ω ω δ ω ω

ω

 The wake voltage, summed over all harmonics, will then be

E t
Ne
T

ip t Z ps
p

( ) exp ||= − ( ) ( )
=−∞

∞

∑
0

0 0 0ω ω
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We now let the macroparticle execute synchrotron
oscillations. The synchrotron oscillations will introduce

additional frequency components into the Fourier spectrum.
The equations for small-amplitude synchrotron motion, from

Lecture 10, p. 16, can be written as

∆ ∆ ∆

Φ

∆ ∆
∆

Φ

t t Q n E Q n

A Q n

E E Q n
t

Q n

A
Q n

n s L s

s

n s
L

s

L
s

= ( ) +( )
= +( )

= ( ) −
( )

= − +( )

max max

max
max

cos sin

cos

cos sin

sin

2 2

2

2 2

2

π β π
π

π
β

π

β
π

in which
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A t E

E

t

L

L

2 2 2 2= ( ) +( )

= −
( )

( )

∆ ∆

Φ
∆

∆

max max

max

max

,

tan

β
β

 The current associated with the macroparticle now consists
of series of impulses at t nT tn= +0 ∆ , rather than at t nT= 0.

The current is

I t Ne t nT tn
n

0 0( ) = − −
=−∞

∞

∑ δ( )∆

The Fourier transform is

˜ expI Ne i nT tn
n

0 0ω ω( ) = − +( )( )
=−∞

∞

∑ ∆
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Identity:

exp cos exp−( ) = ( ) ( )−

=−∞

∞

∑ix i J x ill

l
lφ φ

so

˜ exp cos

exp

I Ne i nT A Q n

Ne i J A i nT l Q n

s
n

l

l
l s

n

0 0

0

2

2

ω ω π

ω ω π

( ) = − + +( )( )( )

= ( ) − + +( )( )
=−∞

∞

−

=−∞

∞

=−∞

∞

∑

∑∑

Φ

Φ

Using the Poisson sum formula again gives
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exp − −( )( ) = − +( )

= − +( )

=−∞

∞

=−∞

∞

=−∞

∞

∑ ∑

∑

in T Q l T Q l p

T
l p

s
n

s
p

s
p

ω π π δ ω π π

π δ ω ω ω

0 0

0
0

2 2 2 2

2

so

˜ expI
Ne

T
i J A il l pl

l
l s

p
0

0
0

2ω π ω δ ω ω ω( ) = ( ) ( ) − +( )−

=−∞

∞

=−∞

∞

∑∑ Φ

Each discrete revolution harmonic line in the Fourier
spectrum of the current due to the circulating macroparticle
(l=0 in the above series) acquires a series of “synchrotron

sideband” lines, spaced at multiples of the synchrotron
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frequency ω ωs sQ= 0 on either side of the l=0 lines. For small
amplitude synchrotron oscillations, ωA <<1,

J A

J A
A

0

1

1

2

ω

ω ω
( ) ≈

( ) ≈

,
,

and

˜
exp

exp
I

Ne
T

p
A
i

i p

i pp

s

s

0
0

0

0

0

2
2

ω π δ ω ω ω δ ω ω ω
δ ω ω ω

( ) ≈ +( ) +
( ) − +( )

+ −( ) + +( )





=−∞

∞

∑
Φ

Φ

The current is
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I t d i t I

Ne
T

ip t

A
i

p i i p t

p i i p t

p

s s

s s

( ) exp ˜

exp

exp exp

exp exp

= ( ) ( ) =

=

−( )

+
− +( ) ( ) − +( )( )

+ − −( ) −( )( ) − −( )( )
















−∞

∞

=−∞

∞

∫
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1
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2

0

0

0
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0 0

π
ω ω ω

ω

ω ω ω ω

ω ω ω ω

Φ

Φ


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




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



The wake voltage, summed over all harmonics, will then be
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E t
Ne
T

ip t Z p

A
i

p i i p t Z p

p i i p t Z p

s
p

s s s

s s s

( ) exp

exp exp

exp exp

||

||

||

= − ( ) ( )

+
+( ) ( ) +( )( ) +( )

+ −( ) −( )( ) −( )( ) −( )






=−∞

∞

∑
0

0 0 0

0 0 0 0

0 0 0 0
2

ω ω

ω ω ω ω ω ω

ω ω ω ω ω ω

Φ

Φ 


Let the resonant frequency of the narrow-band impedance Z0
||

be ωR. Let the closest harmonic line to this frequency have the

harmonic number h, so ω ωR h≈ 0. The width of the resonance

is of order 
ω ωR

Q
h

Q2 2
0≈ . Provided that 

h
Q

<<1, as is typical for

narrow-band resonators, only the contributions at p h= ± ,
close to the resonant frequency, will be important.
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ω(h-1) ω hω (h+1) ω
0 0 0

ωR

Re Z ||
0

Thus, the narrow-band wake voltage can be written as
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E t
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T
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exp exp
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|| ||
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Φ

Φ

After some algebra, and using Z h Z h0 0 0 0
|| * ||ω ω( )[ ] = −( ), we

find
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E t
Ne
T

h t Z h h t Z h

A

h t t Z h h

h t t Z hs

s s s

s s( )

cos Re ( ) sin Im ( )

cos Im ( ) ( )

cos Im ( ) (

|| ||

||
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( ) [ ] − ( ) [ ] −
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
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


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


)

sin Re ( ) ( )

sin Re ( ) ( )

||

||

Φ

Φ

The synchrotron oscillations of the macroparticle are
responsible for the frequency components in this expression

at ω ω0 ± s , which sample the impedance at these frequencies:
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ω
hω0

R

Re Z ||
0

ω

ωs

ωs
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We want to find to find energy change per turn produced by
this wake voltage: then we can insert this energy change per
turn into the synchrotron equations of motion and look for a
solution. If t=0 is the time when the macroparticle is at the rf
cavity, then at a later time t nT tn= +0 ∆ , the wake voltage is
E nT t Es n s n( ) ,0 + =∆ , where n is the turn number. To lowest

order in the synchrotron oscillation amplitude, making use of
the fact that h is an integer, and using h sω ω0 >> , we have
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E E nT

Ne
T

Z h

h E Z h Z h

h t Z h
Z h Z h

s n s

L n s s

n
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||

|| ||

||
|| ||
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
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

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
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0

0 0

0 0 0 0 0

0 0 0
0 0 0 0

2
2

2

ω

ω β ω ω ω ω

ω ω
ω ω ω ω

∆

∆



















The first term in brackets corresponds to the parasitic energy
loss, which we have already discussed. The second term
represents a dynamic effect: the wake energy change is

proportional to the energy difference from the synchronous
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particle. This term has the potential to produce damping or
growth of the synchrotron oscillation, depending on the sign
of the coefficient of ∆En

 . For example, if the sign is such that

the energy change due to the wake is the same as that of ∆En
 ,

then ∆En
  can grow without bound and we have a instability.

If the signs are opposite, then the wake potential will act to
damp synchrotron oscillations.

The third term comes from the fact that
sin sinh nT t nh h t h tn n nω π ω ω0 0 0 02+[ ]( ) = +( ) ≈∆ ∆ ∆ .

This term corresponds to a wake voltage proportional to the
time difference: this will lead to a frequency shift. We now
insert this into the synchrotron equations of motion.  From
Lecture 10, p.16: the longitudinal equations of motion are
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d t
dn

Q E

d E
dn

Q
t

n
s L n

n s

L
n

∆ ∆

∆ ∆

=

= −

2

2

π β

π
β

Inserting the wake energy changes into the equation of
motion gives
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d E
dn

eE
Q

t

E
Ne h Z h Z h

T

t
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Ne
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∆ ∆

∆

∆
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−
+ −

+ + −( )

,

|| ||
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

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





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
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
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
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Differentiating once and using 
d t
dn

Q En
s L n

∆ ∆= 2π β  gives

d E

dn

d E
dn

Ne h Z h Z h

T

E

Q

Ne Q
T

h

Z h

Z h Z h

n n L s s
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s L
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∆ ∆

∆
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
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


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π

π β ω
ω
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|| ||

||

|| || 





















This equation has the general form
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d E

dn

d E
dn

Q En n
s n

2

2
22 2

∆ ∆ ∆= − − ′( )α π

which is the equation of a damped harmonic oscillator, with a
solution (for α π<< ′2 Qs)

∆E iQn s∝ − + ′( )exp α π2

By comparing with the equation above, we see that the
damping rate is

α
ω β ω ω ω ω

= −
+ − −[ ]Ne h Z h Z h

T
L s s

2
0 0 0 0 0

02

Re ( ) ( )|| ||

and the frequency is given by
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2 2
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2
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
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Q Q
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T
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s s
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|| ||

Damping rate

From Lecture 10, p 16, we have

β η λ
πβ

η
πβL

C

s s s

C

s s s

h

E cQ

T

E Q
= =

2 22
0

3

so that

α ω η
πβ

ω ω ω ω= − + − −[ ]Ne h

E Q
Z h Z hC

s s s
s s

2
0

3 0 0 0 0
4

Re ( ) ( )|| ||
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The damping rate must be positive for damping; a negative
damping rate corresponds to exponential growth. This growth

is called the Robinson instability. To avoid the instability,
above transition, (when ηC>0) we require that

Re ( ) Re ( )|| ||Z h Z hs s0 0 0 0ω ω ω ω−[ ] > +[ ] .
This condition is called the Robinson criterion. It is achieved
in practice by tuning the cavity resonant frequency ωR to be

slightly lower than hω0, as shown below:
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ω
hω

0

R

 Z ||
0

ω

+ω
s

−ω shω
0

hω
0

Re (
s

hω
0
−ω )  Z ||

0Re (
s

hω
0
+ω )

A simple physical picture can be provided to qualitatively
explain the Robinson criterion. The synchrotron oscillations
effectively introduced additional frequency components into
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the macroparticle current, one at ωs above hω0, and one at ωs

below hω0. The slip factor relates frequency to ∆E, via
∆ ∆ω
ω

η≈ − C
E

E
.

The frequency component at hω0 -ωs thus is associated with a

positive ∆E.  If the energy loss due to the wake is greater at

this frequency than at the frequency hω0 +ωs, for which ∆E is

negative, then the wake energy loss will tend to reduce the
energy more when ∆E  is positive than when ∆E  is negative,

providing damping.
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ω
hω

0

R

 Z ||
0

ω

+ω
s

−ω shω
0

hω
0

Re (
s

hω
0
−ω )  Z ||

0Re (
s

hω
0
+ω )

∆Ε>0 ∆Ε<0

Greater loss Less loss

Below transition, (when ηC<0), the Robinson criterion

reverses, to become

Re ( ) Re ( )|| ||Z h Z hs s0 0 0 0ω ω ω ω−[ ] < +[ ] .
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Synchrotron oscillation tune shift

The synchrotron oscillation tune in the presence of the wake
field is ′Qs; if the tune shift is δQ Q Qs s s= ′ − , we have, for a

small quantity ∆,

2 2 2 1
2

2
4

8

2
2

2

π π π
π

π
π

δ
π

′ = ( ) + = +
( )

≈ +

⇒ =

Q Q Q
Q

Q
Q

Q
Q

s s s
s

s
s

s
s

∆ ∆ ∆

∆
,

Comparing this with the equation on p. 29, we have
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|| ||

Substituting for βL from above gives for the synchrotron

oscillation tune shift due to a narrow-band cavity:

δ η ω
π β

ω

ω ω ω ωQ
Ne h

E Q

Z h

Z h Z hs
C

s s s
s s

≈
( ) −

+ + −( )














2
0

2 3

0 0

0 0 0 02
2

Im

( )

( ) ( )

||

|| ||

The first term in the brackets is a “static” effect (it does not
involve the synchrotron motion of the macroparticle); it is

called “potential well distortion”. The slope of the wake field
voltage adds to the slope of the rf voltage, thereby changing
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the oscillation frequency. Since it does not involve coherent
motion of the macroparticle, this piece of the tune shift is

incoherent, and can cause reduction or growth of the bunch
length.

 The other terms are dynamic effects, which will appear as a
coherent synchrotron oscillation tune shift, but will not affect

the bunch length. The total coherent tune shift is δQs.

Example.

Consider the standard expression for the narrow band

resonator impedance: Z
R

iQ

s

R

R

0

1

|| ( )ω
ω
ω

ω
ω

=
+ −




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If we let ∆ = −h Rω ω0  and take ∆ and ωs both to be much

less than the resonator width 
ωR

Q2
, then we have

α η
π

δ η
π

≈

≈ −

∆

∆

4

6

2 2

2 3

2 2

Ne Q R
hE

Q
Q

Ne Q R

h E

C S

s

s

s

C S

s

Consider the 500 MHz copper cavity again, operating in
CESR for which ηC ≈ 0 01. , h=1281, and Es =5.2 GeV. Let the

“macroparticle” contain 2x1011 electrons. If we let the
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detuning parameter ∆ = ωR

Q20
 (i.e., detune about 1/10 of the

width of the resonance), then we find from the above formula
that α=0.00245 (this is the damping rate per turn) and δQs = -

0.03Qs. The synchrotron tune is shifted down by about 3%.

The energy damping time isτ
α

= =T0 1 ms. Note that this is

much more rapid than synchrotron radiation damping.
Conversely, if the detuning has the wrong sign, the instability
growth rate can be much faster than the radiation damping
time.

The considerations given above refer to any impedance, not
just a narrow-band one. However, a broad band impedance
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will sample many revolution harmonics of the current, so that
the sum over harmonics becomes effectively an integral over
the frequency spectrum of the impedance. The real part of the
longitudinal impedance is an even function of ω (this follows

from the fact that ′ ( ) = 





−∞

∞

∫W z d Z i
z

cm m
1

2π
ω ω ω|| ( )exp is real),

and so d Zωω ωRe ( )||
0 0( ) =

−∞

∞

∫ . Broad band impedances do not

lead to Robinson-type instabilities.
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Parasitic losses will cause a shift of the synchronous phase.
This can be evaluated by writing the equation for the energy
oscillations in an rf cavity driven by a sinusoidal voltage:
(Lecture 10, pg 16):

d E
dn

eV t tn
n s

∆ = ( ) − ( )( )sin sinω ω

and adding the parasitic loss term (pg. 20 above):

E
Ne
T

Z hs n,
||Re ( )≈ − [ ]2

0
0 0ω

giving
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d E
dn

Ne
T

Z h

eV h t h t h t h t

eV
Ne
T

Z h

n

s s n s

s s

∆

∆

= − [ ]
+ ( ) + ( ) − ( )( )
= ( ) − ( )( ) − [ ]

2

2

2

0
0 0

0 0 0 0 0

0

2

0
0 0

Re ( )

sin cos sin

sin sin Re ( )

||

||

ω

ω ω ω ω

φ φ ω

in which φ ω φ ωs s s sh t h t= =0 0 0 0,   . The synchronous phase
is determined by the condition

eV
Ne
T

Z hs ssin sin Re ( )||φ φ ω( ) − ( )( ) = [ ]0

2

0
0 0

2

If φ φ δφs s s= +0 , in which δφs <<1, then

sin sin sin cosφ φ δφ φ δφ φs s s s s s( ) = +( ) ≈ ( ) + ( )0 0 0
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so

δφ
ω

φs
s

Ne Z h

VT
= [ ]

( )
2 0 0

0 0

Re ( )

cos

||

This is the shift in the synchronous phase produced by the
wakefield.


