LECTURE 24

Coallective instabilities

Bunched beam instabilities driven by short-range
wakefields:

Head-tail instabilities in synchrotrons
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Collective instabilities

Bunched beam instabilities driven by short-range
wakefields:

Head-tail instabilities in synchrotrons
“Strong” head-tail instability

The “head-tail” instability isatransverse instability in which
the transverse wake field generated by the head of a bunch
exerts aforce on thetail of the bunch. Such a condition may
lead to unstable motion of the tail, resulting in breakup of the
bunch.

It should be clear that such an instability will be driven most
easily by short-range wakefields, which extend over a distance
of order the length of the bunch. Aswe have seen, such
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wakefields are generated by the relatively high frequency
impedance of broad band resonators. We will take avery
simple model for the wake function that drives the head tail

instability, namely:
@ W if 0>z>-bunch length
Z)=
i E 0 otherwise E

The transverse wake potential generated by atotal charge Q,
undergoing vertical motion with a dipole moment (y), will then
be (Lect 24, p. 16)

Ry =eQwly)

(We'll only discuss vertical oscillations here, but the treatment
for the horizontal caseis essentially identical).
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We will use a“two-macroparticle” model for the beam. One
macroparticle, labeled “1”, will represent the head of the beam,
and the other, labeled “2”, will represent the tail of the beam.
Each macroparticle contains charge Ne/2.

Ya

=,

z

[
-

If we ignore wakefields, then each macroparticle can execute
free betatron oscillations about y=0. If we focus on a particular
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point in the ring, then the transformation of y and y' at this
point over n turns can be described by the matrix

vy Y A2y
'(n) E——stany cos2 mQy '(0)

For simplicity, we' ve taken a,=0. Now let there be an

impedance at this point in the ring, which has the wake function
W. Consider the effect of the wake field of particle 1 on
particle 2. The wake potential generated by particle 1 is

E Ne?
7VW1
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Thiswill cause akick to part| cle 2 equa to
Ayh = K _ Ne?
°T v 2mycy
in which we' ve taken the particle velocity to be c. This
obviously represents a coupling between the motion of the two

particles via the wake function, and this will be the source of
the instability.

From the matrix transformation above, we have, in the absence
of wake fields,

¥:(n) = y,(0)cos2rmQ, +y;(0) B, sin2mQ,

T (o0, y,(n

1
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where we' ve assumed y;(0) = 0 for smplicity. Using

Ya(n) = Yo 00d2rQyn) -y () = ~20sin(2rQyn)
y

dYZ(n) - ZTQyY203'n(2 rQyn) 2Ry Fy>(n)

d?y,(n)
we see that the wake fields modify the equation for 722 to
n
N2mQ, B€
2m,c’y
The solution of this equation, is

dzyz(n) — _(

dn2 Vvyl(n)

2mQ, )y, (n) +
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Y,(n) = ¥,(0)cos2mQ, + BY,(0)sin2 mQ,
Ne2W 2
/3 sin mQy vi(0)
8mQ,m,c’y
NeZWﬁ
4moc

The last term grows with n, and represents the resonant
response of the second particle to the driving force delivered by
thefirst particle. It would seem that the tail of the bunch would

rapidly be driven to large amplitudes and be lost. This, in fact,
iswhat happens in linacs, where thisinstability is referred to as
the beam breakup instability.

nEP/ 1(0)sin2mQ, —y;(0) —=- A, cosZanyE

y
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In linacs, the instability can be controlled by arranging for the
head and the tail of the bunch to have different betatron
frequencies, so the resonant response is not realized. Thisis
done by introducing an energy spread into the beam, correlated
with position in the bunch. Chromaticity will then produce a
tune dependence on position in the bunch, and the growth of the
instability can be limited. This procedure isreferred to as“BNS
damping”.

In asynchrotron, there is a natural mechanism for suppression
of the instability: synchrotron motion. The macroparticles 1 and
2 exchange places every 1/2 of a synchrotron period. This tends

to limit the growth of the instability. At large enough currents,

however, it can still occur.
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To see when the instability develops, we have to analyze the
coupled motion of the two macroparticle. Such an analysis can
be simplified by the following transformation. We define the
following complex variable

dy.
§=y+i 2/r1(d3n =y +iB,y

y

In terms of this variable, the transformation through n turns (in
the absence of wakefields) can be written very simply as

() = exp(-27inQ, )5(0)

So the motion of both macroparticles, ignoring the wake
effects, can be written in matrix form as
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AW 10
- ool2mmal @2(0)
In the presence of wakefields, we have solved for the motion of
particle 2 when it isin the tail of the bunch:
Y,(n) = y,(0)cos2mQ, + By, (0)sin2 mQ,

NeZVVB sin2mQ
8mQ,m,c’y

NeZVVB

4moc

*%1(0)

ynEP/(O)sm2an yl(O)’B cosZanyE

y
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We want to write this in terms of the § variables. Using the
definition given above, we have

ZWB

+

[Vz(o) + yl(o)ln
9,(n) = exp(-2riQ,n)2

OooOooOod

ENeZWByyl (0)( -1+ exp(4nQ n))
O 16mQm,c’y O

If we retain only the resonant term (the one proportional to n),
which will dominate after many turns, then we have

wg, 0
¢y H

.\ . Ne?
Jo(n) = exp(—ZnQyn)sz(O) +ingy(0)-,
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We can now write the solution for the motion of both
macroparticles, including the resonant term produced by the
wake field, in matrix form as

1 0
s A0 I o Newp,  3OD
Sonr o210, Tamcty 52000

As mentioned above, thiswill be correct for about 1/2 of a
synchrotron oscillation period; then the roles of particles 1 and
2 will reverse. Thus, we need to look at the above expression

for n= Zé where Q, isthe synchrotron tune. Thisis
S

PR
1 ~
Q=_ O 1 O H((0)n
- 01 %‘expg Q BN
2
Qs

in which

~ NeZWBy

8QsMyCc’y

is a positive dimensionless parameter. For the second half of
the synchrotron period, particle 2 drives particle 1; so we have
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0. 01 [0 0.01 21220 ¥ Ne*Wp, )

1 1 LS s
0 SH]: P st N QSE] 8QsMyCY
@2 U1 Qs 1 > . % If the single bunch intensity exceeds the threshold
0, 2Q,
. L _16Qymyc’y
The overall matrix for one synchrotron period is the product: th = ZWﬁ
y

[11 ED
2mQ, M -T2 iTOHA( O)D

@/m% eXpH_' Qs Hir 1%2(0)

The requirement for stability over many synchrotron periodsis
that the absolute value of the trace of the matrix should be less
than 2. So we have the requirement
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the beam will very rapidly become unstable. This type of
instability is referred to as the “ strong head-tail instability”, or
sometimes the “transverse mode-coupling instability (TMCI)”.
The latter designation comes from the fact that at the instability
threshold, the oscillation frequencies of the normal modes of
the two macroparticles become equal .
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Example

In Lecture 22, p 20, we estimated the transverse wake function
from a broad band resonator to be about 10 V/pC/m. Suppose

The normal modes are defined as those linear combinations of
(%,,9,) which are decoupled after every synchrotron oscillation

period. The normal modes, {;,{>, satisfy the equations

that there are 50 such objectsin CESR. What is the threshold N =AL
intensity for the strong head-tail instability? o e _
inwhich A =S™MS, and Sisthe matrix which diagonalizes
We'll take 3,=20 m, Q, =0.052, W=5x10" V/C/m, y=10*. We A-72 iT0
find Ny, = 2.55x10" (160 ma) per bunch. M= H T 1 H
Below threshold, the motion of the norma modes can be Thed a iven by th | ation
complex. To see how the normal mode frequencies become € elgenvalues are given Dy the secular equatio
equal at the instability threshold, we must perform a normal - T2-) iT B
mode analysis. M-IA[= iT 1-2 =0
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Thisis The normal mode eigenvectorsin the (V,,¥,) basisare

(1-T2-2)2-2)+T?=0

Since the matrix has a unit determinant, the diagonalized matrix
will also, so we have M)A, =1, A1, =exp(Fip)

and
(1— T2 —exp(i (p))(l— exp(i @) +T% =0
-explie) - (1-77)(exp(i ) + ep(2i 9 =0
(1— Tz) = exp(-ig) - 1+exp(i @ = 2cos -1

T2 =2-2cospl] F ZSing
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.0 0. el o]

G =0 P07 o0 = Pdom

[l 1 ] 0 1 [l
That is,

~ 0. ~
leyz_eXpD_l(Ep b Zzzyz"'eXpagEyl

The matrix which diagonalizesM is

O vnlli @O @1
s=p Pg50 epo Plin
O 1 1
Thisis aso the transformati onqmatrix from the eigenvectorsto
¥
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y=5¢
To find the normal mode frequencies, we must Fourier analyze
the time dependence of the eignemodes. The time evolution of
the eigenvectors can be obtained from the results given above.
Over thefirst half of asynchrotron period, the motion of § is
given by

MmO O $1.(0) Aq

1
- e Qy)EzmTQs 1,05

§i(n) = exp(-27inQy )M (n)§(0)

while over the second half of the period, we have
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o 0 .0 1 -
SAQI | 2ifn- X ArQ. 41l 0RO
Eyz<n>E:eXp(‘2””Qy)§ Y ZQsEQ% .08

A T 1,0
. \A+T?(1-2nQ,) iT(2nQ, -1)0F.(0)O
=eo{-27nQ g (iT ) 1 ) (OF"

§(n) = exp(-27inQ, )M ,(M)5(0)
The time evolution of the eigenvectorsisthen

§(n)=s(n) O
§(n) = exp(-27inQ, )M ; (M)J(0) = exp(-27nQ, M, (n)S 40) T
{(n) = exp(-27inQ,)S ™M (n)S{(0)

where
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M3(n) 0<n<}éQ
M =
Oy g en T
M (n)=M. Let Z(n) =S M1 (n)S; then
Z(n) = exp(~27inQ,)Z(n) Z(0)

We know that, by the definition of the eigenvectors, after 1
synchrotron oscillation period

01 0_Cexp(-ig) O

z SEE 0 exp(iq))E:

and after m synchrotron oscillations
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OmO_ Cexp(=ime) 0 O .nm

Z% “H o exp(im(p)E:A

Thus, we can write in general that

(M =Q(n){(0)
Q(n) = eXp( 2any)ZH1 H/\mfor M n<

m+1

S

To see the spectral content of the normal mode oscillations, we
can Fourier analzye this expression. We use the general
relations

y(n) = [ dhexp(2ritn)y(h)  9(h)= [ dnexp(-27thn)y(n)

—00 —00
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Thus, extending the range to all times ¢ (n) = Q(n)Z (-) ,

o= 3 ()

m=—oo
m+1/
jnd . . m D m
Qn(h)= [ dn exp(—2rihn) exp(—2 rrnQy)Z —E/\
i Qs
Usingn' =n-— m
S
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1

&
&, (h) = J dn' exp%n’ﬁ‘u’ +g‘ﬁ—h —Qy)%(n JAT
D—an(h +Q)0 .,

=Z7(h) exp 0 E
S

Z(h)= | dnexp-2rin'(h+Q)z(m)
0

Thus
U o D—anm(h +Qy)
Q(h) = Z Qp(h) = Z(h)Ehq > eXIOE—D’\ E

m=-—oo ——00
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Each element of the matrix sum in brackets has the form

[ Qs
© ) +Q, <5
0 ”m% < 2 L

> e
25 e

Using the Poisson sum formula

(o)

% exp(inx) =2 Y dx-27p)

n=—oo p: —00

we have
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0. Qs
i D_anETHQV onth

> exp
25 e

o Dortheq %0 O
=2y 6DHEP 2"D—an[]
2Y e T
We can transform the &-function as follows:
EbnEmQy L0 O
] om0 o 1O Q Qs
o 21 o +Q, +
SIS gz%QsprmD
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So we have

Q(n) = }o dhexp(2rihn)Q(h)

B(h-h,(p)) 0 O oo
Q(h Z(h)A(p,h) A(p,h
=03 Zmate) se0=ET 0T gy 03 gm0 0
h.(p)=pQ,-Q, ¥ ‘(’QS sp__m_{o E o oh-n)H
and so -0 E Cexp(2rih,n)Zy4(hy)  exp(27ih_n)Zp(h_)0
S o Cxp(27i0, ) Zay(hy) - exp(27ihn) Zpp(h )
The general term hasthe form
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exp(27ihun)Z; (h.) = exp2 inEpQ, - Q, ¥ L5 e e
2n 1 Q(n):Qsexp(—Zany) > [ dnZ(n)mp(nn)
1/ b0 0
Qs
dn’ exp=2rin’ Qﬁg i () _exp(i(n' -n)Qs(p-21p)) 0 O
.(E O EP ZH%] I'Ip(n,n)—H 0 ( (" -y q0+2rp)H

Qjj(n) = Qsexp(—2ninQy Fin ¢QS)
- Yo

S exp(27inpQs) [ dn’ exp(~27m'pQs £in’ @)z ()
p==o 0

or
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This defines the frequency structure of the normal mode
coupling matrix. After carrying out the integration, we find

Q(n)zexp(—Zn'nQy) E Qp(n)

p=—o
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4(—1)psin9tan£p
2 2
(p+2pn)

11+ e 120 (-1+ o)

Qplzz(n) = eXp(| nQS(an + (9)

Qp12(n) =2 exp(i nQs(2mp + (l)) (1+ exp(i q,))( Q+2p 772

4(—1)psin9tan£p
Qpa1(n) = exp(inQs(2m - @) (- 2p2n)2 2

E—1+(-1)pexp5—i;"é.'§2(—1+exp(i 9)

(1+exp(ig))(@-2p 1}

Q p,21(n) = ZeXp(l an(an - @)

Q.

The Fourier components are at frequencies Q, — pQ; + - for

the two modes. As we approach the instability, @->Tt, and the
frequencies of the two modes approach each other (from
adjacent sidebands). Hence the term, “mode coupling
instability”. When both modes have the same frequency,
resonant growth israpid. The instability growth timeis of order
the synchrotron oscillation period.
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Q 'y

p=-1
Q,+Q, —

p=0

=-1

Q, e 7

m p=1

Q,-Q, p=0

p=1
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Head-tail instability

There is another, weaker form of head-tail instability, which is
referred to as simply the head-tail instability (without the
adjective “strong”). This phenomenon is similar to the one that
we have just described; however, it arises from the dependence
of the betatron tune on energy (through the chromaticity). In
contrast to the case for the “ strong” head-tail instability, thereis
no sudden onset of the instability at a particular intensity: rather
there is a characteristic growth time for the instability. This
growth time may be very long, in which case the instability will
never be seen. In practice, the growth time needs only be longer
than transverse damping times (from synchrotron radiation, or
from feedback systems) for the instability to be unimportant.
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The growth rate is proportional to the chromaticity of the
machine: hence, to suppress the instability, small values of the
chromaticity are desirable. The control of thisinstability is one
of the principal reasons for the use of sextupoles as chromatic

correctorsin high-energy accelerators.

The dependence of the vertical betatron tune on relative
momentum deviation d is

Qy(é) = QyO + Eyé

where &, is the vertical chromaticity. Consider the two

macroparticles, representing the head and tail of the bunch.
These particles are undergoing synchrotron oscillations, so the
energy isafunction of turn number, and hence so isthe vertical
tune:
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Qy(n) =Qyo +&,3(n)
Ignore the wake field effects for the moment, and focus on the

motion of macroparticle 1. The equations of motion for a
constant tune have the form

dy _ , dy __2mQy

=9 b AR A

an YA 0T, Y
For avariable Q, we have

d , dy _ 2mQy(n)
Y~ 2mym By dﬁ——’%y
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The solution can be written in matrix form as

- cosernd (n) sin2 nan@,(n)D
g B T AT o
‘md g1 " ; '(0)
—sin2n(d 2nfd
E—Bysm n%’ nQy(n)  cos r%’ nQy(n) E

Or, in terms of the § variable introduced earlier

0 n O]
y(n) = §(0) exp7273 [ dnQ, (n)
g2 nying

Theintegral can be written as
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gany(n) =nQyo +Ey£dn6(n)

From Lecture 10, p 15, we have

dL\tn:CnCdD S 1 CdAt,J__ 1 dz(n)
dn c Cnc dn Cnc dn

for B=1 particles, in which z = —cAt,, isthe longitudinal distance
from the synchronous particle. Then

n n -
_[J(n)dn __ 1 Idz(n) dn = _Z(n)—2(0)
0 Cncyp dn Cnc
L et macroparticle 1 be undergoing a synchrotron oscillation of
the form
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z(n) = Zgsin(2mQn).

Then
54(n) = 72(0) exp(i(2rQyon — xsin(2rRyn))
o _z sy
inwhich x = zo

We see that the betatron phase is modulated according to the
relative longitudinal position of the macroparticle. Typicaly,
the modulation amplitude x (called the “head-tail phase”) is

small. For example, for z,=1 cm, 1n=0.01, C=750 m, and &, = -
5, we have x = -0.04.

The modulation of the tune by the head-tail phaseisthe
mechanism behind the head-tail instability. The modulation

allows a slow growth of unstable motion at any beam intensity,
despite the fact that the macroparticles exchange places during
the synchrotron oscillations.

Macroparticle 2 is undergoing a synchrotron oscillation also,
but it's a the other end of the bunch; so

2,(n) = =z sin(2mQgn)
and the transverse motion of macroparticle 2 is
52(1) = 2(0) exp(i(27Qyon + Xsin(24)))

From above, we have

Y - 2riqymy, =21y +2 mRscod2 @)%

Now we want to include the wake field. From above,

11/29/01 USPAS Lecture 24 41 11/29/01 USPAS Lecture 24 42
dy 1 ~ oK
o ' dy(n D o and use yy(n) = ={{(n) +§ (n
y:yﬂzg O or0,8y 05 v 1Ay () = (53 + 54 ()
X Then we take as atrial solution for ¥,(n)the form
Ne? iB,Ne - . . .
Ay = 2, Wy O AF By =Y Wy 9,(n) = ,(n) exp( -] 2rQ,on + xsin(270,n)))
2meC 2mecy o . .
so the equation of motion for macroparticle 2 is inwhich y,(n) isaslowly varying complex function of n. The

ﬁNe

o
dy2 = {2mQy0 +2mR; 082 1N ))|y2

To solve this equation, we use the result given above for §;(n),

34(n) = 72(0) exp(i(2rQyon — xsin(2rRyn))
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equation above then gives

X2 ﬁy
Y2 i) amc?y, SPXSN(2rQ)

o NePW, _
+i¥, (0) 4%023;’ exp(4any)
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The second term is arapidly varying function of n and may be
dropped. We then expand the exponential (since x<<1)and

solve the differential equation

dY2

'By (i — 2xsin(2nQgn))
The solution is
iB,\WNe” g1 + A (1 cos(Zann))g

4moc y
The solution can be written in matrix form, for the first haf of
the synchrotron period, as

$2(n) = ¥(0) +1(0)
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Fam_ D ' o
Eg,z(n)g %I TQSEP +- A 1 COS(ZTlen))E Z(O)E
After 1/2 of asynchrotron oscillation period, we have

01
DylE@EJ 1 0, (0) g

@§ HT% Axg 1E)Vz(())H
Qs

For the second half of the synchrotron period, particle 2 drives
particle 1; so we have
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0101

DVl% [h |T% 4'Xm]y1ﬁH]
h &@%

The overal matrix for one synchrotron period is the product:
01

DylEaHJ @ T T
% E |T% 4IXD 1 E%2(0)

Since the matrix has determinant=1, the eigenvalues of this
matrix have the formAA, =1, A1, =exp(Fig), in which @is
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complex. Following the same argument as in the discussion of
the strong head-tail instability, we conclude that

.o T 4i x0
sn;=2d* 0
For the case of T<<1, we have
4ixT

m

and the eigenvalues are
4xT
A]_Z —eXp |%- X ED

0, XTD
T

p=T+ "~

= exp(Fi T)exp 0

11/29/01 USPAS Lecture 24 48




The real part, which isrelated to the modulation of the tune,
gives unstable growth of one of the eigenmodes (and damping

of the other). The growth rate per synchrotron period is m,
so the growth rate per unit timeis "
1_4xT_ x Ne’W, _1 NeWB, x
T Tgr Tm2Qmc’y T, 2mc’y
Example:
We'll take 3,=20 m, x=-0.04, W=5x10* V/C/m, y=10", C=750
m, Ty=2.5 us, N=2x10". Wefind r= 6.3 ms.
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Although it appears that the growth rate is zero only for zero
chromaticity, in fact a more sophisticated analysis shows that
the growth rate of the (-) mode (corresponding to positive
chromaticity) is smaller than given by the above formula.
Hence most machines are operated with a small positive
chromaticity.
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