LECTURE 25

Collective instabilities;

Rigid beam transverse instability

Thisisthe transverse analog of the Robinson instability

To see how thisworks, consider a“macroparticle’: a point
charge of magnitude Ne, circulating in a synchrotron. This
macroparticle will create a wake field when it passes through an
impedance. The macroparticle undergoes betatron oscillations;
the wake potentials introduce additional forces into the betatron
equations of motion. These additional forces can lead to an
instability.
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The wake fields generated by the macroparticle can be
expressed in terms of atransverse integrated force exerted at
the location of the impedance. The transverse integrated force
due to a pure harmonic current, with an mth moment, of the
form, I (t) = I1,(w) cos( at) from Lecture 21, p 25, can be
written in terms of the impedance as

A~

Ry (t) =iel p(t)mr m'l(r‘cosm(p— gsinm (/)Zrﬁ( )
For m=1, and in the vertica direction, we have
F(1) =iely (1) 2 (w)

To use the above equation, we need to know the Fourier
spectrum of the dipole moment of the current, which consists of
asingle circulating macroparticle of charge Ne. Let us consider
for the moment the monopole current of a macroparticle that is
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not undergoing betatron oscillations. As discussed abovein
Lecture 23, the current due to the point charge Ne is a series of
impulses, which occur at times t = nTy, where nisthe turn
number, an integer running from —oo to oo, This current can be
represented as a sum of Dirac delta-functions

|0(t) = Ne % 5(t —nTo)

n=—oo
inwhich T, isthe revolution period.

Asexplained in Lecture 23, this can be written in terms of

harmonics as
Ne & .
Io(t)=_|_—e > exp(-ipwgt)

0 p=-o
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Now let us consider the dipole moment of the current. For a
particle executing a betatron oscillation, we have
[1(t) = lo(t)y(t), where y(t) has the form of a betatron
oscillation, evaluated at the location of the impedance. Thus

y(t) = Yo cos Quewnt) + ¥ A, Sin(Qy et
y'(t)= —')Blosi n(Qywot) +yh cos(Qyoubt)'
y

Then we have
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11(0) = 1o (D)y(1) =

el o) s sriQye) 3 (o)
p=—c

_Ne &

2Ty p5.

+{yo - i¥68y ) exp(-i(p - Q Jent)

The integrated force, summed over all harmonics, will then be

(vo +iyaBy)exp(=i(p +Q et

iNg® &
2T, &,
+{yo -1y, ) exp(-i(p-Q,)ot)27((p - Q,) a)
_iNe* &

I S ool sz (P o)

CER
+5hep(-i(p-Q )2 ((P-Q))aa)
using y=y+igy

F ()= (y0 +iyoﬁy)exp(—i(p+Qy)wot)zlm((p+Qy)%)

We want to evaluate this on each turn, that is, at t=nT,,.
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F(nT,)=F, = <
. DO) ' o 0 _iNE ?ly(n)pzmzlm((erQy)wo) g
e 2Pizen)s, 3 z7{(pro)w); "= L, 0
iN€? peen 0 ° E-}"/*(n) > Zf*((p+Qy)wo)E
p=-c

21, %exp(iZTlen)V; pizf((p—Qy)%)@

Then, we can use the symmetry property
Z)(w)=-2Z,"(-w).

So that
5 2(o-apa)=- 5 Zlovo)a
and we have
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T'his can be written as
= NE,‘2
— x

y,n - TO

E?/(n) pim I m[ ZlD (( p+ Qy)wo)] + ﬁyy'(n) pim Re[ ZlD (( p+ Qy) (*b)] E

We now insert thisinto the betatron equations of motion. The
unperturbed betatron equations, written in terms of turn
number, have the form
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W nny(n) 2 Ay (1)

The effect of the integrated force is to produce achangein y'

dy dy'(n
T‘anyﬂ/ y'(n)

= (20, Py - %(Ay(n) +BB,Y(")

. Fn_ Fn . .
given by Ay' = W =—>5—. Hence the equation of motion
meCy
becomes nQy)z ZT‘QVBS/ ¢’ (n) - B,Ne? g
Y - o, Y N () +B () o Vio By Moc*Yio
-_— n + ! n
nQy moczyTO Yn) +Bhyy () The A coefficient is associated with a tune shift; the B
o coefficient can cause damping or an instability. This equation
- 0 _ 0
A= p_z Im[Zl ((p +Qy)w0)] B= p_z Re[z1 ((p +Qy)0b)] 2hasthe general form
- - d%y _ _, dy 2
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which is the equation of a damped harmonic oscillator, with a
solution (for a <<2mQ) 21y = (ZTQV) vas 27®y\1+( nQy) = 2Ty nQy
y(n) O exp( o+ 2niQ§,)n 0 & A
By comparing with the equation above, we see that the damping 8’ Q
rate (per turn) is we get
B Ne? B Ne? 0
B ZWZ)CZVT 5= ZmZ)c YT _Z Re[zl ((p +Qy)w°)] 2
0 0 p=—c | X, = By Ne? A= ByNe g Im[Zlm((p+Qy)wo)]
and the frequency is given by 47'moc o 4mbc Y0 p=o

, 2mQ ANE ,BS,Ne

() =(2m) )+ = 250

Using
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Example: the transverse resistive wall instability. The
impedance is (Lecture 19, p 23)
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1-isgn(w) |l te
wb® | 20
P 2 PRy

S = + :L f He
p:z_ooRe[Zl ((p Qy)wo)] nb3V2woc7p:Z_w p+Q,

— [
_C uc? _ 12 prdg
‘;ﬁv%af(Aﬁ)’ f(Aﬁ)_vzpz_w\me’ Q =n+4p

inwhich nistheintegral part of the tune.

Z(w)=C
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The damping rate per turnis

Ne?c?
277 ymyc” | WO

The function

P+ C
f(AB) \12p——°0 p+A: ZHA 32+ZEQH- 1+ABD Z[Q]' AB%

(¢(a,b) isthe zeta function)

is shown below
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For damping, we need to have a>0, that is, f(A B)>O’ which
requires 23>0 Since Ap=Qy-n,t0 damp the transverse

resistive wall instability, the fractional part of the machine tune

should be below the half-integer, that is, in the range
0< AB <05
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For CESR parameters. Q,=9.58, A;=-0.42, f(A )=-0.27, }=20
m, N=2x10", b=2.5 cm, y=10%, T,=2.5 us, 0=3.5x10’ Q*'m*

(aluminum), we find a growth time of -Ic-? = -0.67 s. (not avery
strong instability).
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