LECTURE 26

Collective instabilities,
Rigid beam transverse multibunch instability

The macroparticle model used in the previous lecture can be
applied to the important case of multiple bunchesin acommon
vacuum chamber. Long-range wakefields will couple the
motion of the bunches together and can lead to tune shifts and
instabilities.

Aswe saw above, the wake fields generated by the
macroparticle can be expressed in terms of atransverse
integrated force exerted at the location of the impedance.

Ry (t) =iel o (t)mr m_l(r“cosmqo— gsinm @Zrﬁ( o
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For m=1, and in the vertica direction, we have
R, (1) =iely ()2 ()

To use the above equation, we need to know the Fourier
spectrum of the dipole moment of the current. As discussed in
Lecture 25, the wake forceis

Fy(t):ilz\l_l?z i A exp(—i(p+Qy)w0t)ZlD((p+Qy)a‘b)

p=—c

+exp(-i(p-Q,)wt)z (P~ Q) )
inwhich §=y+ify'. Using the symmetry property
Z)(w)=-Z"(-w).
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The integrated force, summed over al harmonics, can be
written as

— iNE” | & .

Fy(t) = I21?0 yO Z exp(_l(p +Qy)w0t)ZlD(( p + Qy)%) +CcC.

p=-c

c.c represents the complex conjugate-dropped for now, added
back in equation of motion

Thisistheintegrated force due to a single macroparticle.
Suppose now that we have 2 bunches (macroparticles), of equal
charge. We'll 1abel the first bunch 0, and the second (trailing)
bunch 1. The wake force due to bunch 0 can be written as

_ iNe? . > .
Fyo(t) = I2-|- yo(t) z eXp(_lpwot)ZE((p"'Qy)%)
0 p=-c
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inwhich §(t) = §, exp(-iQ,ut)
Suppose that bunch 1 trails bunch 0 by thetime interval t =t,.
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nT, (n+1)T,
Sinceit arrives at theimpedance at t = nT,, +t,,, itscurrent is
given by
_Ne g .
lo(t) T Z exp(—lpwo(t _t01))
0 p=-w

12/3/01 USPAS Lecture 26 4




and its betatron oscillation can be written as Fron = Fo(nT,) + Fa(nT,) =
7 — 7 —1i — H 2 o0
H=Soel ol ) =N g en(-2an) 3 27((p+0,) )
so the force created by its wake is given by 0 p==o
B iNe? _ . M" O . O _tﬂD] 2 . O
Fyl(t) - Iz-zylo eXp(_IQywo(t _t01)) X 2T, Yo eXpB_I eryg T, Z_w EXp(Ip %tm)zl (( P+ QV) a&)
p:z-m exp(—i p%(t —tm))zf(( P Qy)%) Let usdefine
Bunch O arrives at the impedance at timet = ...~ T,,0,T,,... and Yo () = Yo exp(—2leyn) = ¥(n)

feelsthe total wake force o () =9 0 27iQ 0ty J.(nT.)
¥.(n) = §,, exp27d -2m=%i(n
W= Yo SRS HY 3 YT A
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¥5(n), $u(n) arethe ¥ variables of bunch 0,1 when bunch 0 We now insert thisinto the betatron equation of motion. The
crosses the location of the impedance. These are sometimes unperturbed betatron equation for the Oth bunch, written in

called the “snapshot” position of the bunch. ¥,(n), ¥,(n) terms of turn number, has the form

describe the bunch displacements and slopes, not at the same a9 o

location, but at the same time at different locations (the location dir? =-21QY,
of the impedance, for bunch 0; a distance ct,, behind bunch 0, ) _ o
for bunch 1). The effect of the integrated force is to produce achangein y,
F F
" Thenwe have . given by A, =iB,Ay, =iB, ry)(\)/ =i, moygg‘y. Hence the
O
LMy Z (( p+ Qy)wo) + 0 equation of motion becomes
F _ IN92 |:| p=-c |:|
S P AR t 0
Y, rn_ 01 O
gl(n)pzz_m eXp%”p-l-()%l (( p+ Qy) %)E
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dy, O
= 2rQ, + Iﬁy%(yoA S +9,B -9,B')g

A= 3 Z((p+Q )

p=-c

il .t
= 3 epprie (2 ((p+0)w
p=—c 0
Now let us consider the motion of bunch 1. Since bunch 1 trails

bunch O, it crosses the impedance at the time nT, +t,, and feels
the force
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ﬁy1,n = Ifyo(nTo +t01) + Ifyl(nTo +t01) =

i;\lez )N’o(n)eXDE'i 21, tTmai exp(-ip (q)tOl)Zf(( p+ Qy) 03) +

ey ZZD((FHQ) y

p=—c0

|Ne
o @yoB' + y1

B = p:Zmexp%-i ZWT":%E((D*Qy) ‘*6)
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We now insert this into the betatron equation of motion for
bunch 1. The unperturbed betatron equation for bunch 1,
written in terms of turn number, has the form

@
dir:]l__anyyl

The effect of the integrated force isto produce a changein ¥,
given by

|BAy1exp%nQyTE yl” pgz 7iQ, Ol% Hence

the equation of motlon becomes

U
dyl :—ZnQ A +I'@W( yA-V A +y,B -y,B )E
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This, and the equation for bunch 0, are a set of coupled
differential equations, for the 2 bunches. We can rewrite these

eguations as
Bo - 278 9, =G +9T s ~97 o +9T
an QYo —Yol a +¥ol A —W s +¥il
dy ~ AK *
?__Znnyl Y1r +Y1 yorB' +YJ_ B
inwhich
_ ANe2[3y ro= BNe2[3y r o= B’Ne2[3y
boametyT, P o2meyT, 7 2mety,
We will treat the wake effects as a small perturbation: that is,
we assume that
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ﬂ <<1, and take the motion of the two bunches to have the

y
form

90,1(”) = 900,01 exp(—iQn)
withQ=2mQ, + 4 |d<<1

In this case, the complex conjugate terms in the above
equations have the approximate forms

55 = G0 €x0(i27Q,0) = 5o )S%exp(mng e
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For I <<, these rapidly oscillating terms may be omitted
y

from the equations, which then simplify to the set of coupled

equations

dy N A

% = —271[ny0 Yol a ~¥ils

ay, A

cTy _Znnyl Vil a =Yl &

or, in matrix form,
dy |\/| _ D—ZTJQ -, -Tg N
dn H -r,  -2nrq,-r,H
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There will be a set of normal modes ¢, for which the
equations of motion decouple:

= SZ
The normal mode eqations are
d dn

0Q
The matrix A = EO )\E
1

inwhich Ajand A, arethe eigenvalues of the matrix M. For the
matrix given above, the eigenvalues are

A ==2mQ, —T, £\ 5
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The eigenvectorsin the (Y,, ¥,) basisare
D 'BO D IBO

i ZZ \ Br
LR
We have, for each normal mode, the equation

dZ; _
dn =AG

Assuming a solution of the form
¢i(n)= ZiO exp(—inQi). Using

d_ o,
dn ~ 1Q,{; =AL

The normal mode frequencies are
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Q =iA =2mQ, —il, +i, T,

Using the definitions of /™ and A, B from above, these become
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Q,-2mQ, ==i(M ¥ T &)
i3 Ne?
= BN s Be)
2m,cyT,
H 2
__ |,ByNe «
2m,c?yT,

0y z((p+Q)a):
02,

135 eolputo- (o)) (o0 )

Consider the special case when ty; = E). Then
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11 |

exr%ni(p - p’)tﬁg% exp(7i(p-p)) = (-1)P(-1)P

iB,Ne 02 .
m %:Zw(l i( _1)p)ZlEI(( p+ QY)wO)E
The eigenvectors are

;o 100, 100,
0= 20H %7 2H1H
$o=Y% % =% %
In the sum mode, both bunches oscillate in phase; in the
difference mode, the two bunches oscillate out of phase.

Q -2mQ,=-
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The general case

Let there be M bunches in the machine, with the labels
Yo: Y1+ Ym-1- L€t the time separation between the bunches be
as shown below

01 2 k m M-1

Following from above, the force due to the mth bunch, is given
by
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e

(t)-IN ymoeXp(-ZnQ @t ~ton))

S exp(-ipay(t—t,,))2((p+ Q) )

p=-0

The force on the kth bunch due to the mth bunchis

tmk = tOm _tok

A o,.. . 0 t,,0d
Using ¥..(n) = ¥ exp-27iQ, [ — 223 the force on the kth
" H 1, H

bunchis

'Nez M
— 2 Ok
ykm(n) F,(T, +t0k)— Frn() =5, I (e T Hr, B
—t, [ c o L
o1 S0 210, - 3 eofemizip{(pee)a)
Z exp 27 mk% p+Q %) The total force on the kth bunch is
H Hr,
in which
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iNe* O 0, [0 M=
F(n)= 2T, expE—ZHQyB%%x mZoym(n) =ip Ay’kexp%nQyT E |,l3/ yk pgz 7iQ, OKE Hence
o 5 the equation of motlon becomes
oroflns _
pzzmexpg an.ITO 1((p+Qy)%) 0 Nﬂyzez ><M 1~m
L%( — . _ rn()c yTO m=0

We now insert thisinto the betatron equation of motion for
bunch k. The unperturbed betatron equation for bunch k, written
in terms of turn number, has the form

ay, _ _
dn

The effect of the integrated force isto produce a change in y,
given by

2 n nyk
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dn _anyyk

[

aimexpﬁ 27@%%%5(@ +Q,)a

Thisis aset of M coupled differential equations for the M
bunches. In matrix form, it can be written as
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& _ o
7 = y’
dn
. 0. o
My = —271Q, &, = 2moc To pz expg ng%%f((pwy)%)

There will be a set of M normal modes {,,, for which the
equations of motion decouple:

Asin the two-bunch case, the norma mode frequencies are
given by the eigenvalues of M:

Q =i\

For any bunch spacing and impedance, the matrix given above
may be diagonalized numerically and the norma mode
frequencies obtained. However, ageneral analytical solution for

- y=¢ the normal mode frequencies for M bunchesis only possiblein
SdZ _ MSZ dZ _ ‘1MSZ /\Z special cases.
dn dn
The matrix A, = ;A containsthe eigenvalues A; of the matrix For example, suppose that the M bunches are uniformly
M. distributed around the ring.
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. M-1M-1
Then, we can write A, = SIM, S,
_(m-1) =0 m=0
tOm - M TO Nﬁ ez o
=21Q, 0, %5 — % Z |[p+Q,)w,)*
and Q% 2m,cyT, pZm ' ((p Qy) O)
o M-k, 1 Mt 00 2ram[] m-k11_ _RrikbQ
M, = —27iQ, 4, - 2moc yT Z dZTDDT/I 7 ((r+Q)a) v pD e 'y 2P0y O
Using the identity
By analogy with the 2-bunch case, the matrix which gives the M-1 i | D
normal modes has the form z expEanm =M3a,
rﬂab m=0
Sib = rexpEQ M B wherer isany integer, we find
and the eigenvalue matrix is then
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and the norma mode frequencies are

1M g 2ramp om- k[l] RrikbQ
mmZO: P DeXpdznpDM m*Po v O iNMB,& & _
— — y
1 M- p— - pr) Q,-2mQ, = 72%02”0 :Zmzl ((rM +m +Qy)w0)
exp 7im Z exp rrkD Viias r
" The tune shift and damping rate for mode m are related to
. b-ag Q. —-2mQ, b
= 59, b+rM Z eXpELZITm M D_ M5p b+rMm 5ba m TQy y -
o Q,,-2mQ, =2mMQ, —i g,
S"thee'ge“"a' vesare s0 the tune shift is
o NMBe & &
A, =-2nQ, - Z(rM +m +Q, ), B,NM O
Y 2mCyT, r_z_w (( ) o) AQ, = 747“]00 e HZ Z! ((rM +m+Q, ) )H
and the damping rateis
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B ,ByNMez 0 g O (Thisis because the wakefields for a broadband impedance are
™ 2mcT, ReH:Z Za ((rM +m +Qy)“’0)g short range, and do not couple the bunches together).

The el genmodes are

1A D 2mab
Zsoaya_\/M 2 %a

The damping rate (or instability growth rate, if it is negative)
for the multibunch instability is proportional to the total number
of bunches, that is, the total current. The impedance is sampled
at frequencies spaced by Mw,, rather than w,, asin the single
bunch case. If the frequency structure of the impedance is much
broader than Maw,, then the sparse sampling roughly cancels
the factor of M in front, and the damping or growth rates are
roughly the same for multiple bunches as for one bunch.
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But if the impedance is narrow-band compared to Mw, (long-
range wakefield), then the bunches are strongly coupled and the
multibunch growth rates can be M times larger than for asingle

bunch.

Example: the transverse resistive wall instability. The
impedance is (Lecture 19, p 23)
1-isgn(w) \w\

wb® \ 20

Z'(w)=C

The impedance enters the damping rate in the form
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< _c lue o (pMemeq)
p:ZmRe[Zl ((pM +m+QJeay)] = B\ 20,0 2., pM +m+Q,
The multibunch mode which is most strongly driven will be the
one for which the denominator is the smallest. The denominator
IS pM +m+n+A,, inwhich nistheintegral part of the tune.
Consider, for example, the Tevatron Collider, with M=36
bunches, and an integral tune of n=19. The denominator will be
36p+m+19+ A, whichisjust A, for p=-1if the mode number
ism=17. Thus, the mode m=17 will be the dominant
multibunch mode. The snapshot mode pattern for m=17,

. 1% 7man
=) eXpo
A 620 Po1g O
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is shown below:

Thisisalow frequency oscillation, which can be easily damped
with a narrow band feedback system.
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The damping rate per turnis

MpB Nec®
a=_ h 2 t(a,)
me™ | W, 0

inwhich f(AB) is the function defined in Lecture 25. Taking
the fractional tune to be A;=-0.4, and with other parameters for
the Tevatron as follows:

B,=100 m, N=10", b=2.5 cm, y=1C°, T;=21 pis,

0=3.5x10" Q*m™* (aluminum), we find a damping time of

-cr: =-3.2 s. (aweak instability). Thisis a gross overestimate,

in fact, since most of the Tevatron vacuum chamber is cold, and
the resistance is therefore much |l ess than assumed above.
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