LECTURE 5

Periodic systems
Twiss parameters and stability
Hill’ s equation and its solution
Courant-Snyder invariant and emittance

Periodic systems

Everything we have done up to this point can be applied to
beam transfer lines, linacs, or circular accelerators. We now
specialize to circular accelerators, which are periodic systems with
period C, where C=circumference=length of the (closed) reference
orbit.

Consider only (x,x”) motion for the moment (or only (y, y'))-
just two dimensions. If | start at the point s, on the reference orbit,
then, after one turn,

X(s0+C,5) =M(5 + C,5)X(0)

where C is the circumference (length of the closed reference orhit).
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The matrix M (s+C,s) is called the one-turn transfer matrix at M(s+C,s)=
the point s. - _ M(s+C,s+C—38)M(s+C—8s,5+C—255) x
Important properties of this matrix: M (5+265,5+ GM (54 65.9)

1. M isperiodicin swith period C:
M(s+C,s)=M(s,s-C)

2. DetM(s+C,5)=1
3. Trace M (s+C,s) = Mq; + M 5, isindependent of s.
Why?

Theorem: The trace of amatrix product isinvariant under a
permutation of the matrices.
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M(s+C—0s,5—05) =
M(s+ C—6s,s+C—20s)..M(s+ 6s,S)M(S,5— 05)
=M(s+C-65,5+C—205)..M(s+s,5)M(s+C,s+ C—89)

M (s+ C—ds,s—06s) isrelated to M (s+ C,s) by a permutation of
the matrices in the matrix product.

So the trace of M isindependent of s.
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Taking advantage of these properties, we write the 2x2 total
one-turn matrix M (s+C,s) as the sum of a constant matrix plus a
traceless matrix, periodic in swith period C.

M(s+C,s)= Al +BJ(s)
10 S S
, :( ); x9-(*® PO
01 -v7(s) —a(s)
Here A and B are constants, and o(s), (s), and {(s) are functions of
s, periodic in swith period C. Since Det M=1, we have

A%+ B%(-a(9)” + B(S)y(9)) =1

The s-dependent coefficient of B> must be a constant. Since o(s),

B(s), and «s) arearbitrary functions of s, we can choose them so
that
—oc(s)2 + B(s)y(s) = constant =1

Then
A% +B%=1
Let A=cosu, B=sinu: (notethat u could beimaginary),
we have

M(s+C,s)=I1cosu+J(s)sinu =
cosu+a(s)sinu B(s)sinu
( ~y(9)sinu cosu—oc(S)sinu)
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When M iswritten in thisform, it is called the “ Twiss matrix”; Note that
The Twiss parameters o, 3, and vy are periodic functions of s, with
period C, related by —o®+ By = 1. Because these functions 32(3) =( as) A J( os) A ): (_1 0 ) =—|
completely describe the properties of the magnetic lattice, they are ¥ - N\-v(s) —-a(s)) (O -1

also called lattice functions.
An additional restriction on the constant i comes from the
requirement of stability.

After n turns in the accelerator, we have
X(s+nC,s) =

M(sp+nC,5+(nN-1)C)..M(59+2C,59+C)M(59 + C,59)X(S)
=[M(s +C.%)]"%(s0)

Stability requiresthat all the elements of [M(sp + C,)]" remain
finiteas N — oo,
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J isthe matrix equivaent of i =+/-1.

Hence we can write
M(s+C,s)=1cosu+J(s)sinu = exp[I(s)u]
So
[M(s+C,s)]" = exp[J(s)nu] = | cosnu + Jsinnu

For the matrix elementsto be finite as n — oo requiresthat L is
real.
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This aso implies that
‘Tr&e M (S+ C,S)‘ = ‘M 11T M 22‘ = ‘ZCOS,LL‘ <2

The condition
TraceM(s+C,s)/< 2
isageneral condition for the stability of trajectoriesin any periodic
system.

Example 3:
Suppose we make a circular accelerator out of a collection of m

identical symmetric FODO cells. The one-turn matrix isthe
product of midentical matrices, each of the form

2 2
_Liz L+L7
8f 4f

2
B R R
4f 4f 8f

The one-turn matrix for m FODO cells of length L is
M(C+59)=M.(C+sC)M.(C,C-L)..M.(2L,L)M(L,s)

= M (s, 0)[M¢(L,0)|™ M (L,s)
where C=mL.
Thissystemis periodic in swith periodL.
For n turns, the stability argument applies to the FODO cell matrix
and leads to the requirement that

1
MC(L1O)=
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L2 L from which we find
Trace(M,(L,0))=2—-—=|<2=—<1
snl =, BO=— 2%
The values of the Twiss parameters at the beginning of the FODO 2 4 SNy
cell (at the F quad) can be found from a(0)=0

L2 L2
ez Tar
M (L,0) =

2
B I R
4f 4f 8f

_(cosu+o(0)sinu B(0)sinu
_( —y(0)sinu COSu—oc(O)siny)
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We can find the Twiss parameters at a general point s within the
cell from

M.(L+ss)=M.(L+sL)M.(L,s)
=M¢(s,0)M(L,0)M c_l(S 0)
__(cosu+a(s)sinu B(s)sinu
“( ~y(9)sinu cosu—oc(S)sinu)
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Numerical results:
Bend example 1 around into a circle with bending magnetsin
FODO drifts.

0 L oL 10L=0

Circular symmetric FODO lattice C=10L.
L=1 m. Lensfocal length f=0.45 m.

For this FODO cell we have

. u L 1
sn-=—-=
2 4f 4x045

u=1178 (67.5%)

= 0.5555

ik
B(0) = L(1+ il 2) _1A+0555) ) 65 1y

sinu 0.924

We can calculate the trgjectories and Twiss parameter 8 through

the accelerator
In the following figures, the sinelike trajectoriesand S arein m.
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Single-pass cosinelike trgjectory and B Multi-pass cosinelike trgjectory and @
\ B(0) \ B(0)
27 2
B (s) .
1.5¢ +/- /3 (0) — 1.5
1
1
0.5
2 4 6 8 10 0.5
-0.5 -1
-1 1.5 Cosinelike
-1.5 . . ‘T(S) -2
Ll Cosinelike \5‘ 50) forms the envelope of the cosinelike trajectory
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Single-pass sinelike tragjectory and -/ 3(s) B(0)

B (s)
+/-
S B (0)
1,
2 4 6 8 10
_1,
-2 Sinelike ——
_3,
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Multi-pass sinelike trgjectory and -/ 3(s)5(0)
3

-2 Sinelike

-3
' B(9)B(0) forms the envelope of the sinelike trajectory

12/4/01 USPAS Lecture 5 18

Hill’ s equation and its solution

We see from the above example that there is avery direct relation
between the particle trajectories and the Twiss parameters.

To explore this relation further, we return to the general
homogeneous differential equation for the trajectories:

d2
o2 +K(s)z=0

where z=x or y, and for a circular accelerator of circumference C, K
is periodic in swith period C.

Thistype of differential equation is called Hill’ s equation.
Floquet’ stheorem (aresult from the 19" century) states that the
solution can be written in the form
Z(s) = af (s) cog(@(s) + 9)
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inwhich a and é are arbitrary constants, f(s) is afunction which

has the same periodicity as that of K (i.e, periodic in s with period
O).
For atrajectory in an accelerator, cog(®(s) + d) (and z(s)) should
be non-periodic.
Differential equations for f and ® can be obtained by requiring that

z satisfy Hill’ s equation:
Z = a(cog @ +6)f’— fsin(®+5)D’)

7'+ Kz=cog( @ +5)( K — f@' + ) +sin(@+5)(-2f @’ - f&”) =0
Coefficients of sine and cosine must be separately zero, since 6is
arbitrary
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From sine coefficient (timesf): integral equation for @
f2fD + fd”) = 2ff D’ + f2c1>"=(f2c1>')' =0
F2(9)0'(s) = F2(5)®"(sp) + k= ko

inwhich k; and k, are constants. Absorb the constant k, into the
arbitrary constant a which multipliesf:

o= L S o=am)+ | 2= [0

2 f(t) f(t)2

where the last equation follows if we absorb d(s) into the

From cosine coefficient: Differential equation for f:
K — f2 + f”:—fl3+ K+f7=0

Relation to the Twiss parameters:
From the Twiss matrix

Z(s+C) Z(s)
(z’(s+ C)) “Me+G S)(z'(s))

arbitrary constant 8, which is added to @. Then s, is the location M(s+C,8) = (COSIJ + a(.S)Sinu ﬁ(S)sinu- )
from which we measure the phase advance @(s). —y(9)sinu cosjL—o(s)sSinu
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S0)
Z(s+C) = z(s)[cosu + o(s)sinu]+ Z'(s)B(s)sinu z(s+ C) = af (s) cog@(s) + 271Q + 5)
= af (s) cog(PD(S) + &) cos27Q — af (s)sin(P(s) +d)sin2
Compare with solution to Hill’ s equation: (5) 0@ (s) +9) o (S)Sn(®(s)+9) &
= z(s)cos2mQ — af (s)sin(P(s) + 6)sin27Q
z(s+C) = af (s+ C)cog®(s+C) + )
Use
Now
SIC it dt Z(s)= ——sn(tl)(s)+5)+z(s)£
1 c to obtain
isaconstant since @’ = 12 isperiodic in swith period C.
So
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z(s+ C) = z(s)[cos2nQ— f(s) f'(s)sin27Q]+ Z(s) f (s)2 sin2nQ
Compare with
Z(s+C) = z(s)[cosu + o(s)sinu]+ Z'(s)B(s)sinu

thus
B(9) = f(s)?
o9 =-1(91®=-19

n=2mQ=
3€ chB(9)
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Interpretation:
The trajectory

2(s) = a/B(S) cos(D(s) + )

is called a betatron oscillation. The amplitude is determined both
by a(initial conditions) and by B (magnet lattice). As we saw

earlier, the trajectory envelope varieslike /3. But B also
determines the wavelength of the trgjectory’s oscillation.
For constant A, the phaseis® = Zis For variable wavelength, this

generalizesto ® = 27rj' A(s) = 27B(s)

A(S) j B(s)
12/4/01 USPAS Lecture 5 26

The function @ = j ﬁ is called the phase advance (for obvious

reasons). The phase of the oscillating trajectory advances at
different rates around the machine, changing fast when 3 is small,

and slowly when B islarge.

The total number of oscillations per turnis
ds 1, ds

LAMs) 2 B9
which is called the tune of the accelerator. Note that, we have,
roughly
1,d C (R

2nlB(s) 2n(B) (B

Q=
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where (R) = 2C mean radius of the accelerator.
T

Back to the numerical example: circular accelerator, 10 FODO
cells, cell length L=1 m, focal Iengthf 0.45 m.

For asingle FODO cell, we found i, = gﬁm =1.178.
C
For the whole machine
1 =100, =11.78= 27Q

Q=1.8748

And

R=C-10 1 Z159 m
2 2w

(R 159
(B) = 0 1ems ™" 0.85m
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. ~ z=a/BcogP+9)
Exercises: 1.Using a ,
Z= ——ﬂ(occos(d)+5) +sin(®+6))
\
write the trajectory equations for the cosinelike and sinelike trajectories

interms of o, B and ®. Show that the transfer matrix from one point in
the accelerator, s, to another, s, can be written in terms of B, o, and @, as

(C(ss) Ss))_
M%)= (C’(s,sO) S(s, 50)) B
\ﬂﬁ((;))[cosmﬂa(so)sinAd)]  B(s)B(s9) SINAD
1 [(e(sp)~ex(s)) cosa® B(so) _
! R S AD — AD
\ ﬁ(So)ﬂ(S)[—(H a(s)a(sO))s'nAcb} | By AP snad]
where A® = P(s) - D(sy)
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2. The one-turn matrix M(s; +C,s,) =1 cos22Q+ J(s;)Sin27Q

| | C+s)

s/ I
t |
| |

S, C+s

propagates a particle around one turn
starting at s,. M(s; + C,s,) does the same starting at sS,. Let

C(sp, ,
" ’Sl):( (25 S.8)

C(s2.8) S(s2:9)
s,. Then we have
M(sp,s)M(s1+C,51) =M(s; + C,5)M(sp,51)

M(s; +C,5) = M (5, )M (5 + C,5)M(S,5) "
S0 J(s2) =M (%, 9)I(s)M (52,5)
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) be the transfer matrix from s, to

Use this matrix equation to show that

Bs)
os) |=
Y(S)
Clss)f ~20(5,9)9%,) ECTEY 6
C(8)C(5%8) C(9)9%9)+S©9)C(%s) ~S.9)56.9) | «(s)
[Cle)] -2C(%,9)S(5,9) Sl \r(s)

This allows us to propagate the lattice functions from one point
to another.
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For example, in adrift space of lengths, C=1, S=s, C’'=0,S =1

B\ (1 -2s $°)Bo) B()=PBo—20i05+70S
o(s)[=10 1 -—sfoag|= oa(s)=09-7y0S

ys)) (0 0 1Ly 7(S)=70
$ s
Ifog=0, B(s)=Bo+ -, a(s)=—_-
Bo Bo
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Courant-Snyder invariant and emittance
Back to the trgjectory solutions:

L z=a./Bcosh
InathinlensC=1, S=0, C'=%-,S=1 a i
f Z =———(acosf+sinoh)
0=Dd+06
— Form the combination
B 1 0 O0ffo Br=Po 2 4 20z’ + 22
o |= '|_'1 1 O Og |= 061=060i@ " 2 2 2 2
v 1f ) v p f2 = a°By cos? 0 — 20a® cos(c: cosO + sinB) + a%(c: cosO +sinf)
1 0 o
L 4L _ 0 0 . .
£2 J—rf 1 ?’1—70+?J—FT :az[cosze(ﬁy—a2)+cosesne(—2a+2a)+sn20]
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So

y(s)z(s)2 +20(s)z(s)Z (s) + /B(s)z’(s)2 =a?
(the Courant-Snyder invariant)
-it is constant along a particular particle trajectory.
Let us pick a particular positionin thering s,. Let the values of z
and Z’ at this position, on turn n, be z,(s)) and z,(sp).

Z,(Sp) = Z(sp +nC) = &,/ B() cog P(sp + NC) + 6)
=a,/B(s) cos(2mQ + D(s9) + 8) = a/ B(Sp) cog o(n)]
Z(5p) = Z(S +1C) = —Jﬁ%o)(a(smcoswm)] +sin[¢(n)])

where ¢(n) = 22nQ + constant
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At this position, the Courant-Snyder invariant is

¥(0) 2 (%)% +201(50) 2 (S0) 24 (S0) + BlS0) Zh(5p)* = &°

The two-dimensional space formed by z,(s) and z,(s,) iscalled
phase space. The equation expressing the Courant-Snyder invariant
isthe equation of an ellipse in this phase space. From turn to turn,
the phase space points { z,(sy), z,(Sy)} map out this ellipse.

Example:
phase space plot (just upstream of the F quad) in the 10 m
accelerator, with a® = 0.01 m. Thefirst five turns are shown by the
numbers.
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z’ & iscalled the emittance of a particle which hasthis trgjectory.
3@ 2 Area of ellipse
0.15 ( a =¢e= .
0.1 The parameters of the ellipse are determined by the lattice
. functions o, B, and v, at the position s,, and by the emittance:
0.05
5
L . L e . z (m)
-0.1 .>0.05 0,.05 0.1 ey -
.1 . A 200
L -0.05} . tan2¢=y—
[ D _
- 4 =071 A8
;‘_‘ -0.15¢ A_ﬂ%/ JeB
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As we change the observation position s,, the phase space ellipse
changes its shape and orientation, but &, proportional to the area, is o
constant: .
Example; back to the 10 m accelerator with 10 FODO cells. e
Plot B within one cell, and the phase space ellipse at severa z'! 7' 7' 7' 7' 7'
positions within the cell. AN R\ 0.1 Q 0.2 (\ 0.3 (\ 0.4 s
The number on the phase space €llipse plots indicates the value of
swithin the cell for which it is plotted. 7! 7! z' z' z' z'
) (N
Z Z Z Z Z Z
0 A /A A A § AN
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The ellipse is upright when o=0. At these points

p=re

Zmax

If Bisat aminimum, we cal it awaist. In FODO cells, waists

12/4/01

appear at the center of the D quads.
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