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LECTURE 6

Emittance in multi-particle beams
Lattice functions in non-periodic systems

Adiabatic damping
Momentum dispersion

Momentum compaction
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Emittance in multi-particle beams

Up until now, we have been
 discussing single particles, and their trajectories. Let us now

consider many particles in an accelerator, for which the trajectory
of the ith particle has the form

z s s si i( ) ( ) cos ( )= +( )εβ δΦ

The particles all have the same value of the emittance ε  but are

randomly distributed in the phase δi. The phase space of the multi-
particle beam , at a particular point in the machine, at a particular

time, might look like
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The emittance of this beam is ε. At a different point in the

accelerator, the phase space of the beam might look like
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The area is the same: the phase space area of the beam is constant.
Now let the beam particles also have different values of the

emittance ε. A phase space plot of the whole beam at a given point

in the machine, at a given time, might look like
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The points represent the beam particles. The rms emittance of the
beam is defined as the area (divided by π) of the (matched) ellipse

containing 39% of the particles. This is the smaller heavy (red, if
you have color) ellipse beam.

The larger heavy (red) ellipse contains 95% of the particles, and
has an area (divided by π) defined to be the 95% emittance of the

beam.
IF the distribution of the beam particles in phase space is

Gaussian, then
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11/21/01 USPAS Lecture 6 6

Beware! The word “emittance” is often used to mean one or
another of these, without specifying which one. Rms emittance is

typical used at electron machines, 95% emittance at proton
machines.

Also: often emittance is defined to be the area of the ellipse in
phase space (as in Syphers and Edwards), not the area/π.  In this

case, the “emittance” is usually written in the form επ, where ε is a

number: e.g., an emittance of “10π mm-mrad” would correspond

to ε=10 mm-mrad.
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The phase space area enclosed by all particles with a given
emittance is constant as they move around the machine. Since the
number of particles is also constant, the local phase space density

is constant. This statement is called “Liouville’s theorem”.

This theorem does not hold in the presence of acceleration, particle
losses, dissipative processes (like scattering), or damping processes

(like radiation damping or cooling)

The emittance is a property of a trajectory (or a collection of
trajectories: a beam). The admittance  or acceptance  of a beam

transport system, or an accelerator, is the largest value of the
emittance which the system will transport without loss.

11/21/01 USPAS Lecture 6 8

Lattice functions in non-periodic systems

The Twiss parameters are uniquely defined only for circular
accelerators. Nevertheless, the language is used also to describe

beam optics in linacs and beam transfer lines. The approach is the
following:

1. Establish values for the lattice functions at the start of the
transfer line or linac.

2.  Calculate the cosinelike and sinelike trajectories for the line
from the fields in the magnet lattice.

3. Propagate the lattice functions from the staring point through the
line using the relations discussed in lecture 5.

This is straightforward except for step 1.
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If the starting point of the transfer line is the exit of a circular
accelerator, then the lattice functions at this point are well-defined:
they are those of the circular accelerator at the point of extraction.

If the starting point is a particle source, then it’s trickier.

In this case, we use the standard relation between the lattice
functions and the shape of the beam in phase space

γ α β εz zz z2 22+ ′ + ′ =
to define the starting values for the lattice functions and the

emittance.
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The output of a particle source will have some distribution in
{z z, ′} phase space.

We overlay an ellipse, whose general equation is
az bzz cz d2 2+ ′ + ′ =

on the source output phase space, adjusting the ellipse axes and tilt
to find the smallest ellipse which contains, for example, 39% of the

phase space points.
Then we identify

a b c d rms= = = =

=

γ α β ε

α β γ
0 0 0

0
2

0 0

2, , , ,

with 1+

and propagate the lattice functions forward from here.
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This procedure is undesirable in that it makes the lattice functions
depend not only on the magnet lattice but also on the input beam

distribution. However, it does preserve the general relations
between lattice functions, beam envelopes, and beam phase space

distributions, which are true for circular machines.

Adiabatic damping
The Courant-Snyder invariant emittance ε decreases if we the

accelerate the particle. This is called “adiabatic damping” (a
misnomer: there is no damping process involved).

Suppose we have a particle of momentum p0

p p p ps x y0
2

0
2

0
2

0
2= + +
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The slope of the trajectory is ′′ =z
p
p

z

s
 (z=x or y)

p

p
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z ' zz '+∆z '

s

Accelerate the particle: ps increases to ps+∆ps, but pz doesn’t

change=> slope changes.  The new value of the trajectory slope is
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What happens in {z z, ′} phase space?
Let us consider a beam of particles, all with the same emittance ε,

but with random phases. For particle i, at a point where α=0, we

have

z zi i i i= +( ) ′ = − +( )εβ δ ε
β

δcos ,    sinΦ Φ

The emittance is
ε β γ= ′ +z zi i

2 2

If we change ′z , the resulting emittance change is

∆ ∆ ∆ Φ ∆ε β β ε δ= ′ ′ = − ′ = − +( )2 2 22 2z z z
p

p
p

pi i i isin
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Averaging over all the particles to get the emittance of the beam,
we have

∆ ∆ε ε ε
ε

ε ε

= − => = −

=

p
p

d dp
p

p
p
p

,  

( ) 0
0

The “invariant” emittance is thus a decreasing function of the
momentum. To keep track of this, the “normalized” emittance is

defined as
ε εβγn =

in which β γ
β

= =
−

v
c

  and 2
2

1

1
Ideally, the normalized emittance does not change during

acceleration.
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Momentum dispersion

Review: we solved the linear trajectory equation

d x

ds
K s x

s

2

2 + =( )
( )
δ

ρ
in terms of cosinelike, sinelike, and dispersion trajectories:

x s s C s s x s S s s x s D s sx x x( , ) ( , ) ( ) ( , ) ( ) ( , )0 0 0 0 0 0= + ′ +δ

The momentum dependence of the solution was determined by  the
dispersion trajectoryD s sx ( , )0
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When we started talking about circular accelerators (periodic
systems) and the Twiss matrix, however, we took δ=0. Now we

return and look at momentum dependence in periodic systems.

The general trajectory is written as a betatron oscillation plus a
momentum-dependent piece described by a new lattice function,

the dispersion function η(s):

z s s s s( ) ( ) cos ( ) ( )= +( ) +εβ ϕ δηΦ

where δ = −p p
p

0

0
 is the relative momentum deviation from the

reference momentum p0. The one-turn transfer matrix is expanded,
as before, to accommodate momentum deviation :
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M( , )

cos sin sin ( , )

sin cos sin ( , )s C s

D s C s

D s C s
x

x+ =
+ +

− − ′ +














µ α µ β µ
γ µ µ α µ

0 0 1
z

z s C s

z

z

s C s

′












= + ′












+δ δ
M( , )

To calculate the dispersion function, we take ε=0 in the solution

for z(s) and substitute in the above matrix equation:
η
η

η
η

( )

( ) ( , )

( )

( )

s C

s C s C s

s

s

+
′ +













= + ′












1 1

M

in which the δ’s on both sides have been cancelled.

11/21/01 USPAS Lecture 6 18

Now the dispersion function must be periodic in s with period C:
η(s+C)=η(s)

Because it is proportional to the reference orbit at a different
momentum, and so must be closed. Hence we have

η
η

η
η

( )

( ) ( , )

( )

( )

s

s s C s

s

s′












= + ′












1 1

M

η η µ α µ η β µ

η η γ µ η µ α µ

( ) ( ) cos ( )sin ( ) ( )sin ( , )

( ) ( ) ( )sin ( ) cos ( )sin ( , )

s s s s s D s C s

s s s s s D s C s

x

x

= +( ) + ′ + +

′ = − + ′ −( ) + ′ +

These equations are solved simultaneously for η η  and ′ . The
result is
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η

µ α β µ
µ

η

µ α γ µ
µ

=
+ + ′( )

′ =
′ − ′ +( )

2
2

4
2

2
2

4
2

2

2

2

2

D D D

D D D

x x x

x x x

sin sin

sin

sin sin

sin

These expressions are divergent if µ π= 2 n, where n is an integer.
For the one-turn matrix, µ π= 2 Q, so integral tune leads to a
divergent dispersion function.
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Example calculation of dispersion:

 500 m accelerator with 50 FODO cells, each of length L=10 m.
We said that there were bending magnets in the FODO cell drift
spaces. We now calculate the dispersion function due to these
bending magnets.

We take all the 100 bends to be of equal bend radius ρ and length

L/2: then we have 50 2
50
2

500
2

79 58
L L
ρ

π ρ
π π

= = = =,   .  m m. The

bend angle is φ π= =2
100

0 0628.
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We expand the FODO cell transfer matrix to include the dispersion
trajectory by using for the dipole the matrix

MD
L

L L

( , )
2

0

1
2 4

0 1

0 0 1

=

















φ

φ

where the weak focusing of the dipole has been ignored. Then the
FODO transfer matrix is
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Mc L

f

L L

f

L L

f

( , )0
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1

2
1 0
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2 4
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1 0 0
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1
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2
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
























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











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















−















φ

φ

φ

φ

Mc L

L

f
L

L
f

L L
f

L

f

L
f

L

f

L
f

L

f
( , )0

1
8 4 2

1
8

4
1

4
1

8
2 1

8 32
0 0 1

2

2

2

2

2

2

2

2=

− + +



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− −

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− − −
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φ

φ
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Then the dispersion at the beginning of the FODO cell is found
using

sin ;    ( )
sin

sin
; ( ) ;  ( )

sin

sin
;

( , ) sin ;  

( , )

µ β

µ

µ
α γ µ

µ

φ φ µ

φ

2 4
0

1
2 0 0 0

1
2

0
2

1
8 2

1
1
2 2

0 2 1
8 32

2

2

= =
+



 = =

+





= +





= +





′ = − −



L
f

L

L

D L
L L

f
L

D L
L
f

L

f

x

x 



= − −



2 1

1
2 2

1
2 2

2φ µ µ
sin sin

So we get
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η
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+



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


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















=
+




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− −

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L
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L

 −
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



+











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
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=
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sin sin

sin

2

2

2 1
2

2
1

1
2 2

4
2

0

µ µ
µ

φ µ µ

µ

L

L

Note that for fixed energy and field (=>fixed ρ), φ=L/(2ρ), and the

dispersion varies like the square of the cell length.
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For our numerical example: we’ll take f=4.5 m, so we get the same
cell advance as in our previous, smaller ring, example:

sin . ;    

( )
sin

sin
.

.
.  

 ( )
sin

sin

. .

.
 .   

µ

β

µ

µ

η
φ µ

µ

2
0 5555 10

0
1

2 10 1 0 555
0 924

16 83

0
1

1
2 2

2
2

10 0 0628 1
1
2

0 5555

2 0 5555
1 30

2 2

= =

=
+



 = +( ) =

=
+



 =

× × + ×





( )
=

L

L

L

m

m

m m
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Dispersion and beta function vs. s in the cell
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Dependence of the disperison and beta function on cell phase
advance µ

 ( )
sin

sin
;    ( )

sin

sin
β

µ

µ
η
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µ0
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2 0
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1
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Cell phases advances are typically in the range of 60-120 degrees

The dispersion function can also be calculated from the following
expression

η β
π

β
ρ

π( )
( )

sin
( )

( )
cos ( ) ( )s

s
Q

dt
t

t
t s Q

C

= − −( )∫2
Φ Φ

For a derivation, see Ref. 2, p 72. Typically, dispersion is
calculated from transfer matrices, rather than this result.
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Momentum compaction

The path length of a closed off-momentum trajectory will differ
from the length of the reference trajectory (which is defined to be

the circumference, C):

dl
ds

x s
s

x s s

dl ds
s
s

ds

= + = ⇒

= +

1
( )
( )

;   ( ) ( )

( )
( )

ρ
δη

δ η
ρ

Integrate around the circumference:
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dl C C C
s
s

ds

C
s
s

ds C

c C

C
C

= + = +

= =

∫ ∫

∫

∆

∆

δ η
ρ

δ η
ρ

δ α

( )
( )

( )
( )

in which α η
ρC

CC
s
s

ds= ∫
1 ( )

( )
 is called the momentum compaction It

measures the relative change in circumference per unit relative
momentum offset.

∆C
C C= α δ

αC measures how ‘closely packed’ orbits with different momenta

are.
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Significance of the momentum compaction:
Consider a particle moving along the reference orbit with

momentum p0, velocity v c0 0= β  , and energy m c
m c

0
2

0
0

2

0
21

γ
β

=
−

.

It moves distance s along the reference orbit in time t
s

v0
0

= . (Take

the distance s to be much greater than one circumference). Another
particle, with momentum p p= +( )0 1 δ , moves along a different

trajectory; its projection on the reference orbit moves a distance s

in time t
s s

v
s s

v
C= + = +∆ α δ

where ∆s is the extra path length required due to the momentum

difference. The time difference between this particle and the
reference particle is
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∆

∆

t t t
s s

v
s

v
s

v
v
v

t
t

v
v

C
C

C

= − = + − ≈ − +





≈ − +

0
0 0

0

0

0

1

1

α δ α δ

α δ

For small δ = −p p
p

0

0
, we have v v≈ +





0 21

δ
γ

so
∆t
t C C
0

2
1≈ −







=α
γ

δ η δ

where η α
γC C= −







1
2 is called the “slip factor”: it measures how

much off-momentum particles “slip” in time relative to the
reference particle.
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For some value of γ, the slip factor will be zero: this value is called

the “transition gamma” γt. It is determined by the momentum

compaction of the lattice.

1
2γ

α
t

C=

For an accelerator operating at the transition gamma, there is no
relative longitudinal motion: all particles take the same time to go
around, irrespective of their momentum.

The implications of this will be discussed later.

A rough estimate of the transition gamma, for machines made
entirely of simple FODO cells with phase advance µ<<1, can be

obtained as follows:
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For such a machine,

 
sin

sin
;    

sin

sin

 β

µ

µ µ
η

φ µ

µ
φ

µ µ ρ
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ρ

β
ρ
β

η
ρ

ρ ρ

≈
+



 ≈ ≈

+



 ≈ = ≈

= ≈ ⇒ ≈ 





=

L
L

L
L L

Q
R

Q Q

1
2

1
1
2 2

2
2

2

1

2 2

2

2

2

2

2

Then, we have

α η
ρ ρ

η

γ
α

C
C

t
C

C
s
s

ds
Q

Q

= ≈ ≈

= =

∫
1 1 1

1

2
( )
( )
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Remarks:

1. For high energy machines with large γ, the slip factor is

dominated by αC. For a storage ring, if αC  is made very small, the

ring will be “close to transition” at all times. Such a machine is
called “quasi-isochronous”, since all particles have almost exactly

the same revolution frequency.

2. It is possible to design a lattice in which the momentum
compaction is variable (without changing the tune much), and it

can even be made negative. Such machines are said to have
“flexible momentum compaction”. If the momentum compaction is
negative, the transition gamma is imaginary: there is no energy for

which the longitudinal motion is isochronous.


