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LECTURE 8

Linear deviations from an ideal lattice:
Dipole errors and closed orbit deformations

(continued)
Quadrupole errors and tune shifts

Chromaticity
Sextupole Compensation of Chromaticity
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Example: Our 500 m accelerator has an F quad misaligned in
the x-direction by 1 mm at sk =50 m. What is the resulting orbit

deformation?
The focal length of the quad is f=4.5 m. The quad strength is
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The kick occurs at βk = 16.8 m, and Q=9.3747. The orbit

displacement at the kick is
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For a given kick angle, the orbit deviation is much greater, the
closer Q is to an integer. For Q=integer, the orbit diverges. So Q’s

close to an integer must be avoided.
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If I have not just one error, but N, then the orbit distortions add
linearly and we have
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If the N errors are uncorrelated and randomly distributed in
phase, then
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Note dependence on N : Very large machines typically have
very tight error tolerances on individual components.
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In our example, if all quads were misaligned with an rms error
of 1 mm, we would expect a maximum orbit distortion with rms

z2 2 50 1 4≈ × =   .  mm cm

Typical size of a high-energy beam: take εrms=10-6 m-rad and

δrms=10-3. Then
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An orbit distortion 1.4 times the beam size generally can not be

tolerated.
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Short correction dipoles are placed into the lattice at high-beta
locations (next to F quads in x, and next to D quads in y). These
dipoles can be tuned to introduce kicks that compensate for the

field errors.

The orbit correction is done using position information from
beam position monitors, which have to be carefully aligned onto
the reference orbit. The orbit can typically be corrected to a level

of a few tenths of a mm.

Frequently one wishes purposefully to deform the closed orbit
from the reference orbit in a local region of the machine. The most

common purpose is to facilitate injection or extraction; other
purposes might be for beam collimation, to accommodate an

asymmetric physical aperture, or for diagnostic purposes.
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This local orbit deformation is called a “bump”. Bumps are
created using combinations of (usually three or four) dipole
correctors.
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We use three corrector dipoles, at s1, s2, and s3, which deliver
kick angles θ1, θ2, and θ3. The phases at each of these points are

Φ Φ Φ Φ Φ Φ( ) ;  ( ) ;  ( )  s s s1 1 2 2 3 3= = = , and the beta functions are

11/26/01 USPAS Lecture 8 8

β β β β β β( ) ;  ( ) ; ( )  s s s1 1 2 2 3 3= = = . The relation between the kick
angles, which is required to make the bump local (that is, only

non-zero between s1 and s3), is
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The bump amplitude at s2  is

zbump = −( )θ β β1 1 2 2 1sin Φ Φ

Exercise: derive these relations.
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Examples:
1. s1=20 m, s2=30 m, s3=40 m, θ1=1 mrad,θ2=-0.76 mrad, θ3=1

mrad.
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2. s1=20 m, s2=30 m, s3=40 m, θ1=1 mrad,θ2=-0.76 mrad, θ3=0.8

mrad.
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C. s1=20 m, s2=50 m, s3=80 m, θ1=1 mrad,θ2=1.85mrad, θ3=1

mrad.
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Linear deviations from an ideal lattice:
Quadrupole errors and tune shifts

After having explored some of the consequences of dipole field
errors, we’ll now take a look at the effects of quadrupole field errs.

Some quadrupole field error sources:

•  Differences between the idealized quadrupole field and the true
quadrupole field, due to fabrication errors in the magnets, and/or
due to remnant field effects (this is usually the biggest source of

error)
•  Quadrupole fields due to errors in the dipole magnets
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•  Quadrupole fields due to sextupoles not being aligned on the
reference orbit

•  Stray fields on the reference orbit from other accelerator
components

From Lecture 3, p 7: The trajectory equations, to lowest order
in quadrupole field errors, are
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A quadrupole field error produces a perturbation in the focusing
function K(s). The focusing function K(s) determines the lattice
functions β, and η, and quantities derived from them, such as Φ
and Q. Thus, we expect all these quantities to change as a result of
quadrupole field errors.

As in the case of dipole errors, we’ll treat a single gradient
error as localized at one point, and sum over these to treat a

collection of gradient errors. Thus a single gradient error is treated

as a thin lens, of focal length
1

0f
kL

B L
B

= = ′∆ ∆( )
ρ

, where L is the

length of the gradient error along the reference orbit.

Suppose the gradient error is located at s0. Then the one-turn
matrix at this point becomes
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in which the lattice functions with subscript 0 refer to the
unperturbed lattice functions and tune.

Carrying out the matrix multiplication and equating the trace of
the matrices on each side of the equation, we get
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in which the change in the tune is ∆Q Q Q= − 0 .
If ∆Q <<1, then we have
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∆ ∆Q s kL= ( )1
4 0 0π

β ( )

The lowest order effect of the quadrupole error is a change in
the tune, proportional to the strength error, the error’s length, and

beta at the location of the error.

This result is only true to first order in ∆k,  since the lattice

functions are also perturbed, and we have ignored this. Its accuracy
also depends on the assumption that the pertubed motion is still

stable. Stability requires that
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If the unperturbed tune Q0 is close to n/2, where n is any integer,
then cos2 0πQ  is close to 1, and the quadrupole perturbation could
be large enough to violate the stability criterion. There is a range of
tune values around Q0=n/2 for which the motion is unstable. This
range, which depends on ∆kL, is called the half-integer stopband.

Q
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π
0 0

4
( )s kL∆( )

So, in the presence of gradient errors, we must avoid a range of
tunes around the half-integers.
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Example: Take a quadrupole field error of 10%, in one of the F
quads, in our 500 m accelerator.

Using f=4.5 m,

kL
f

kL

Q s kL

= = ( ) =

= ( ) = × =

− −1
0 2222 0 02222

1
4

16 8 0 02222
4

0 03

1 1

0 0

.  ;  .  

( )
. .

.

m m∆

∆ ∆
π

β
π

This may seem small, but it should be compared with the
fractional part of the tune (9.3747); it is about 10% of that.

The stopband width is twice this, or 0.06: so, with this gradient
error, tunes from 0.47 to 0.53 must be avoided.
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If we have many errors ∆(kL)i at locations si, then the tune shift

is

∆ ∆Q s kL
i
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i i= ( )
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In this case, the stopband width is no longer twice the tune
shift, since the relative phases at the perturbations must be

accounted for.
For a continuous distribution of errors, this generalizes to

∆ ∆Q ds s k s
C
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1

4π
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This result can be used for gradient errors due to any source:
e.g., electric field gradients, space charge and beam-beam fields,

etc.
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Gradient errors cause a perturbation to the lattice functions
everywhere in the machine. To calculate this, let the quadrupole

error be at s0 . The one-turn matrix at another point, s, is given by

M M M( , ) ( , )
( )

( , )s C s C s s
kL

s s+ = +
−





0 0 0 0

1 0

1∆
If we write the unperturbed transfer matrices

M M0 0 0 0( , )   ( , )C s s s s+ and  in terms of the unperturbed lattice
functions β0 and α0 at the appropriate points, we can carry out the

matrix multiplication on the right-hand side. Then, on the left-hand
side, the matrix element

M C s s s Q s s Q Q12 0 02 2( , ) ( )sin ( ) ( ) sin+ = = +( ) +( )β π β β π∆ ∆
in which ∆β( )s  is the perturbation β at s.
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Use ∆ ∆Q s kL= ( )1
4 0 0π

β ( ) , and then equate this to the

corresponding matrix element on the right-hand side. Solve for
∆β( )s . The result (for general s) is
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We again see the sensitivity to Q0 near the half-integer: the beta
function perturbation blows up at this point. The beta function

perturbation oscillates twice as fast around the circumference as
the closed orbit perturbation.

11/26/01 USPAS Lecture 8 22

Example:  .  ∆ kL( ) = −0 02222 1m  at the F-quad at 50 m in our
500 m machine. The perturbed β function is shown below:
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Chromaticity

Chromaticity refers to the dependence of the focusing function
on momentum. Back to Lecture 3, p 7 again: Ignore field errors,
but keep all terms linear in (x,y) or in the momentum deviation δ:
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The constant 
δ
ρ

 is responsible for momentum dispersion, which

we have already discussed. We’d now like to focus on the
momentum dependence of the focusing terms. We’ll neglect the
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1 2
2

− δ
ρ

 term, which corresponds to the (weak) focusing in dipoles:

then
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which is just equivalent to a gradient error of strength

∆k kx y, = m δ

This focusing error will produce a tune shift
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The chromaticity  ξ of the lattice is defined as the tune change

per unit relative momentum change. Hence the chromaticity due to
the dependence of quadrupole strength on momentum (called the

natural chromaticity) is

ξ
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For a strong focusing lattice, the natural chromaticity in both
planes is always negative.
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The natural chromaticity of a simple FODO lattice, in the thin
lens approximation, is easy to calculate. For a single cell, we have
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For the whole machine, with Nc cells, we have:
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For a design with µ<<1, we have

ξ µ
πx
c

x
N

Q= − = −
2

The natural chromaticity is just the negative of the tune. For
our 500 m accelerator example, with Nc = 50 and µ=1.178, we

have

ξ
πx = − = −50 1 178

2
10 63tan

.
.

still not far from the negative of the tune. For this example, the
natural y-chromaticity is the same as ξx.
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For real machines with insertions, the chromaticity will of
course be different. In particular, a machine with a low-β insertion

can have a considerably larger natural chromaticity than that from
the regular FODO lattice, because of the large value of βmax in the

insertion, coupled with typically larger focusing strengths in the
insertion matching quadrupoles.

Chromaticity is generally not desirable in a machine, for at
least two reasons. Unfortunately, neither of these can be fully

appreciated until further in the course.

1. If there is a spread in momentum δ in the beam(as there

always will be), then there is spread in tune ∆Q = δξ . If large
enough, this tune spread could put some of the beam dangerously
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close to resonances. This is particularly important for large (high
tune) machines. For example, if δ=10-3 and ξ=-100, then the

chromatic tune spread will be ∆Q=-0.1, which is large compared to

the typical spacing of high-order resonance lines.

2. The growth rate of a collective instability called the
head-tail instability depends on the value of the chromaticity.
Above transition, for positive chromaticity, this instability is
very weak. Thus, machines are often operated with a small

positive chromaticity above transition.

For a fixed lattice, how can we change the chromaticity? We
need a field gradient which is a linear function of δ
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Sextupole Compensation of Chromaticity

Recall from Lecture 3, p. 11: a sextupole has a field

B
B

x y B B xyy x= ′′ − = ′′
2

2 2( );     

and position dependent field gradients
∂
∂

= ′′ = ∂
∂

B
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B
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If we place a sextupole in a dispersive region, where x = ηδ ,
then the field gradients are momentum-dependent:

∂
∂

= ′′
B

x
By ηδ

This gives us what we want: a momentum dependent field
gradient. By inserting sextupoles into the lattice with the
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appropriate signs and strengths, we can cancel the natural
chromaticity, or achieve any value of chromaticity that we want.

x

xβ
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B(x)
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ηδ x

−ηδ
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Equation of motion, including first-order chromatic terms, and
sextupoles (neglecting dipole weak focusing term):
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Let x x y y= + =β βδη;   , where x yβ β  and  represent the

betatron oscillations. Then, substituting, we have



11/26/01 USPAS Lecture 8 33
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Expand. The dispersion function changes in the presence of the
sextupoles, obeying the equation.
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This differs by the term of order δ from the usual equation for

the dispersion. The betatron motion equations are

′′ + + −( )( ) + −[ ] =

′′ − + −( )( ) − =

x x k m k
m

x y

y y k m k mx y

β β β β

β β β β

δ η

δ η
2

0

0

2 2

11/26/01 USPAS Lecture 8 34

The gradient error now has the form
∆k m kx y, = ± −( )η δ

There are also nonlinear terms. We will return to these in future
lectures.

The chromaticity becomes

ξ
π

β ηx y x y
C

ds s m s s k s, , ( ) ( ) ( ) ( )= ± −( )∫
1

4

and can be adjusted to a desired value with appropriate use of
the sextupole strength m(s).
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In principle, only two sextupoles are required to compensate
the chromaticity in both planes. For two thin lens sextupoles, m1

located at s1 and m2 located at s2, of length Ls,
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Note that the sextupoles have opposite effects in the two
planes.

If ξ ξ ξx natural y natural natural, ,= = , to get zero total chromaticity,

we need to have
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Typically, to  minimize the required sextupole strength, we
want η η( )   ( )s s1 2and  large, and also
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Example: FODO lattice of our 500 m model accelerator. Place
m1 at a D quad, m2 at an F quad. Let Ls=0.1 m. Then
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In practice, the required sextupole strength is distributed
around the circumference in at least two families of sextupoles.

The inevitable nonlinear effects from a distributed sextupole
system are less than for two strong sextupoles. More than two
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families may also be used, with a local correction in the interaction
region.


