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Accelerator science in coming years will be increasingly dependent upon high single-

bunch charges and/or small emittances. Under these conditions, single-particle dynam-

ics are not a sufficient description of beam behavior and interactions between the beam

particles must be taken into account. One such interaction is when collisions between

the particles that compose a bunch perturb the motion of the colliding particles signif-

icantly and frequently enough to impact the beam dynamics. Multiple, small-angle,

collisions blow up the emittance of the bunch and are referred to as intrabeam scattering

(IBS). Here are documented the theoretical and experimentalstudies of IBS in storage

rings undertaken as part of the CesrTA program.

Under the conditions where IBS becomes dominant, other multi-particle effects can

also appear. The additional effects we investigate include potential well distortion, co-

herent current-dependent tune shift, and direct space charge.

CesrTA design and analysis is conducted in a normal mode coordinates environment

which allows for natural handling of coupling. To that end, we develop a 6D normal

modes decomposition of the linear beam optics.

Multi-particle effects are also important for Energy Recovery Linear Accelerators

(ERLs). Because the beam circulates for only a short period of time in an ERL, the

beam lifetime imposed by Touschek scattering is not significant. However, the particles

scattered out of the bunch can generate a radiation hazard where they collide with the

beam pipe. We re-derive Piwinski’s original Touschek scattering equation to check its

validity when applied to ERL beams, then repurpose the formula to generate a profile of

where scattered particles are generated and where they are lost.



The results presented here advance our understand of charge-dependent behavior in

the sorts of high charge-density accelerators that will be implemented in coming years.
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3.1 ĵ, k̂, l̂ coordinate system. . . . . . . . . . . . . . . . . . . . . . . . . . 148
3.2 Displacement of trajectory of particle with̀10 MeV/c momentum de-

fect due to 2nd, 3rd, and 4th order dispersion. The beam pipe diameter
is 13 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

3.3 Example energy aperture from CERL lattice version 3.0. Thepositive
aperture is determined entirely by beam pipe collisions. The negative
aperture is dominated by stopping during deceleration. . . .. . . . . . 170

xii



3.4 Cumulative generation of scattered particles. . . . . . . . .. . . . . . 171
3.5 Example Touschek curve with test particle distributionused to repre-

sent it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
3.6 Current per meter of scattered particles striking beam pipe. The current

at the end of the linac peaks at 2230 pA/m due to the 1{γpsq dependence
in Eqn. (3.67). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

3.7 Current per decelerating cavity of scattered particles stopping at the end
of the linac. The design energy at the end of the linac is 10 MeV. Each
cavity decelerates the beam by 13 MeV. . . . . . . . . . . . . . . . . . 175

3.8 Growth∆E{E through linac due to IBS. The injected∆E{E is 10́ 3. At
the end of the linac,∆E{E is 4.9 ˆ 10́ 3. . . . . . . . . . . . . . . . . 178

3.9 H and current of scattered particles produced per meter for Cornell ERL.179
3.10 Histogram of the current of particles scattered in TA and lost in SA that

would be caught by a collimator at the given location. The horizontal
coordinate spans the TA region. . . . . . . . . . . . . . . . . . . . . . 181

3.11 Results of collimating Cornell ERL to reduce current of scattered par-
ticles deposited into user regions. The red bars are before collimation,
and the green bars after collimation. All green bars are below the 3
pA/m threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

3.12 Horizontal phase-space distribution of scattered particles at the end of
the linac. The total current of particles laying outside 10 sigma of the
beam is 413 nA, compared to a beam current of 100 mA. The radiusof
the beam pipe at this part of the accelerator is 1.95 cm. This data was
run on the uncollimated lattice. . . . . . . . . . . . . . . . . . . . . . 184

3.13 Relative velocity between two particles with different relativisticγ as a
function of angle between their momenta. . . . . . . . . . . . . . . . .186

3.14 β̃, the velocity of colliding particles in the c.o.m. frame, plotted versus
χ. When∆E is large, there are no particle pairs with smallβ̃. . . . . . . 188

3.15 Touschek rate for scattering rate between overlappingbeams of differ-
ent energy. The self-scattering rate for the higher energy beam is also
plotted for comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . 189

xiii



PREFACE

This document presents the results of theoretical and experimental investigations of cur-

rent dependent effects in the types of bunched electron/positron beams that will be uti-

lized in the next generation of advanced particle accelerators. The charge-dependent

behavior of single bunch beams dominated by intrabeam scattering is investigated using

CesrTA, and design studies are conducted to determine where Touschek particles are

lost in the Cornell Energy Recovery Linear Accelerator.

The first chapter is a brief introduction which discusses theimportance of acceler-

ators in high technology and scientific research. Some of thechallenges involved in

developing the next generation of accelerators are discussed.

In the second chapter, the IBS investigations conducted at CesrTA are presented.

CesrTA lattice design and analysis of beam dynamics is conducted in a normal mode

coordinates environment which allows for a natural handling of coupling. To that end,

this chapter begins by deriving a demonstration storage ring from first principles. Start-

ing with the Hamiltonian of a charged particle in a magnetic field, we derive the transfer

matrices necessary to assemble a simple storage ring. A tilted quadrupole is introduced

to create a storage ring with coupling between the horizontal, vertical, and longitudinal

motion.

After discussing the difficulties encountered when analyzing particle motion in the

demonstration storage ring, we derive a formalism for decomposing the particle motion

into the eigen modes of the magnetic lattice. The derivationstarts with Wolski’s eigen

mode formalism found in [58], and extends it to a 6-dimensional normal mode formal-

ism. This 6-dimensional normal mode formalism can be viewedas an extension of the

4-dimensional normal mode formalism developed by Sagan andRubin in [41].

An important advantage of the normal mode formalism is that it allows beam sizes

that can be measured in the laboratory to be properly calculated in coupled machines.
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This is particularly important when predicting beam size measurements in CesrTA. Due

to dispersion in the RF cavities, bunches in CesrTA are tilted in the xz plane and the

usual formulas for calculating beam size do not apply.

The normal mode formalism is then applied to the demonstration storage ring, where

it is shown that quantities such as particle action and beam emittance (phase space vol-

ume occupied by the ensemble of particles) regain their significance in a normal modes

coordinate system.

The thesis then discusses theΣ-matrix-based IBS formalism developed by Kubo and

Oide [21]. This is a generalization of Bjorken & Mtingwa’s formalism [5] and naturally

handles coupled motion. Particular attention is paid to theCoulomb Logarithm. One

of the main results of our investigations at CesrTA is that theproper tail-cut should be

applied when calculating IBS growth rates in electron/positron storage rings.

Piwinski’s original IBS formalism [30] is re-derived such that its Coulomb Loga-

rithm factor can be treated in the same manner as in Kubo’s formalism. It is shown that

all three formalisms give similar results when applied to CesrTA, provided the Coulomb

Logarithm is treated consistently

A Monte Carlo IBS simulation based on Takizuka & Abe’s binary collision model

for non-relativistic plasmas [48] is developed. The main advantage of the Monte Carlo

simulation is that it is independent of any coupling formalism and takes nonlinearities

of the guide field into account.

In addition to intrabeam scattering, potential well distortion and coherent tune shift

are observed in CesrTA. A theoretical model for potential well distortion is described

and coherent tune shift measurements are presented.

Having developed and presented the theory necessary to describe current-dependent

beam sizes in CesrTA, we present data on IBS-dominated beams obtained during the

April 2012 and December 2012 CesrTA machine studies. An interesting anomaly in

xv



our data is a blow up in the vertical beam size at high current that does not fit with

our models. Incoherent tune shift due to direct space chargeis presented as a possible

explanation of the blow up.

The last chapter of this thesis presents work done on Touschek Scattering in Energy

Recovery Linear Accelerators (ERLs). Piwinski’s original Touschek formula [32] is re-

derived to check its validity when applied to ERLs. We find thatPiwinski’s Touschek

formula is accurate to first order in energy spread,1
γ2

0
, and divergence. The formula is

then re-purposed to determine the locations in the ERL where Touschek particles are

generated and lost. These loss profiles guide the placement of collimators in the ERL

design.
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CHAPTER 1

INTRODUCTION

Particle accelerators are a broad class of high technology electromagnetic devices that

produce, accelerate, store, and transport beams of leptons, hadrons, or ions to very high

velocities. Particle accelerators are ubiquitous in scientific research, high tech industry

and medicine. There are roughly 26,000 accelerators operating world wide.

Depending on application, the velocities attained in an accelerator may be quite low.

An industrial use of particle accelerators is ion implantation. Beams of ions, such as

boron, arsenic, or oxygen, are accelerated to about 0.5% the speed of light and are used

to dope semiconductors. Ion implantation is an important step in the manufacture of

silicon-on-insulator (SOI) microprocessors. A similar process is be used to harden steel

tools with nitrogen, improving tool lifetime by 60% [50].

In medicine, particle therapy bombards tumors inside the body with ionizing beams

of electrons, protons, or ions. The energy and species of theparticle determine the depth

at which the radiation is delivered. Figure 1.1 compares this depth for various particles.

Particle beam therapy is a very high precision technique andcan be used to treat tumors

where damage to the surrounding tissue must be avoided [56].An accelerator for proton

therapy typically consists of an ion source, a cyclotron to accelerate the particles, and a

transport line to deliver the beam to the patients.

Another medical application of accelerators is the production of radiopharmaceuti-

cals. Radiopharmaceuticals are compounds that are both biologically active and radioac-

tive. They are usually designed to localize in certain partsof the body. For example, they

may localize in regions where glucose uptake, and thereforemetabolism, is high. This

can be useful for identifying cancer metastasis. The location of radiopharmaceuticals in
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Figure 1.1: Radiation dose delivered versus depth for various forms of particle therapy.
Image source: [54].

the body can be determined by looking for the positron radiation they emit [55]. Sim-

ilarly, radiopharmaceuticals can be designed to release radiation that destroys diseased

tissues. Many of the radioisotopes used in medicine are produced in accelerators such

as the Brookhaven Linac Isotope Producer at Brookhaven National Laboratory (BNL).

About 100 accelerators worldwide are operated for scientific research. These can be

divided into to two broad categories: colliders and light sources.

Colliders include the Large Hadron Collider (LHC) at CERN in Geneva, Switzer-

land, the Relativistic Heavy Ion Collider (RHIC) at BNL in New York, and the Beijing

Electron Positron Collider (BEPC) in Beijing, China. These machines accelerate parti-

cles to very high energy, 99.995% the speed of light and higher, and collide them head

on. These collisions generate exotic states of matter that tell us about the the early uni-

verse and help us define the standard model. The standard model is a particle-based

classification scheme for the data obtained in high energy physics experiments. It de-

scribes the particles and interactions that make up the world around us and also those

2



Figure 1.2: Chart of the electromagnetic spectrum. Accelerator-based light sources span
the far infrared through gamma rays. Image source [26].

that made up the very early universe. The recent discovery ofthe Higgs boson, which

explains why particles have inertial mass, is the result of accelerator-based collision

experiments.

Light sources are a broad class of accelerators dedicated toproducing intense, pre-

cise pulses of photons. They are unique in their ability to generate intense light pulses

over a wide range of photon energies. Shown in Fig. 1.2 is the electromagnetic spectrum.

Generally speaking, the wavelength of the light being used to investigate an object de-

termines the size of the features that can be resolved. Probing the arrangement of atoms

in a crystal requires light in the x-ray region of the electromagnetic spectrum, which has

a wavelength of about 10́10 meters. However, such light is blind to the details of a nu-

cleus. Nuclear studies require light with a wavelength smaller than about 10́14 meters.

Accelerator-based light sources work on the principle thata charged particle emits

electromagnetic radiation when it is accelerated. This is the same principle behind ra-

dio transmission and the reason metals glow red when heated.In an accelerator-based

light source, electrons are accelerated to very high energyand injected into a storage

3



Figure 1.3: A charged particle beam emits a cone of radiationwhen bent by a dipole
magnet. Image source [57].

Figure 1.4: In an undulator, a series of bends causes the particle beam to emit an intense
pulse of light. Image source [57].

ring where they circulate for several 10s of minutes. Storage rings are typically several

hundred meters in circumference. The storage ring containsstrong dipole fields that

accelerate the beam perpendicular to its trajectory. As depicted in Fig. 1.3, this accel-

eration generates a strong radiation field in the forward direction. Accelerator-based

light sources are particularly useful because the opening angle of the radiation varies

inversely with the beam energy. The light emitted by a charged particle beam is concen-

trated into a very narrow cone. The opening angle of the radiation in a 5 GeV electron

beam is about 0.005̋ .

An undulator, depicted in Fig. 1.4, is a specialized device used in a light source that

consists of a series of bend magnets of alternating gradient. The series of bends causes

the beam to accelerate back and forth very quickly and emit anintense pulse of light.
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Figure 1.5: Layout of the Advanced Photon Source showing thevarious experimental
stations. Electrons are accelerated in the linac and booster synchrotron, then injected
into the storage ring where they are used to generate light.

Undulators can be tailored to deliver the exact type of lightneeded for an experiment.

The wavelength of light from an undulator is determined by the undulator periodλu, the

strength of the bend magnets, and the energy of the beam. The bandwidth and intensity

of the light is determined by the number of periods. Shown in Fig. 1.5 is the layout of the

Advanced Photon Source (APS) located at Argonne National Lab in Illinois. The type of

light delivered and setup of the experimental station are determined by the application.

Applications include materials science, biology & life science, geology, chemistry, and

condensed matter physics.

From 1939 to 2009, about one-third of Physics Nobel Prizes have incorporated data

from accelerator-based experiments [7]. Accelerators arealso important in other fields.
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Figure 1.6: Structure of a bacterial ribosome as determinedby accelerator-based x-ray
crystallography. The ribosome contains more than 2800 nucleotides and about 33 pro-
tein molecules. The locations of over 84,000 non-hydrogen atoms have been identified
[43].

Nobel Prizes in Chemistry were awarded for accelerator-based research in 1998, 2003,

and 2009. The 2009 Nobel Prize in Chemistry was awarded for determining the struc-

ture and function of the ribosome using accelerator-based x-ray crystallography. The

ribosome, depicted in Fig. 1.6, is the primary site of biological protein synthesis in the

cell.

The next generation of advanced particle accelerators are being developed to support

continued advances across a wide range of disciplines. Discoveries at the LHC over the

next several years will hopefully tell us in which directionto take high energy physics.

One possible direction is that of high-precision collisionexperiments. To that end, the

International Linear Collider (ILC) and Compact Linear Collider (CLIC) are being de-

veloped. These machines are designed to enable higher precision measurements of the

discoveries at LHC. New light sources, such as Cornell’s Energy Recovery Linac (ERL)
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and Ultimate Storage Rings (USRs) aim to deliver brighter, shorter pulse length light

pulses over a wide range of wavelengths.

The aim of the research presented in this thesis is to understanding the charge-

dependent beam physics phenomena that arise when electron and positron beams are

pushed to very high charge densities. These effects will be increasingly important in

future accelerators. In a low current accelerator, the beamcan be modeled as an ensem-

ble of non-interacting particles. As the density of particles in the beam increases, the

particles begin interacting with each other and the beam is no longer well-described as

an ensemble of non-interacting particles. The interactions can be one-particle to one-

particle, as in intrabeam scattering. The interactions canalso be many to one, as in direct

space charge, or the particles can interact with each other through the beam chamber, as

in impedance effects.

Our primary goal is to understand intrabeam scattering (IBS). This is where col-

lisions among the particles that compose the bunch transfermomentum between the

particles in such a way that the total amplitude of their oscillations increases. However,

other collective effects may arise in beams where intrabeam scattering is important.

Those other effects include impedance effects and direct space charge. Because particle

motion in CesrTA is coupled, these studies are done in terms ofthe normal modes of the

beam.
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CHAPTER 2

INTRABEAM SCATTERING STUDIES AT CESRTA

Intrabeam scattering has been studied in detail atp and p̄ [24, 25, 31], and heavy ion

colliding beam machines [14]. In such machines, IBS slowly increases the phase space

volume occupied by the beam (emittance) and imposes a luminosity lifetime. Studies

of IBS in ion beams have been conducted at the Relativistic Heavy Ion Collider (RHIC)

at Brookhaven National Lab [14]. There, good agreement was found between IBS the-

ory and experiment. Lattices which reduce IBS growth by minimizing the dispersion

invariantHa “ γaη
2
a ` 2αaηaη

1
a ` βaη

12
a have been implemented at RHIC and are used

regularly for colliding-beam experiments [13]. For beams of protons and anti-protons,

good agreement between theory and measurements was found atthe Tevatron [24].

Electron and positron beams in rings come to equilibrium much more rapidly than

hadron beams, hence IBS in lepton rings manifests itself differently. Lepton machines

have strong radiation damping, and the equilibrium emittance is determined by a balance

between radiation damping and quantum excitation. Typicaldamping times are on the

order of tens of milliseconds. The quantized nature of IBS contributes a random motion

to the scattered particles, which tends to increase the emittance (phase space volume

occupied by the beam). The random excitation of the IBS equilibrates with radiation

damping to determine the beam size. The result is a current-dependent emittance.

Single, large-angle scattering events that can kick particles outside the core of the

bunch and contribute to particle loss or beam halo are relatively rare. Multiple, small-

angle, scattering events are more common. The former are commonly referred to as

Touschek scattering, and the latter as intrabeam scattering. The emphasis in this chapter

is intrabeam scattering.
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IBS in electron beams has been studied at the Accelerator TestFacility (ATF) at KEK

[2], where detailed measurements of the current dependenceof bunch energy spread and

length are in good agreement with theory. Measurements of the transverse dimensions

at ATF, however, are not as complete.

One of the goals of the CesrTA IBS investigation is to improve onthe ATF results by

including detailed measurements of the bunch charge dependence of the transverse beam

sizes. CesrTA has independently powered quadrupoles and thecapability to store larger

single-bunch charges. This flexibility allows for measurements in a greater variety of

conditions. In this chapter, we describe the CesrTA IBS experiments, and compare the

results to both analytic theory and Monte Carlo simulations.Some of the results shown

here were first presented at the 2012 International ParticleAccelerator Conference [11].

The presentation here provides a more complete descriptionand theoretical framework

for the results.

CesrTA is a re-purposing of the Cornell Electron Storage Ring (CESR) as a test ac-

celerator for future storage rings designs [29]. CesrTA is a wiggler-dominated storage

ring, with 90% of the synchrotron radiation produced by twelve 1.9 T superconducting

damping wigglers. Some parameters for CesrTA are given in Table 2.1. Design and

analysis of CesrTA is done using theBmad relativistic charged beam simulation library

[37]. Designa-mode (horizontal-like), single particle geometric emittanceǫa is 2.7 nm-

rad. The minimum measuredb-mode (vertical-like) emittanceǫb at the time of these

measurements is about 20 pm-rad and is dominated by magnet misalignments and the

effectiveness of our emittance tuning procedure. The flexibility of the CesrTA optics

allows precise control ofb-mode emittance above that minimum. We are able to vary

b-mode emittance by using closed coupling bumps to introducea localized vertical dis-

persion in the damping wigglers. In this way, vertical emittance can be increased by an
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Table 2.1: Machine parameters for IBS measurements.

Beam Energy (GeV) 2.085

Circumference (m) 768

RF Frequency (MHz) 449.765

Horizontal Tune (Qx) 14.624

Vertical Tune (Qy) 9.590

Synchrotron Tune (Qz) ´0.065

Transverse Damping Time (ms) 56.6

order of magnitude without affecting the global optics. The bunch length is determined

by the RF accelerating voltage. With a voltage of 6 MV, the bunch length is about 10.5

mm. Measurements were made with bunch charges ranging from 1.6ˆ109 to 1.6ˆ1011

particles/bunch (0.10 mA to 10.0 mA).

CesrTA is instrumented for precision bunch size measurements in all three dimen-

sions.

Vertical beam size measurements are made by imaging x-rays from a hard bend

magnet through a pinhole onto a vertical diode detector array [35]. The measurements

are turn-by-turn, but the average of the fits of 1024 turns is taken as the measurement.

Horizontal beam size measurements are made with a visible synchrotron light inter-

ferometer [52]. The interferometer is used to image visiblesynchrotron radiation on a

charge-coupled device (CCD) that is exposed over about 400 turns at high current and

about 40000 turns at low current. Bunch length measurements are done with a streak

camera, making use of visible light in the synchrotron radiation spectrum from a bend-

ing magnet [17].

Validation of the beam size instrumentation includes checking for intensity depen-

dent systematics using filters, and size systematics by varying source-point betatron-
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functions. The horizontal beam size monitor undergoes direct calibration with a source

of known size [52].

2.1 Overview of Modeling Environment

The primary tool used for CesrTA design and modeling is theBmad relativistic charged

beam simulation library [38].Bmad is suite of modules that enable the development of

codes for designing and simulating charged particle accelerators and X-Ray beam lines.

Physics conventions, such as coordinate system, used in this thesis follow those

outlined in theBmad manual [38].

The code I have contributed toBmad includes calculation of intrabeam scattering

growth rates, Touschek scattering rates, potential well distortion, eigen mode decompo-

sition of transfer matrices, and simulation of a digital tune tracker, which is a phase-lock

loop instrument used to resonantly excite oscillations in aparticle beam. I have also

made performance enhancements to the symplectic lie tracking module for wigglers

and the module for tracking particles through higher order multipoles. These enhance-

ments consist of simplifying and rearranging the math operations to enable the compiler

to more efficiently vectorize the code.

2.2 Canonical Coordinates

Following theBmad coordinate convention, the phase space coordinate of a particle rel-

ative to the reference particle is,

~x psq “ px psq , px psq , y psq , py psq , z psq , pz psqq , (2.1)
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wheres refers to position along the length of the machine.x andy refer to horizontal

and vertical coordinate andpx and py refer to horizontal and vertical momentum.z is

time-like andpz refers to the total momentum of the particle. Both are defined in detail

below.

The transverse momenta are normalized by the reference particle momentumP0,

px “ Px

P0
(2.2)

py “
Py

P0
. (2.3)

The reference particle momentum is related to the design energy of the machine,P0 “

β psq E0{c. Thez coordinate is defined as the timet psq that a particle arrives at a partic-

ular locations in the machine,

z psq “ ´β psq c pt psq ´ t0 psqq (2.4)

” ´β psq c∆t psq , (2.5)

whereβ psq is the velocity of the particle at positions and t0 psq is the time at which

the reference particle arrived ats. A particle with a positivez arrives ats before the

reference particle, and a particle with a negativez arrives ats after the reference particle.

The longitudinal momentum coordinate is defined as,

pz “ P ´ P0

P0
, (2.6)

whereP is the total momentum of the particle,

P2 “ P2
x ` P2

y ` P2
s . (2.7)

Note thatP is not the longitudinal momentum of the particle.
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Within the paraxial approximation wherepx, py ăă 1,

x1 “ dx
ds

« px

1 ` pz
p1 ` gxq

y1 “ dy
ds

«
py

1 ` pz
p1 ` gxq (2.8)

whereg “ 1{ρ andρ is the radius of curvature. Typically,g is non-zero only when the

particle is travelling through a bend magnet.

~x “ px psq , px psq , y psq , py psq , z psq , pz psqq is a 2n, with n “ 3, canonical coor-

dinate system.px, pxq, py, pyq, andpz, pzq are canonically conjugate coordinate pairs.

x, y, andz are the generalized coordinates (theqi’s in the usual Hamiltonian notation).

px, py, and pz are the generalized momenta. Trajectories inx can be described by a

Hamiltonian.

The coordinate systemx described here iss-dependent. Thez and pz coordinates

tell us about the arrival time of particles at a particular location s. They do not tell

us about the longitudinal distribution of the particles. The longitudinal distribution is

necessary when calculating intra-bunch effects, when it is important to know the relative

spatial coordinates of the particles. In Sec. 2.9.2, where Monte Carlo IBS simulation

is discussed, the time-dependent Hamiltonian is used to develop a map from thes-

dependent coordinate system to a time-dependent coordinate system.
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2.3 Hamiltonian Formalism

The s-dependent Hamiltonian for a particle traveling in the positive s direction through

a canonical vector potential~A and electric potentialφ is,

Hs “

´
ˆ

1 ` x
ρ

˙

d

ˆ

p1 ` pzq ´ qψ
cP0

˙2

´
ˆ

px ´ qAx

P0

˙2

´
ˆ

py ´
qAy

P0

˙2

` 1
β0

d

p1 ` pzq2 ` m2c2

P2
0

´ q
P0

As, (2.9)

P0 is the reference particle momentum,ρ is the horizontal bending radius for the refer-

ence particle,q is the particle charge,ψ is the electric potential,c is the speed of light,

andm is the particle mass. The second term in the Hamiltonian appears because we de-

finedz relative toz0. pAx, Ay, Asq “ ~A is the magnetic vector potential. The Hamiltonian

for a particle travelling in the negatives direction is

H´s “
ˆ

1 ` x
ρ

˙

d

ˆ

p1 ` pzq ´ qψ
cP0

˙2

´
ˆ

px ´ qAx

P0

˙2

´
ˆ

py ´
qAy

P0

˙2

` 1
β0

d

p1 ` pzq2 ` m2c2

P2
0

´ q
P0

As. (2.10)

The equations of motion are obtained by applying the Hamilton equations [34],

d~x
ds

“ S
BH
B~x , (2.11)
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where,

S “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 0 0 0 0

´1 0 0 0 0 0

0 0 0 1 0 0

0 0 ´1 0 0 0

0 0 0 0 0 1

0 0 0 0 ´1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (2.12)

and~x was defined in Eqn. (2.1). The transformation from from one locationsi to another

locationsi`1 is given by,

~x psi`1q “ ~x psq ` S
BH
B~x psi`1 ´ siq . (2.13)

Solutions to the equations of motions can usually be found for many common accelera-

tor components by linearizing Eqn. (2.13).

Knowing the electromagnetic field potentialsψ and ~A and bending radius of a mag-

netic component, one can quickly go from the Hamiltonian to the equations of motion.

Lie algebra techniques can be applied to the Hamiltonian to integrate symplectically

while taking into account arbitrary number of non-linear terms. This can be useful

when tracking through highly non-linear elements such as damping wigglers.

In the following sections, we will derive from the Hamiltonian the transfer matrices

necessary to construct a simple demonstration storage ring. The storage ring will consist

of quadrupoles, bend magnets, and drift sections. We will also introduce a simple longi-

tudinal focusing element and a tilted quadrupole. The purpose of this storage ring is to

demonstrate coupled particle motion. The symplecticity ofthe Hamiltonian will be used

to derive an eigen modes decomposition of the demonstrationstorage ring. This decom-

position will allow us to recover concepts such as particle action and beam emittance.
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The eigen decomposition will later be extended to a normal mode decomposition, from

which we can obtain additional information about coupled motion in the beam. We will

also obtain a method for calculating the projected beam sizes in a coupled machine.

2.3.1 Equations of Motion Through a Quadrupole

Consider a particle travelling through a quadrupole. Ignoring fringe fields, the field of

a magnetic multipole has onlyx andy components and only theAs component of the

vector potential is non-zero. Outside of a bend magnet,ρ´1 is zero and the magnetic

vector potential is given by

~As “ ℜ
˜

8
ÿ

ν“1

Ψν px ´ ıyqν
¸

, (2.14)

whereΨν is the strength of the multipole of orderν. For a dipole, onlyΨ1 is non-zero,

for a quadrupole, onlyΨ2 is non-zero, and so on.

Evaluating Eqn. (2.14) for a quadrupole, whereΨ2 , 0, yields,

As “ ℜ
´

Ψ2 px ´ ıyq2
¯

“ ℜ
`

Ψ2

`

x2 ´ y2 ´ 2ıxy
˘˘

“ 2Ψ2

`

x2 ´ y2
˘

. (2.15)

To check Eqn. (2.15), we calculate its curl. In the curvilinear coordinate system of
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x̂, ŷ, ŝ, the curl ofA is [47],

~B “∇ˆ ~A

“
ˆ

BAs

By
´ 1

1 ` ρ´1x

BAy

Bs

˙

x̂`
ˆ

1
1 ` ρ´1x

BAx

Bs
´ 1

1 ` ρ´1x
B
Bx

`

1 ` ρ´1x
˘

As

˙

ŷ`
ˆBAy

Bx
´ BAx

By

˙

ŝ

“BAs

By
x̂ ´ BAs

Bx
ŷ

“Ψ2 pyx̂ ´ xŷq , (2.16)

which is indeed the magnetic field inside a quadrupole.

The electric potentialψ is zero inside a quadrupole and the magnetic vector potential

is given by (2.15). Furthermore,g is zero because we are not inside a bend. We can now

write down the Hamiltonian for a particle moving through a quadrupole,

Hs,quad “ ´
b

p1 ` pzq2 ´ p2
x ´ p2

y ` 1
β0

d

p1 ` pzq2 ` m2c2

P2
0

´ k1

2

`

x2 ´ y2
˘

,

(2.17)

where we have defined
k1

2
“ qΨ2

P0
.
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The equations of motion for this Hamiltonian are,

dx
ds

“
BHs,quad

Bpx
“ px

ps

dpx

ds
“ ´

BHs,quad

Bx
“ ´k1x

dy
ds

“
BHs,quad

Bpy
“

py

ps

dpy

ds
“ ´

BHs,quad

By
“ k1y

dz
ds

“
BHs,quad

Bpz
“ ´1 ` pz

ps
` 1
β0

1 ` pz
b

p1 ` pzq2 ` m2c2

P2
0

dpz

ds
“ ´

BHs,quad

Bz
“ 0 (2.18)

where,

ps “
b

p1 ` pzq2 ´ p2
x ´ p2

y , (2.19)

has been defined to simplify the notation.

In the paraxial approximation, wherepx, py ăă 1, and assumingm2c2{P2
0 ăă 1,

the simplified Hamiltonian is

Hs,quad «
p2

x ` p2
y

2p1 ` pzq
` k1

2

`

x2 ´ y2
˘

(2.20)

and the equations of motion become,

dx
ds

“ px

1 ` pz

dpx

ds
“ ´k1x

dy
ds

“
py

1 ` pz

dpy

ds
“ k1y

dz
ds

“ 0
dpz

ds
“ 0

(2.21)

For the case of a quadrupole, general solutions can be found for the equations of

motion. The equation forpx, pxq can be converted into a single second order differential
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equation, and so can those forpy, pyq. Clearly,z andpz are constant. The trajectory of a

particle through a horizontally focusing (k1
1 ą 0) quadrupole is,

x psq “ x0 cos
´

b

|k1
1| s

¯

` px0
a

|k1
1|

sin
´

b

|k1
1| s

¯

y psq “ y0 cosh
´

b

|k1
1| s

¯

`
py0

a

|k1
1|

sinh
´

b

|k1
1| s

¯

. (2.22)

For a quadrupole that is vertically focusing (k1
1 ă 0),

x psq “ x0 cosh
´

b

|k1
1| s

¯

` px0
a

|k1
1|

sinh
´

b

|k1
1| s

¯

y psq “ y0 cos
´

b

|k1
1| s

¯

`
py0

a

|k1
1|

sin
´

b

|k1
1| s

¯

. (2.23)

Equations (2.22) and (2.23) are valid at any location insidea quadrupole. If a particle

with initial coordinatespx0, px0, y0, py0q is at the entrance end of a quadrupole of length

L, its coordinates at the exit end are found by evaluating Eqn.(2.22) and (2.23) ats “ L.

2.3.2 Transfer Matrix of a Quadrupole

The form of Eqs. (2.22) and (2.23) invites a transfer matrix representation. We define

the focusing parameterK of a quadrupole with strengthk1
1 and lengthL asK “

a

k1
1 L.
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The transfer matrix for a horizontally focusing (vertically defocusing) quadrupole is,

M QF “
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

cospKq 1?
|k|

sinpKq 0 0 0 0

´
a

|k| sinpKq cospKq 0 0 0 0

0 0 coshpKq 1?
|k|

sinhpKq 0 0

0 0
a

|k| sinhpKq coshpKq 0 0

0 0 0 0 1 0

0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.24)

By similar means, the transfer matrix for a horizontally defocusing (vertically focus-

ing) quadrupole is obtained,

M QD “
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

coshpKq 1?
|k|

sinhpKq 0 0 0 0

a

|k| sinhpKq coshpKq 0 0 0 0

0 0 cospKq 1?
|k|

sinpKq 0 0

0 0 ´
a

|k| sinpKq cospKq 0 0

0 0 0 0 1 0

0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.25)

At this time, it is convenient to write down the transfer matrix of a drift of lengthL.
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This can be obtained by taking the limit of Eqn. (2.24) ask Ñ 0,

M D “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 L 0 0 0 0

0 1 0 0 0 0

0 0 1 L 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.26)

2.3.3 Transfer Matrix of a Dipole

Our goal is to derive transfer matrices for the three basic types of accelerator element

necessary to make a simple storage ring. This simple storagering will be used to launch

into our discussion of eigen modes and coupling. We have the quadrupole and drift in

hand, next we derive the transfer matrix for a bend.

ρ´1 is finite in a bend and the magnetic vector potential in curvilinear coordinates is

given by [47],

As “ ´
ˆ

x ` x2

2ρ

˙

By. (2.27)

Taking the curl of Eqn. (2.27) we obtain,

~B “ ∇ˆ ~A

“ ´BAs

Bx
ŷ

“ ´Ψ1ŷ

“ Byŷ, (2.28)
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which is indeed the magnetic field inside a dipole. Clearly,´Ψ1 is By, and we have

written it as such.

The Hamiltonian for a particle propagating through a dipoleis,

Hs,dipole “ ´
ˆ

1 ` x
ρ

˙

b

p1 ` pzq2 ´ p2
x ´ p2

y

` 1
β0

d

p1 ` pzq2 ` m2c2

P2
0

`
qBy

P0

ˆ

x ` x2

2ρ

˙

. (2.29)

The bending radiusρ is for the ideal particle and can obtained from the usual expression,

ρ “ P0

eBy
, (2.30)

wheree is the electric charge. We will assume this is a sector bend and ignore edge

focusing.

Applying Hamilton’s equations to Eqn. (2.29) gives the equations of motion,

dx
ds

“
ˆ

1 ` x
ρ

˙

px

ps

dpx

ds
“ 1
ρ

ps ´ 1
ρ

ˆ

1
ρ

` x
ρ

˙

dy
ds

“
ˆ

1 ` x
ρ

˙

py

ps

dpy

ds
“ 0

dz
ds

“ ´
ˆ

1 ` x
ρ

˙

1 ` pz

ps
` 1
β0

1 ` pz
b

p1 ` pzq2 ` m2c2

P2
0

dpz

ds
“ 0. (2.31)

In the paraxial approximation wherepx, py ăă 1, and assumingm
2c2

P2
0

ăă 1, and

keeping terms up to 2nd order in coordinate and momentum,

Hs,dipole « ´ xpz

ρ
pz ` x2

2ρ2
`

p2
x ` p2

y

2p1 ` pzq
, (2.32)
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and the equations of motion become,

dx
ds

“ px

1 ` pz

dpx

ds
“ 1
ρ

pz ´ x
ρ2

dy
ds

“
py

1 ` pz

dpy

ds
“ 0

dz
ds

“ ´ x
ρ

` O2 px, x1, y, y1q

dpz

ds
“ 0. (2.33)

The general solutions of Eqs. (2.33) give us the particle trajectory through a dipole,

x psq “ x0 cospκsq ` px0

κ
sinpκsq ` ρpz0 p1 ´ cospκsqq

px psq “ ´κx0 sinpκsq ` px0 cospκsq ` pz0ρκ sinpκsq

y psq “ y0 `
py0

1 ` pz
s

py psq “ py0

z psq “ z0 ´ x0

ρκ
sinpκsq ` px0

ρκ2
pcospκsq ´ 1q ´ px0

ˆ

s ´ 1
κ

sinpκsq
˙

pz psq “ pz0, (2.34)

whereκ2 “ 1
ρ2 p1 ` pzq

.

If we assume that 1̀ pz0 « 0, we can write the transfer matrix of a dipole of length
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L,

M B “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

cos
´

L
ρ

¯

ρ sin
´

L
ρ

¯

0 0 0 ρ
´

1 ´ cos
´

L
ρ

¯¯

´1
ρ

sin
´

L
ρ

¯

cos
´

L
ρ

¯

0 0 0 sin
´

L
ρ

¯

0 0 1 L 0 0

0 0 0 1 0 0

´ sin
´

L
ρ

¯

ρ
´

cos
´

L
ρ

¯

´ 1
¯

0 0 1 ´L ` ρ sin
´

L
ρ

¯

0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.35)

Notice that the transfer matrices for the quadrupole and drift, Eqs. (2.24) and (2.26)

are block diagonal. These elements do not couple particle motion. The motion in any

one dimension is independent of the motion in the other two dimensions. For example,

the motion in the horizontal coordinates,xpx does not depend on the motion inypy

andzpz. A bend, however, introduces coupling between the horizontal and longitudinal

coordinates.

A transfer matrix can be divided into nine 2̂2 blocks,

Mgeneric“

¨

˚

˚

˚

˚

˚

˚

˝

xx xy xz

yx yy yz

zx zy zz

˛

‹

‹

‹

‹

‹

‹

‚

. (2.36)

Non-zero values in the off-diagonal blocks indicate coupling. For example, non-zero

values in thexy block indicate that motion inpx, pxq is coupled to motion inpy, pyq.

The xz andzx blocks of the transfer matrix for a bend are non-zero, indicating that

the horizontal and longitudinal motion is coupled. Thex coordinate of a particle at the

exit end of the element depends on thepz coordinate at the entrance end. This agrees
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with intuition. A particle with slightly more momentum,pz0 ą 0, will be bent slightly

less than the reference particle. This contributes a positive x displacement to the particle

coordinates at the end of the element. Similarly, a particlethat enters the dipole with a

positivex coordinate will follow a longer path and exit with a smallerz offset. Thexz

coupling introduced by a bend is commonly referred to as dispersion.

2.3.4 A Simple FODO Storage Ring

Accelerators are composed of sequences of elements. A particle at the exit end of one

element will be at the entrance end of the next. In so far as theforces are linear, the coor-

dinates of a particle at the end of a string of elements can be found by successively mul-

tiplying the transfer matrices for each element. For example, a particle with initial coor-

dinates~xi that travels through a focusing quadrupoleÑdriftÑbendÑdriftÑdefocusing

quadrupoleÑ driftÑbendÑdriftÑ focusing quadrupole sequence of elements would

exit the bend with coordinates

~x f “ M QFM DM BM DM QDM DM BM DM QF~xi

“ M FODO~xi. (2.37)

The sequence of elements just shown is called a FODO cell. Accelerators are often

constructed out of cells, which are a sequence of elements that is repeated throughout

the machine. FODO cells are typically defined to be symmetric. The first quad is half-

length, the middle quad is full-length, and the last quad is half-length.

At this point we have enough tools in hand to construct a simple storage ring out of

FODO cells. The sequence of elements defining an entire accelerator is called a lattice.

Our lattice will be 200 m in circumference and composed of 16 FODO cells. Since a

FODO cell has two bend magnets, each magnet will need to bringthe particles through
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Table 2.2: Physical parameters of demonstration FODO lattice. The dipole bending
radiusρ is 160

2π « 25.465 m.

Element Length Each (m) Quantity Total Length (m)

Bend Dipoles 5 32 160

Focusing Quadrupoles 0.5 16 8

Defocusing Quadrupoles 0.5 16 8

Drifts 0.375 64 24

Total Circumference 200

2π
32 « 0.3927 radians of arc. Each bend magnet will be 5 m long. Each quadrupole will

be 0.5 m long. The physical parameters of this demonstration lattice are summarized in

Tab. 2.2.

To introduce longitudinal focusing, we will replace two of the drifts, at opposite ends

of the lattice, with,

M f L “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 L 0 0 0 0

0 1 0 0 0 0

0 0 1 L 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 fL 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.38)

This transfer matrix is simply a drift with them65 element set tofL. This will result in

a z-dependent kick topz. Equation (2.38) resembles the transfer matrix for a simpleRF

cavity model [6].

Up to this point we have specified the sequence of elements, their lengths, and the

bending radius of the dipoles. Two additional quantities are necessary: the quadrupole

strengthk and longitudinal focusing strengthfL.
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It is a well-known result of linear dynamics that, for 1-dimensional systems,

|Tr pMq | ă 2.0, (2.39)

is necessary and sufficient condition for motion to be stable over repeated application of

the transfer matrixM .

In the case of higher-dimensional coupled systems, it is necessary to first transform

the system to an eigenbasis and then calculate the trace for each mode of oscillation.

If the transfer matrix in the eigenbasis coordinates is stable, then the diagonal blocks

will be 2 ˆ 2 rotation matrices with phase advance between 0 and 2π. If the transfer

matrix is unstable, then the diagonal blocks will have phaseadvance 0 or 2π or contain

exponentially growing terms. Exponentially growing termscorrespond to imaginary

phase advance. This topic will be continued in Sec. 2.4.

For now, we note that the motion in our storage ring is only weakly coupled. As is

often the case in accelerator physics, assuming that the machine is uncoupled and linear

is a good place to start. In the presence of mode coupling, Eqn. (2.39) is a valuable,

though inexact, guide for finding magnet strengths that yield stable motion.

The vertical motion in our model storage ring is completely independent of the hor-

izontal and longitudinal, and the horizontal and longitudinal are coupled by the non-

zero off-diagonal blocks in Eqn. (2.35). The coupling is weak because the off-diagonal

blocks contain terms proportional to sin
´

L
ρ

¯

and 1´ cos
´

L
ρ

¯

, whereas the diagonal

blocks contain terms proportional to cos
´

L
ρ

¯

and unity. L
ρ

is typically „ 0.05.

Transfer matrices Eqn. (2.24), (2.25), (2.26), (2.35), and(2.38) have been coded into

a Mathematica notebook along with the demonstration lattice described inTab. 2.2.

This notebook computes the 1-turn transfer matrix for the lattice, from which we can

calculate the traces of the diagonal blocks and observe how the phase space coordinates
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evolve turn-by-turn.

We find that a quadrupole strength ofk “ 0.1 and longitudinal focusing offL “

´0.0005 yields a stable lattice. The numerical expression of the transfer matrices for

each element are located in Appendix A. The 1-turn transfer matrix is,

M1-turn “
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´0.653306 20.1491 0. 0. 0.027270 29.5258

´0.027775 ´0.658743 0. 0. 0.000145 0.523929

0. 0. 0.170534 ´34.825 0. 0.

0. 0. 0.027880 0.170534 0. 0.

´0.513052 ´30.2019 0. 0. 0.929245 ´96.51

0.000170 ´0.009484 0. 0. 0.000984 0.963229

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.40)

The traces are,

Tr

¨

˚

˚

˝

´0.825785 16.8939

´0.021221 ´0.825115

˛

‹

‹

‚

“ ´1.6509

Tr

¨

˚

˚

˝

´0.47686 175.338

´0.004406 ´0.47686

˛

‹

‹

‚

“ ´0.95372

Tr

¨

˚

˚

˝

0.575359 ´298.571

0.001854 0.845118

˛

‹

‹

‚

“ 1.42048. (2.41)

Each of these traces has magnitude less than 2, and we find thatparticle motion in this

lattice is stable.

Inspecting the 1-turn transfer matrix, we notice that thexz andzx blocks are non-

zero, while thexy, yx, yz, andzy blocks are zero. This same pattern would be followed
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by the 1-turn map were it computed at any location in ring. This pattern reflects the

horizontal-longitudinal coupling introduced by the bend magnets, and the fact that there

is no source of transverse coupling in the ring.

Shown in Figs. 2.1(a), 2.1(c), and 2.1(e) are phase space plots for the three lab-frame

coordinates for a particle tracked repeatedly through one FODO cell for 500 iterations.

No longitudinal focusing is included. From these plots we confirm that the motion is in-

deed stable. Shown in Figs. 2.1(b), 2.1(d), and 2.1(f) are the x, y, andz coordinates of the

particle tracked repeatedly through a FODO cell. For thex andy plots, the FODO cell

without longitudinal focusing was used. For thez plot, the FODO cell with longitudinal

focusing was used.

From these plots we see that thex coordinate makes one complete oscillation ap-

proximately every 11.71 cells. This tells us that the phase advance is approximately

0.5366 radians/cell. They coordinate completes an oscillation after approximately 20.6

cells, for a phase advance of 0.3050 radians/cell. In thez coordinate there is evident

coupling. z versus turn appears to be a fast signal superimposed on a slowsignal. The

frequency of the fast signal is 0.5366 radians/cell, which matches the frequency of the

horizontal oscillations. The frequency of the slow signal is 0.0582 radians/cell and is

due to the longitudinal focusing elementM f L.

There are 16 FODO cells in the demonstration lattice, 2 of which contain the longi-

tudinal focusing element. The expected phase advances per turn are

Qx “ 1.3664 (2.42)

Qy “ 0.7767 (2.43)

Qz “ 0.1482. (2.44)

The phase advance per cell in thex coordinate is about twice the phase advance per
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Figure 2.1: Trajectory of particle with initial coordinates p0.01,0,0.01,0,0.01,0q
tracked repeatedly through a single FODO cell.

cell in they coordinate, even though the quadrupole focusing is the samefor both di-

mensions. The extra focusing inx comes from the dipoles and is called weak focusing.

Particles which enter a sector bend with a positivex offset will follow a longer path and

be subject to more bending. The upper right 2ˆ 2 block of the transfer matrix for a

focusing quadrupole, Eqn. (2.24), looks similar to the upper right 2 ˆ 2 block of the

transfer matrix for a bend, Eqn. (2.35), with1
ρ2 „ k. For our cell, 1

ρ2 « 0.0015 and
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k “ 0.01. The quadrupole focusing is much stronger than the dipolefocusing, but there

are 10 m of dipole per cell and only 0.5 meters of focusing quadrupole. For our sim-

ple FODO ring, weak focusing makes a significant contribution to the total horizontal

focusing.

Shown in Figs. 2.2(a), 2.2(c), and 2.2(e) are the phase spacediagrams of a particle

tracked repeatedly through the entire demonstration lattice. The initial coordinates are

x0 “ 0.01 m,y0 “ 0.01 m, andz0 “ 0.01 m with px “ py “ pz “ 0.

Shown in Figs. 2.3(a), 2.3(b), and 2.3(c) are the absolute values of the Fourier trans-

forms of thex, y, andz particle motion over 300 turns. The tune of an accelerator isthe

number of orbits in phase space that a particle makes during one turn around the ma-

chine. This is typically a whole number plus a fractional part. There are three tunes to a

machine representing horizontal, vertical, and longitudinal motion. A Fourier transform

of turn-by-turn data is only sensitive to the fractional part of the tune.

The Fourier transform data is mirrored about the abscissa midpoint. This is we

measure only the position, rather than the position and angle. We know what the tunes

are because we calculated them earlier from the phase advance per cell. This knowledge

of the actual machine allows us to pick the correct peak out ofthe Fourier spectrum

calculated from position measurements at one point in the machine.

We see that the horizontal motion has components at 0.3617 and 0.0519 oscillations

per revolution. These are the horizontal and longitudinal tunes. The longitudinal motion

has components at the same frequencies, but the signal at 0.0519 is stronger than the

signal at 0.3617. The vertical motion is uncoupled and has one peak at 0.7767.

In Sec. 2.4.1 we will see how the 1-turn transfer matrix can beused to decompose the

particle motion into eigen modes. Particle motion is uncoupled in the eigenbasis, and
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Figure 2.2: Trajectories in phase space of particle with initial coordinates
p0.01 m,0,0.01 m,0,0.01 m,0q tracked 500 turns through the demonstration lattice.

can be described using action-angle variables. We will see that the action of a particle is

an invariant.
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Figure 2.3: Fourier transform of particle motion inx, y, andz over 300 turns. Coupling
is evident between the horizontal (a) and longitudinal (c) motion, while the vertical (b)
motion is uncoupled.

2.3.4.1 Horizontal-Vertical Coupling: Tilted Quadrupole

Before moving on to eigen mode decompositions, we will first make the particle motion

more interesting by introducing horizontal-vertical coupling using a tilted quadrupole.

A tilted quadrupole is an ordinary quadrupole that has been tilted by some angleφ about

the s-axis. Tilted quadrupoles can result from magnet misalignments, or they can be

deliberate. For example, a skew quadrupole is a quadrupole that has been tilted by 45˝

and is used to manipulate transverse coupling.

A transfer matrixM ideal for some un-tilted element can be transformed into the trans-

fer matrixM tilted of an element tilted by an angleφ using [36]

M tilted “ R p´φq M idealR pφq , (2.45)
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where

R pφq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

cosφ 0 sinφ 0 0 0

0 cosφ 0 sinφ 0 0

´ sinφ 0 cosφ 0 0 0

0 ´ sinφ 0 cosφ 0 0

0 0 0 0 1 0

0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.46)

This transformation works because transporting a coordinate vector through a tilted

quadrupole is the same as transporting a tilted coordinate vector through a non-tilted

quadrupole.

The transfer matrix for a 0.5 m long defocusing quadrupole withk “ ´0.1 that has

been rotated 10̋is

Mqf,tilted “
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1.01177 0.50196 0.004275 0.000713 0. 0.

0.047193 1.01177 0.017101 0.004275 0. 0.

0.004275 0.000713 0.98828 0.498045 0. 0.

0.017101 0.004275 ´0.046777 0.98828 0. 0.

0. 0. 0. 0. 1. 0.

0. 0. 0. 0. 0. 1.

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (2.47)
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and the 1-turn transfer matrix becomes,

M1-turn,tilted “
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´0.65956 20.300 ´0.012636 ´2.2365 0.02737 29.796

´0.02612 ´0.69869 0.00334 0.59081 0.00012 0.45262

0.16286 ´3.9408 0.16029 ´36.637 ´0.00262 ´7.0338

0.01193 ´0.28864 0.02713 0.03781 ´0.00019 ´0.51525

´0.51190 ´30.230 0.00233 0.4120 0.92923 ´96.560

0.00014 ´0.00884 ´0.00005 ´0.00957 0.00098 0.96439

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

(2.48)

Notice in Eqn. (2.48) that they coordinates are now coupled to thez coordinates.

This is indirect coupling. By design, there are no elements inthe ring which couple

longitudinal motion into vertical motion, but there are elements which couple longitudi-

nal motion into horizontal and also elements which couple horizontal into vertical. This

results in a 1-turn map with longitudinal-vertical coupling.

Shown in Fig. 2.4 are the phase space and turn-by-turn trajectories of a particle

tracked through the FODO ring with the tilted quadrupole. The addition of horizontal-

vertical coupling makes motion more complicated than in 2.2.

Shown in Fig. 2.5 are the Fourier spectra of a particle tracked for 500 turns in the

demonstration lattice with one tilted quadrupole.
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Figure 2.4: Phase space and trajectory of particle tracked through lattice withxy cou-
pling.

2.4 Invariants of Particle Motion

In a machine without mode coupling, particle motion can be described as independent

modes in the horizontal, vertical and longitudinal dimensions. Viewed from a fixed

location in the ring, particles trace out perfect ellipses in px, pxq, py, pyq, and pz, pzq

36



F
F

T
A

m
pl

itu
de

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

Horizontal Fractional Tune

(a) horizontal

F
F

T
A

m
pl

itu
de

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

Vertical Fractional Tune

(b) vertical

F
F

T
A

m
pl

itu
de

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

Longitudinal Fractional Tune

(c) longitudinal

Figure 2.5: Fourier transform ofx, y, andz particle motion over 500 turns in demonstra-
tion lattice with horizontal-vertical coupling.

phase space as they make successive revolutions in the accelerator.

The area of the phase space ellipse traced out by a particle over many turns is related

to an invariant of particle’s motion called the actionJ. Calling the area of the ellipse

traced out inpx, pxq spaceAxpx, the action is defined as,

Jx “
Axpx

2π

Jy “
Aypy

2π

Jz “
Azpz

2π
, (2.49)

where we have made corresponding definitions forAypy andAzpz. The area of an ellipse

is given byA “ π ˆ a ˆ b, wherea andb are the major and minor axes of the ellipse.

In the convenient case where the phase space ellipse is not tilted, we can calculate the
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action of the particle as,

Jx,y,z “
ax,y,zbx,y,z

2
, (2.50)

whereax,y,z andbx,y,z are the axes of the ellipse traced out in horizontal, vertical, and

longitudinal phase space. The units of action are meters¨radians or m̈rad.

Inspecting Fig. 2.2(c), we find the axes of the ellipse tracedout in vertical phase

space are 0.010 and 0.000283. The action of the particle is,

Jy “ 1.42µm ¨ rad. (2.51)

Louiville’s theorem states that the volume of an element of phase space remains

constant if the motion of the particle is Hamiltonian. As a consequence, the shape of the

ellipse may change depending on where in the ring it is evaluated, but the area of the

ellipse, and hence the action, will remain the same.

An uncoupled machine is unrealistic. Bend magnets couples horizontal and longi-

tudinal motion. Magnets cannot be perfectly aligned and have some finite alignment

precision. Quadrupoles with a vertical misalignment offset create a vertical bend which

couples vertical and longitudinal motion. Tilted (skewed)quadrupoles introduce trans-

verse coupling.

The vertical action is well-defined if the motion is uncoupled and the trajectory in

phase space traces out a neat ellipse. However, if coupling is present, then particle action

in lab-frame coordinates (Jx, Jy, andJz) is not a well-defined concept. This is because

the phase space coordinate in one dimension on any particular turn will depend on the

coordinates in the other two dimensions. The phase space trajectory will not form a

closed ellipse. For the fully coupled demonstration lattice, depicted in Fig. 2.4, particle

action is not well-defined in any of the lab frame coordinates. The quantities horizontal,

vertical, and longitudinal action lose their meaning in a coupled machine.
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In an uncoupled machine with a stable orbit, particle motioncan be described in

action-angle coordinates that correspond to the horizontal, vertical, and longitudinal di-

mensions. The three invariant actions we callJx, Jy, and Jz. The angle variables are

φx, φy, andφz. For example, the horizontal coordinate at any location canbe described

entirely byJx andφx. Similarly for motion in the vertical and longitudinal. Thecoordi-

nates of a particle at any location in the ring can be found simply by knowing its action

and angle at that location of the ring.

In a coupled machine, particle motion can still be describedby three invariant actions

and three angles. However, the actions and angles need to be defined in the eigenbasis

of the machine, typically calleda, b, andc (as opposed tox, y, andz). The actions and

angles are referred to asJa, Jb, Jc andφa, φb, φc. These quantities correspond to the

three eigen modes of the accelerator.

The orientation of the eigenbasis coordinates relative to the lab frame coordinates

change with location in the accelerator. Motion in thea-mode can be described entirely

by Ja andφa, but the orientation ofa andpa relative tox̂, p̂x, ŷ, p̂y, ẑ, p̂y, changes from

one location to the next.

The eigenbasis is related to the eigenvectors of the 1-turn transfer matrix. In the

Sec. 2.4.1, we will decompose the 1-turn map of our fully-coupled demonstration lattice

and obtain, among other interesting properties, the invariants of the particle motion. In

Sec. 2.4.3.1, the tunes of the machines are obtained from theeigenvalues of the 1-turn

matrix. In Sec. 2.6, these single-particle ideas will be extended to describe distributions

of particles.
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2.4.1 Eigen Mode Decomposition of the 6x6 Transfer Matrix

The derivation shown here follows the eigen mode analysis introduced in [58] and

bridges that derivation to the normal mode analysis introduced in [41]. The ultimate

result, presented in Sec. 2.7, will be a 6-dimensional normal mode decomposition.

In what follows, the eigenvectors of the 1-turn matrix are arranged into a matrixE

and normalized to yield a unique symplectic transformationbetween lab-frame coordi-

nates and eigen mode coordinates.

2.4.1.1 Eigenvectors and eigenvalues of the a transfer matrix

In linear beam optics, a particle with coordinate~x can be propagated once around the

storage ring fromi to turni ` 1 using,

~xi`1 “ M1turn~xi, (2.52)

whereM1turn is the 1-turn transfer matrix.

As described in Sec. 2.3.4,M1turn is the product of the transfer matrices for the

individual elements that make up the accelerator. These element-by-element transfer

matrices are derived from a Hamiltonian and are therefore symplectic. The product of

two symplectic matrices is itself symplectic, and soM1turn is symplectic. Note that we

are ignoring non-symplectic processes such as radiation damping and excitation and

intrabeam scattering. Those processes transfer energy between particles and are not

symplectic.

It is a necessary and sufficient condition for the symplecticity of the transformation
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M1turn that it satisfy the symplectic condition [15],

MT SM “ S, (2.53)

whereS is defined in Eqn. (2.12). Note that the symplectic conditionis met for each of

the transfer matrices derived in Sec. 2.2.

A vector~ei is an eigenvector of the square matrixM with corresponding eigenvalue

λi if it satisfies,

M~ei “ λi~ei. (2.54)

If M is stable, then theλi will lie on the unit circle in the complex plane. A symplectic

matrix of dimension 2n will have 2n eigenvectors and eigenvalues. The eigenvectors

and eigenvalues are in general complex. If|Tr M | ă 2, then they occur in reciprocal

pairs such that the full set of eigenvalues is,

tλ1, λ
˚
1, λ2, λ

˚
2, λ3, λ

˚
3u (2.55)

and the full set of eigenvectors is,

t~e1, ~e
˚
1, ~e2, ~e

˚
2, ~e3, ~e

˚
3u . (2.56)

where˚ indicates the complex conjugate.

2.4.1.2 Sorting the eigenvectors and forming E

Provided the beam is not strongly coupled, the eigenvectorscan be sorted according to

the magnitude of their elements. The assumption is that the horizontal, vertical, and

longitudinal modes can each be clearly associated with one of the three eigen modes.

This is true for our demonstration lattice and for nominal conditions in CesrTA. In the

case of a strongly coupled lattice, more detailed bookkeeping is necessary [41]. That

can happen if the tunes are near a coupling resonance or a stopband resonance.
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This sorting puts the matrix of eigenvectors into a convenient form. It results in the

normal mode Twiss information laying along the 2ˆ 2 diagonal blocks of the matrix of

eigenvectors, see Eqn. 2.67.

Among the 3 complex-conjugate pairs of eigenvectors, for one pair the magnitude

of the first element will be clearly larger than the magnitudeof the other elements. This

pair should be placed in the first two columns ofE. Similarly, there will be a pair whose

third element is clearly dominant and should be placed into the third and forth columns

of E. The fifth element of the remaining pair of eigenvectors willbe clearly dominant

and should be placed into the last two columns ofE.

Thus sorted, the eigenvectors are arranged in columns to form the complex matrix

of eigenvectors,

E “ p~e1 ~e
˚
1 ~e2 ~e

˚
2 ~e3 ~e

˚
3q . (2.57)

Next, it may be necessary to swap~e1 with ~e˚
1, ~e2 with ~e˚

2, or~e3 with ~e˚
3. This is done

to remove ambiguity when calculating the phase advance per turn from the eigenvalues.

Compute the determinant of
`

E11 E12
E21 E22

˘

. Because~e1 and~e˚
1 are complex conjugates, the

determinant will be purely imaginary,
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 ` ıy1 x1 ´ ıy1

x2 ` ıy2 x2 ´ ıy2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

“ 2ı py1x2 ´ x2y1q . (2.58)

If the imaginary part of the determinant is negative, swap the first and second columns.

Then, compute the determinant of
`

E33 E34
E43 E44

˘

. If the imaginary part is negative, swap the

third and fourth columns. Lastly, compute the determinant of
`

E55 E56
E65 E66

˘

. If the imaginary

part is negative, swap the fifth and sixth columns. Swapping columns in this manner

removes ambiguity in the tunes and ensures that the Twiss functions we calculate later

on will have the correct sign. Without this step, the fractional tunes calculated from the

eigenvalues might be reflected about the half-integer.
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Arranging the eigenvalues along a diagonal matrixD in the same ordering asE

allows us to write the eigendecomposition as,

M “ EΛE´1. (2.59)

2.4.1.3 Make E symplectic and adjust complex phase

The columns ofE (eigenvectors ofM ) are unique only up to a non-zero complex mul-

tiplier. Here we compute a column-by-column complex normalization that rendersE

symplectic and unique.

First, the columns ofE are scaled by a real multiplier such that [58],

ET SE “ ıS. (2.60)

This is done by computing three normalization factors,

n1 “
c

Im
´

~ET
¨1S ~E¨2

¯

n2 “
c

Im
´

~ET
¨3S ~E¨4

¯

n3 “
c

Im
´

~ET
¨5S ~E¨6

¯

, (2.61)

where~E¨i refers to theith column ofE.

Second, we multiply each column ofE by eıθi, whereθi is chosen to makeE11e´iıθ1,

E33e´ıθ2, andE55e´ıθ3 real valued.θ1, θ2, andθ3 are the principal values of the arguments

of E11, E33, andE55,

θ1 “ Arg pE11q

θ2 “ Arg pE33q

θ3 “ Arg pE55q (2.62)
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where,

Arg px ` ıyq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

2 arctan

˜

y
a

x2 ` y2 ` x

¸

x ą 0 or y , 0

π x ă 0 andy “ 0

undefined x “ 0 andy “ 0

(2.63)

Finally, define

R̃ “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

e´ıθ1

n1
0 0 0 0 0

0 eıθ1
n1

0 0 0 0

0 0 e´ıθ2

n2
0 0 0

0 0 0 eıθ2
n2

0 0

0 0 0 0 e´ıθ3

n3
0

0 0 0 0 0 eıθ3
n3

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (2.64)

and apply the normalization,

E Ð ´ER̃. (2.65)

The matrix of eigenvectorsE is now unique and symplectic up to a factor ofı. It also

still satisfies Eqn. (2.59). This form forE is the same as that in Eqn. (18) of Wolski’s

paper [58], except that here we have specified the complex phase of each eigenvector.

The reason for doing this will become apparent when we introduce normal mode Twiss

parameters and the coupling matrix in Sec. 2.7.
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2.4.2 Transformation to a real basis

The eigendecomposition Eqn. (2.59) can be transformed intoa real basis,

M “ EΛE´1

“ pEQq
`

Q´1
ΛQ

˘ `

Q´1E´1
˘

“ NDN´1, (2.66)

where we have introduced the real matrices

N “ EQ (2.67)

D “ Q´1
ΛQ, (2.68)

and,

Q “ 1?
2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 ı 0 0 0 0

1 ´ı 0 0 0 0

0 0 1 ı 0 0

0 0 1 ´ı 0 0

0 0 0 0 1 ı

0 0 0 0 1 ´ı

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.69)

Note thatQ is symplectic, and because the product of symplectic matrices is also sym-

plectic,N andD are symplectic.

2.4.3 Invariants of Motion

By rearranging Eqn. (2.66), we can transformM into a block diagonal matrix,

D “ N´1MN , (2.70)
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The definition ofD in Eqn. (2.68) can be written as

D “

¨

˚

˚

˚

˚

˚

˝

Q´1
2

Q´1
2

Q´1
2

˛

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˝

Λa

Λb

Λc

˛

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˝

Q2

Q2

Q2

˛

‹

‹

‹

‹

‹

‚

(2.71)

where,

Λi “

¨

˚

˚

˝

λi 0

0 λ˚
i

˛

‹

‹

‚

(2.72)

and,

Q2 “ 1?
2

¨

˚

˚

˝

1 ı

1 ´ı

˛

‹

‹

‚

. (2.73)

If we putλi in modulus-argument notation,

λi “ rie
ıθi , (2.74)

whereri “ ‖λi‖ “ 1 (we noted earlier the eigenvalues of a stable 1-turn matrixlie on

the unit circle) andθi “ Arg pλiq, we can write,

Q´1
2 ΛiQ2 “ 1

2

¨

˚

˚

˝

1 1

´ı ı

˛

‹

‹

‚

¨

˚

˚

˝

eıθi 0

0 e´ıθi

˛

‹

‹

‚

¨

˚

˚

˝

1 ı

1 ´ı

˛

‹

‹

‚

(2.75)

“ 1
2

¨

˚

˚

˝

eıθi ` e´ıθi ı peıθi ´ e´ıθiq

´eıθi ` e´ıθi eıθi ` e´ıθi

˛

‹

‹

‚

(2.76)

“

¨

˚

˚

˝

cosθi sinθi

´ sinθi cosθi

˛

‹

‹

‚

, (2.77)

where we made use of Euler’s Formula in the last step. We see thatD is a block-diagonal
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matrix of the form,

D “

¨

˚

˚

˚

˚

˚

˝

R pθaq

R pθbq

R pθcq

˛

‹

‹

‹

‹

‹

‚

, (2.78)

where

R pθiq “

¨

˚

˚

˝

cosθi sinθi

´ sinθi cosθi

˛

‹

‹

‚

. (2.79)

Let ~x1 be the canonical coordinates of a particle at some location.Let M1Ñ2 be a

transfer matrix that takes~x1 to ~x2, ~x2 “ M1Ñ2~x1. Define a new vector~ai “ N´1~xi, where

N is from the eigen mode decomposition ofM1Ñ2, so that,

~a1 “ N´1~x1. (2.80)

Then for~a2 we have,

~a2 “ N´1~x2

“ N´1M~x1

“ N´1NDN´1~x1

“ DN´1~x1

“ D~a1, (2.81)
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and we see that~a2 is a rotation of~a1. If ~a is written in the following form [58],

~a “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

?
2Ja cosφa

´
?

2Ja sinφa

?
2Jb cosφb

´
?

2Jb sinφb

?
2Jc cosφc

´
?

2Jc sinφc

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (2.82)

then the quantitiesJa, Jb, Jc are invariant underD,

D~a “

¨

˚

˝

cosθa sinθa 0 0 0 0
´ sinθa cosθa 0 0 0 0

0 0 cosθb sinθb 0 0
0 0 ´ sinθb cosθb 0 0
0 0 0 0 cosθc sinθc
0 0 0 0 ´ sinθc cosθc

˛

‹

‚

¨

˚

˚

˝

?
2Ja cosφa

´
?

2Ja sinφa?
2Jb cosφb

´
?

2Jb sinφb?
2Jc cosφc

´
?

2Jc sinφc

˛

‹

‹

‚

“

¨

˚

˚

˝

?
2Ja pcosθa cosφa´sinθa sinφaq

´
?

2Ja psinθa cosφa`cosθa sinφaq?
2Jb pcosθb cosφb´sinθb sinφbq

´
?

2Jb psinθb cosφb`cosθb sinφbq?
2Jc pcosθc cosφc´sinθc sinφcq

´
?

2Jc psinθc cosφc`cosθc sinφcq

˛

‹

‹

‚

“

¨

˚

˚

˝

?
2Ja cospθa`φaq

´
?

2Ja sinpθa`φaq?
2Jb cospθb`φbq

´
?

2Jb sinpθb`φbq?
2Jc cospθc`φcq

´
?

2Jc sinpθc`φcq

˛

‹

‹

‚

(2.83)

and we see thatR pθiq φi Ñ φi ` θi.

For a particle with coordinates~x, ~a is obtained as,

~a “ N´1~x. (2.84)

Call the components of the vector~a “ pa, pa, b, pb, c, pcq, then the invariants can be

obtained as,

Ja “ 1
2

`

a2 ` p2
a

˘

Jb “ 1
2

`

b2 ` p2
b

˘

Jc “ 1
2

`

c2 ` p2
c

˘

. (2.85)
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These invariants will become useful in later sections when we examine processes,

such as photon emission and scattering, that can change the total momentum of the

particle.

2.4.3.1 Calculating Phase Advance from Transfer Matrices

The three phase advances of the 6ˆ 6 transfer matrixM are simply the arguments

of its eigenvalues. This appears to be a simple concept, but there is ambiguity over

which complex conjugate to use and whether to calculate the angle clockwise or counter-

clockwise. In this section, these ambiguities are resolvedby specifying exactly how to

perform the calculation.

The eigenvalues of a stable transfer matrix have unit lengthand are written as,

tλa, λ
˚
a , λb, λ

˚
b , λc, λ

˚
c u . (2.86)

If the ordering of the eigenvalues is consistent with the ordering that has been applied

to the matrix of eigenvectors, then the horizontal, vertical, and longitudinal tunes of the

machine can each be obtained from the second, fourth, and sixth eigenvalues by the

following algorithm. Note that the first, third, and fifth eigenvalues could also be used,

but the calculation would be somewhat different.

The eigenvalues are in general complex and their argument isthe one turn phase

advance∆φk,

λ˚
k “ eı∆φk . (2.87)

Plotted in Fig. 2.6 is an eigenvectorλ plotted inx ` ıy format.

Functions which return the argument of a complex number often have a branch cut

in the complex plane from 0 tó 8. Examples of such functions are “atan2”,Arg in
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Figure 2.6: Eigenvectorλ “ x ` ıy plotted on complex plane. The phase advance of the
transfer matrix is∆φ.

Mathematica, or the Arg function defined in Eqn. (2.63) of this thesis.

pa, paq andpb, pbq advance clockwise in thea-mode andb-mode phase planes. For

thea andb mode phase advance, if the eigenvector has positive imaginary part, then the

phase advance is given by,

∆φk “ Arg pλkq . (2.88)

If the eigenvector has negative imaginary part, then the result given by Argpλkq will be

negative. In that case the phase advance is given by,

∆φk “ 2π ` Arg pλkq . (2.89)

At highly relativistic energies, the velocity of a particledoes not change significantly

with momentum, but its mass does. A particle with more momentum, a positivepc, will

be bent less by the dipoles and follow a longer path and fall behind the other particles in

the bunch. Similarly, a particle with a negativepc will follow a shorter path and move

ahead of the other particles in the bunch. This is called the “negative mass” effect and
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it causes the particle to advance counter-clockwise in the phase space. Hence,∆φc is

expected to be negative.

If λc has negative real part, then the phase advance is given by,

∆φc “ Arg pλcq . (2.90)

If λc has positive real part, then the phase advance is given by,

∆φc “ ´2π ` Arg pλcq . (2.91)

If the transfer matrix in question happens to be the 1-turn transfer matrix, then∆φa,

∆φb, and∆φc are the tunes of the machine.

2.4.3.2 Summary

We have shown that a symplectic transformationM1Ñ2 that takes the lab frame coordi-

natesx1 at one location in the accelerator to another can be decomposed as,

~x2 “ M1Ñ2~x1

“ NDN´1~x1, (2.92)

whereD is a pure rotation. We have also shown that lab frame coordinates can be

transformed into eigen mode coordinates,

~a “ N´1~x, (2.93)

and shown that~a reduces to three invariants and three angles.

The relationship between lab coordinates~x and eigen mode coordinates of the ac-

celerator~a are depicted in Fig. 2.7.N´1 can be viewed as a transformation that takes
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Figure 2.7: Relationship between lab coordinates~x and the eigen mode coordinates of
the accelerator~a.

canonical lab-frame coordinates into an uncoupled eigen space. In the eigen space, mov-

ing from one location in the accelerator to another is a simple rotation inpa, paq, pb, pbq,

pc, pcq phase space. The matrixN takes eigen mode coordinates and transforms them

back to canonical lab-frame coordinates.

In the next section, we apply these ideas to the coupled demonstration storage ring

that was developed in 2.3.4.

2.5 Eigen Mode Analysis of a Simple FODO Storage Ring

When we left off in Sec. 2.3.4 we had introduced transverse coupling to our FODO stor-

age ring by tilting one of the quadrupoles. Combined with the horizontal-longitudinal

coupling from the bend magnets, this resulted in a machine with the motion coupled in

all three dimensions. We had pointed out how an invariant of the particle motion, called

action J, could be calculated from the area of the phase space ellipsethat the particle

traces out over successive turns, and that this quantity wasnot well defined in the pres-

ence of coupling. We also had questions about how the stability of a coupled machine
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could be determined from its 1-turn matrix.

In Sec. 2.4.1 we developed an eigendecomposition of symplectic transfer matrices

and used it to develop a transformationN between lab frame coordinates and eigen mode

coordinates. We also defined three invariants of the particle motion,Ja, Jb, andJc.

In this section we apply the eigendecomposition of the 1-turn transfer matrix to the

fully-coupled demonstration FODO lattice and calculate the invariants of the particle

motion and the phase advance per turn.

The 1-turn transfer matrix of the fully coupled lattice, reproduced here for conve-

nience, is

M1-turn,tilted “
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´0.65956 20.300 ´0.012636 ´2.2365 0.02737 29.796

´0.02612 ´0.69869 0.00334 0.59081 0.00012 0.45262

0.16286 ´3.9408 0.16029 ´36.637 ´0.00262 ´7.0338

0.01193 ´0.28864 0.02713 0.03781 ´0.00019 ´0.51525

´0.51190 ´30.2300 0.00233 0.4120 0.92923 ´96.560

0.00014 ´0.00884 ´0.00005 ´0.00957 0.00098 0.96439

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

(2.94)

The sorted and normalized matrix of eigenvectors, Eqn. (2.65), for this transfer ma-
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trix is,

E “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

3.76319 3.76319 ´0.971744́ 0.173611i

0.006819́ 0.148647i 0.006819̀ 0.148647i ´0.020251́ 0.064565i

´2.009010́ 0.200563i ´2.009010̀ 0.200563i 4.64371

´0.021551́ 0.031833i ´0.021551̀ 0.031833i 0.015199́ 0.120399i

´0.076588́ 2.832979i ´0.076588̀ 2.832979i 0.538940́ 1.618365i

´0.000065̀ 0.000772i ´0.000065́ 0.000772i ´0.000031́ 0.000145i

ê

´0.971744̀ 0.173611i 0.029919̀ 0.705920i 0.029919́ 0.705920i

´0.020251̀ 0.064565i 0.000106́ 0.002893i 0.000106̀ 0.002893i

4.64371 ´0.066759̀ 0.144334i ´0.066759́ 0.144334i

0.015199̀ 0.120399i ´0.000104́ 0.007762i ´0.000104̀ 0.007762i

0.538940̀ 1.618365i 12.74198 12.74198

´0.000031̀ 0.000145i ´0.002645̀ 0.039211i ´0.002645́ 0.039211i

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.95)

Which when converted to a real basis, Eqn. (2.67), yields,

N “
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

5.32195 0 ´1.37425 0.24552 0.04231 0.99832

0.00964 0.21022 ´0.02864 0.09131 0.00015 ´0.00409

´2.84117 0.28364 6.56720 0 ´0.09441 0.20412

´0.03048 0.04502 0.02149 0.17027 ´0.00015 ´0.01098

´0.10831 4.00644 0.76218 2.28871 18.01989 0

´0.00009 ´0.00109 ´0.00004 0.00020 ´0.00374 0.05545

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.96)

Recall that the initial coordinate of the particle is
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~x “ p0.01 m,0,0.01 m,0,0.01 m,0q. Calculating~a “ N´1~x gives,

~a “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0.00254

0.00021

0.00262

0.00007

´0.00040

´0.00004

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.97)

Applying Eqs. (2.85) yields the three invariant actions of the particle in the fully-coupled

FODO lattice,

Ja “ 3.25µm¨rad

Jb “ 3.44µm¨rad

Jc “ 0.08µm¨rad.

Comparing these numbers to the phase space ellipses in Fig.2.4 these numbers seem

reasonable, but the ellipses in the phase space portraits are not well defined, so it is

difficult to judge.

Repeating the same calculation for the lattice without a tilted quadrupole, depicted

in Fig. 2.2, yields,

Ja “ 1.82ˆ 10́ 6

Jb “ 1.41ˆ 10́ 6

Jc “ 0.15ˆ 10́ 6.

This value forJb compares favorably with the value of 1.41 for Jy that was calculated in

Eqn. (2.51).
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Figure 2.8: Comparing horizontal Fourier transform of particle motion in fully coupled
machine to the eigen mode tunes calculated from eigenvaluesof the 1-turn map.

The tunes of the fully coupled lattice are obtained by following the instructions in

Sec 2.4.3.1,

Qa “ ∆φa

2π
“ 0.353272

Qb “ ∆φb

2π
“ 0.753696

Qc “ ∆φc

2π
“ ´0.051651. (2.98)

In Fig. 2.8 these calculated tunes are superimposed on the horizontal Fourier trans-

form from the fully coupled demonstration lattice. The red lines indicate the calculated

tunes. Qa and Qb compare favorably with the expected phase advances calculated in

Eqn. (2.44).Qc does not agree with the calculatedQz because the full lattice includes

two focusing elements, while the expected phase advance wascalculated assuming re-

peated FODO cells.

Shown in Fig. 2.9 is the phase space and trajectory in eigen mode coordinates of a

particle tracked through the fully coupled FODO lattice. The trajectories here represent
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the same particle motion as plotted in Fig. 2.4, the difference is that here the coordinates

are represented in the eigenbasis of the machine. As expected, the trajectories trace

out circles in phase space (note that the axes of the plot are not square). The apparent

amplitude modulation in thea andb turn-by-turn data is due to aliasing. Thec turn-by-

turn plot does not show this modulation becauseQc is a small fraction of 2π.
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Figure 2.9: Phase space and trajectory in the eigenbasis of the machine.

Shown in Fig. 2.10 are Fourier transform of thea, b, andc coordinates of the particle
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over 3000 turns. Each spectrum contains only one signal.
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Figure 2.10: Fourier transform of particle motion ina, b, andc over 300 turns.

The stability of the lattice is determined by taking the traces of the 2̂ 2 diagonal

blocks ofD, as defined in Eqn. (2.68),

Tr pDaq “ ´1.208 (2.99)

Tr pDbq “ 0.0464 (2.100)

Tr pDcq “ 1.896, (2.101)

whereDa, Db, andDc are the 2̂ 2 blocks down the diagonal ofD. For a stable machine,

Tr pDa,b,cq “ 2 cos∆φa, b, c.
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2.5.0.3 Summary

Without eigen mode decomposition, the invariants of the particle motion in the fully

coupled demonstration lattice are not well defined. Using eigen mode analysis we have

obtained those invariants. We have also demonstrated how anexact tune calculation can

be done using the eigenvalues of the 1-turn transfer matrix.

Using a transformationN´1 that takes lab frame coordinates~x to eigen mode coor-

dinates~a we showed that over successive turns on the machine the particle traces out

perfect ellipses in phase space. Additionally, a Fourier transform of the eigen mode

particle motion shows one distinct signal in each of the three dimensions.

2.6 Gaussian Distributions of Particles

Thus far we have limited our discussion to a single particle.Beginning with the Hamilto-

nian for a particle traveling through an electromagnetic potential we developed a simple

FODO storage ring. We explored the horizontal-longitudinal coupling due to bend mag-

nets and introduced transverse coupling by tilting a quadrupole 10̋ . We then developed

a formalism for transporting particle coordinates into theeigenbasis of the accelerator.

This allowed us to identify 3 invariants of the particle motion.

In this section we will extend these concepts to a Gaussian distribution of particles.

In storage rings with significant radiation loss in bend magnets, RF cavities are used

to restore the energy that is lost as synchrotron radiation.RF cavities have a time-

varying longitudinal field that is able to add energy only to those particles that are in the

correct phase relationship with the field. The amount of energy added depends on when

59



exactly the particle arrives at the cavity. Particles whicharrive early receive a stronger

kick than those which arrive later. Because of the negative mass effect (see Sec. 2.4.3.1),

this results in longitudinal focusing towards the ideal energy.

RF “buckets” exist at 2π intervals of the frequency of the RF system. Inside these

buckets are bunches of particles which are focused longitudinally by the RF system, and

transversely by the magnetic guide field (i.e. quadrupoles,bends, etc,).

Photon emission in bend magnets is a stochastic process. As aparticle travels

through a bend, photon emission delivers small kicks at random locations along its tra-

jectory. Depending upon the local optics at the time of the emission, the canonical

momentum may increase or decrease. The photon carries momentum away, but the RF

system will add longitudinal momentum back. Over time, the distribution of momenta

in a bunch of particles becomes dominated by this stochasticprocess. The central limit

theorem predicts that, provided the random momentum changes are drawn from a dis-

tribution with a finite mean and variance, the resulting distribution of particle momenta

will be Gaussian.

A three-dimensional Gaussian distribution of particles subject to linear transforma-

tions can be described by the matrix of second order moments,

Σ “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

〈xx〉 〈xpx〉 〈xy〉
〈

xpy

〉

〈xz〉 〈xpz〉

〈pxx〉 〈px px〉 〈pxy〉
〈

px py

〉

〈pxz〉 〈px pz〉

〈yx〉 〈ypx〉 〈yy〉
〈

ypy

〉

〈yz〉 〈ypz〉

〈

pyx
〉 〈

py px

〉 〈

pyy
〉 〈

py py

〉 〈

pyz
〉 〈

py pz

〉

〈zx〉 〈zpx〉 〈zy〉
〈

zpy

〉

〈zz〉 〈zpz〉

〈pzx〉 〈pz px〉 〈pzy〉
〈

pz py

〉

〈pzz〉 〈pz pz〉

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (2.102)

where we have assumed that the first-order moments vanish. This matrix is called the
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Σ-matrix of the beam.

A Σ-matrix is properly matched to a machine if it is invariant under the 1-turn map,

Σ “ MΣMT . (2.103)

BecauseM is symplectic,MT SM “ S, we have[58],

MΣMT SM “ ΣSM

MΣS “ ΣSM

pΣSq´1 M pΣSq “ M . (2.104)

Say thatΣS has the eigendecomposition,

ΣS “ ẼFẼ´1. (2.105)

Then Eqn. (2.104) is satisfied by any matrixM that can be written asM “ ẼΛ̃Ẽ´1,

pΣSq´1 M pΣSq “ M

ẼF´1Ẽ´1ẼΛ̃Ẽ´1ẼFẼ´1 “ ẼΛ̃Ẽ´1

F´1
Λ̃F “ Λ̃

Λ̃ “ Λ̃, (2.106)

becauseF andΛ̃ are diagonal and therefore commute.

However, the matrix̃E that diagonalizesM is given uniquely by its eigendecompo-

sition. Ẽ must be the matrix of eigenvectors which are unique up to a non-zero complex

normalization. We have,

Ẽ “ E,

Λ̃ “ Λ, (2.107)
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Therefore, the eigenvectors of the 1-turn transfer matrixM are the same as the eigen-

vectors of aΣ-matrix matched to the machine.

In [58], Wolski shows that the eigenvalues ofΣS are invariant under any symplectic

transformation, not just the 1-turn map. The eigenvalues ofΣS are the same no mat-

ter where in the machine it is evaluated. They are therefore invariants of the bunch

distribution. The eigenvalues are typically written asǫa, ǫb, andǫc,

t´ıǫa, ıǫa, ´ıǫb, ıǫb, ´ıǫc, ıǫc, u (2.108)

The three invariantsǫa, ǫb, andǫc of the beam distribution are commonly referred

to as emittances. These are particle distributions analogous to the invariant actions of a

single particle’s trajectoryJa, Jb, andJc.

In the case of an uncoupled machine, the invariants are referred to asǫx, ǫy, andǫz

and can be calculated from,

ǫx “
b

〈

x2
〉 〈

p2
x

〉

ǫy “
b

〈

y2
〉

〈

p2
y

〉

ǫz “
b

〈

z2
〉

〈

p2
z

〉

, (2.109)

where〈¨〉 indicates averaging over all particles in the bunch.

In the case of a coupled machine,ǫx, ǫy, andǫz calculated in this manner are not

invariant, butǫa, ǫb, ǫc are.

Note thatǫa, ǫb, ǫc are simply the eigen mode emittances and can be calculated using,

ǫa “
b

〈

a2
〉 〈

p2
a

〉

ǫb “
b

〈

b2
〉

〈

p2
b

〉

ǫc “
b

〈

c2
〉 〈

p2
c

〉

. (2.110)
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2.6.1 Building theΣ-matrix of a Matched Beam Distribution

From Eqn. (2.107) we have that a matched beam distribution has the same eigenvectors

as the 1-turn matrix. From [58] we have that the eigenvalues of the beam distribution

are the eigen mode emittances.

TheΣ-matrix of a matched beam can be obtained from the eigenvectors of the 1-

turn transfer matrix and the eigen mode emittances of the beam. With the eigenvectors

arranged as in Eqn. (2.107), and the three emittancesǫa, ǫb, andǫc, theΣ-matrix is given

by,

ΣS “ E

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´ıǫa 0 0 0 0 0

0 ıǫa 0 0 0 0

0 0 ´ıǫb 0 0 0

0 0 0 ıǫb 0 0

0 0 0 0 ´ıǫc 0

0 0 0 0 0 ıǫc

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

E´1, (2.111)

or in terms of real-valued matrices by,

ΣS “ N

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 ǫa 0 0 0 0

´ǫa 0 0 0 0 0

0 0 0 ǫb 0 0

0 0 ´ǫb 0 0 0

0 0 0 0 0 ǫc

0 0 0 0 ´ǫc 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

N´1

“ NΛrealN´1, (2.112)
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where the real matrix of eigenvalues has been defined asΛreal. The horizontal and verti-

cal beam sizes and bunch length are simply
?
Σ11 ,

?
Σ33 , and

?
Σ55 .

2.7 Normal Mode Twiss Parameters and the Coupling Matrix

Parameterizing accelerator optics in terms of Twiss parameters is a well-established

technique [8]. Each lab frame coordinate is parameterized with three variables:β, α,

andφ. β andα are related by,

α “ ´1
2

dβ
ds
, (2.113)

wheres is the longitudinal coordinate.φ is an angle.

The beam envelope in a particular dimension is defined as exactly 1σ of the Gaus-

sian distribution of particles.σx, σy, andσz are usually used to refer to the horizontal,

vertical, and longitudinal beam envelope. The transverse beam envelopes are often re-

ferred to as the beam sizes. The longitudinal beam envelope is usually called the bunch

length.

Using emittanceǫx to characterize the horizontal phase space volume of the beam,

the envelope is given by
¨

˚

˚

˝

σx

σ1
x

˛

‹

‹

‚

“ ?
ǫx

¨

˚

˚

˝

?
βx 0

´ αx?
βx

1?
βx

˛

‹

‹

‚

¨

˚

˚

˝

sinφx

cosφx

˛

‹

‹

‚

. (2.114)

Similar equations exist for the verticaly and longitudinalz coordinates.

For the transverse dimensions, Sagan and Rubin extend the theTwiss formalism

to normal mode coordinates in [41]. Normal mode space is similar to eigen space,

except that phase space ellipses in normal mode space are sheared and stretched by
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normal mode Twiss parameters. This shearing and stretchingin normal mode space is

analogous to that in the lab coordinates.

In normal mode space, the coordinates are simply uncoupled.They preserve op-

tical properties similar to those of the lab frame coordinates. In an eigen space, the

coordinates are uncoupled and the phase space ellipse is reduced to a circle.

Sagan and Rubin derive a matrixV that takes lab frame transverse phase space co-

ordinates~x2 into two dimensional normal mode phase space coordinates,

~q2 “ V´1~x2, (2.115)

where~q refers to coordinates in the normal mode basis.

They also derive a block-diagonal matrixG that contains normal mode Twiss pa-

rameters,

G2 “

¨

˚

˚

˚

˚

˚

˚

˝

Ga 0

0 Gb

˛

‹

‹

‹

‹

‹

‹

‚

. (2.116)

where,

Ga,b “

¨

˚

˚

˝

1?
βa,b

0

αa,b?
βa,b

a

βa,b .

˛

‹

‹

‚

(2.117)

G tells us about the shape of the beam envelope in normal mode space.

If ~q is normalized by the normal mode Twiss parameters, then the motion is reduced

to a circle and the coordinates in the transverse eigen spaceare obtained,

~a2 “ G~q. (2.118)

It is then easy to derive the relationship between lab frame coordinates and eigen
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mode coordinates within the normal mode formalism,

~a2 “ GV´1~x2. (2.119)

Notice that the conversion between lab frame coordinates and eigen mode coordi-

nates put forth by Wolski and reproduced in Sec. 2.4.1 is

~a “ N´1~x. (2.120)

If we say thatG andV are now 6̂ 6, then we see an important connection between

the eigen mode formalism and normal mode formalism,

N “ VG´1. (2.121)

In Eqn. (2.64) the matrix of eigenvectors is normalized witha specially calculated

phase factor. The effect of this normalization is to put the resultingN into a form such

that its 2ˆ 2 diagonal blocks are simply the symplectic conjugates of the normal mode

Twiss factors timesγa, γb, or γc. Comparisons between theG matrix andγa,b,c obtained

by the normal mode formalism and theG obtained from the eigen modes formalism

agree completely.

The three parametersγa, γb, andγc that are used in the normal mode formalism can
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be obtained from the eigen modes formalism as,

γ2
a “ Det

¨

˚

˚

˝

N11 N12

N21 N22

˛

‹

‹

‚

(2.122)

γ2
b “ Det

¨

˚

˚

˝

N33 N34

N43 N44

˛

‹

‹

‚

(2.123)

γ2
c “ Det

¨

˚

˚

˝

N55 N56

N65 N66

˛

‹

‹

‚

. (2.124)

The block-diagonal matrixG2 defined in Eqn. (2.116) is a 4̂ 4 matrix. The full

6 ˆ 6 matrix is

G “

¨

˚

˚

˚

˚

˚

˚

˝

Ga 0 0

0 Gb 0

0 0 Gc

˛

‹

‹

‹

‹

‹

‹

‚

, (2.125)

where the diagonal blocks can be obtained fromN,

Ga,b,c “ 1
γa

¨

˚

˚

˝

N11 N12

N21 N22

˛

‹

‹

‚

:

. (2.126)

Dagger: represents the symplectic conjugate,

¨

˚

˚

˝

A11 A12

A21 A22

˛

‹

‹

‚

:

“

¨

˚

˚

˝

A22 ´A12

´A21 A11

˛

‹

‹

‚

. (2.127)

Shown in Fig. 2.11 are the turn-by-turn trajectories and phase space plots in normal

mode coordinates of a particle tracked for 500 turns throughthe fully coupled demon-

stration lattice. Notice that the motion does not appear to be coupled. The effect of the

67



normal mode Twiss parameters is evident in the shearing and stretching of the phase

space ellipses.
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Figure 2.11: Trajectory in normal coordinates of particle with initial lab frame coordi-
natesp0.01 m,0,0.01 m,0,0.01 m,0q. Particle is tracked for 500 turns.

Shown in Fig. 2.12 are the three normal modeβ-functions plotted versus location in

meters. Smaller values ofβ indicated stronger focusing and larger phase advance. The

steep segments indicate the location of focusing and defocusing quadrupoles. The long
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segments indicate the location of bend magnets.
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Figure 2.12: Normal modeβ-functions calculated from eigen-decomposition of the 1-
turn transfer matrix. The lattice elements are not symmetric abouts “ 0 m.

With G thus easily obtained fromN, the transformation from lab coordinates to

normal mode coordinates via the eigen decomposition is obtained,

V “ NG. (2.128)
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N transforms from lab frame coordinates to the eigen mode coordinates. It “re-

moves” both the coupling and Twiss parameters from the coordinate system. One way

to think ofN is that it has information about both the coupling in the accelerator and the

local optics. By decomposingN into V andG we have separated the coupling informa-

tion from the optics.

It is convenient to normalize the optics dependence out ofV,

V̄ “ GVG´1. (2.129)

PluggingV “ NG into Eqn. (2.129), we obtain

V̄ “ GN. (2.130)

N, G, V, areV̄ all symplectic.V can be written in the form,

V “

¨

˚

˚

˚

˚

˚

˚

˚

˝

γaI C ab Cac

´D:
ba γbI C bc

´D:
ca ´D:

cb γcI

˛

‹

‹

‹

‹

‹

‹

‹

‚

, (2.131)

whereI is the 2̂ 2 identity matrix and TheC andD matrices describe coupling between

the modes.̄V can be written in the form,

V̄ “

¨

˚

˚

˚

˚

˚

˚

˚

˝

γaI C̄ab C̄ac

´D̄:
ba γbI C̄bc

´D̄:
ca ´D̄:

cb γcI

˛

‹

‹

‹

‹

‹

‹

‹

‚

. (2.132)

In machines with coupling between only two of the modes,Ci j “ D ji. If the motion is

uncoupled, then theC’s andD’s are0 (matrix of zeros), andV “ V̄ “ I .

If all three modes are coupled, and the coupling is not too strong, then the off-

diagonal blocks resemble the symplectic conjugate of theiropposite diagonal counter-

part. Intuitively, it feels like it should be possible to derive a relationship between the
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threeC matrices and threeD matrices. I have not been able to find such a relationship,

but if such a relationship were found, it could allow for the optics correction procedures

described in [1] to be extended from the two transverse to allthree modes. This would

allow for concise optics correction procedures that account for coupling between all

three modes.

2.7.0.1 Beam Size Calculations

A method is given in [41] for obtaining the horizontal and vertical beam sizes from

the 4D normal mode Twiss parameters and emittances. Here we use Eqn. (2.112) and

Eqn. (2.121) to obtain formulas for the horizontal, vertical, and longitudinal beam sizes.

The result is a 6D counterpart to the 4D formulas in [41].

Starting fromΣ-matrix in terms of real-valued matrices, Eqn. (2.112),

ΣS “ NΛrealN´1, (2.133)

we use the definition ofN in terms of the normal mode matrices̄V andG to obtain,

ΣS “ G´1V̄ΛrealV̄´1G. (2.134)

Takingσ2
x “ Σ11, σ2

y “ Σ33, andσ2
z “ Σ55 and simplifying gives the projections of the

beam envelope into the lab frame,

σ2
x “ βa

`

γ2
aǫa `

`

C̄2
ab11 ` C̄2

ab12

˘

ǫb `
`

C̄2
ac11 ` C̄2

ac12

˘

ǫc

˘

(2.135)

σ2
y “ βb

`

γ2
bǫb `

`

D̄2
ba12 ` D̄2

ba22

˘

ǫa `
`

C̄2
bc11 ` C̄2

bc12

˘

ǫc

˘

(2.136)

σ2
z “ βc

`

γ2
cǫc `

`

D̄2
ca12 ` D̄2

ca22

˘

ǫa `
`

D̄2
cb12 ` D̄2

cb22

˘

ǫb

˘

(2.137)

Note thatγa, γb, andγc are not the Twissγ functions, but are coupling parameters as

defined in Eqn. (2.132). The following property of symplectic matrices was useful in

deriving these formulas:M´1 “ Ś 1MT S.
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These projections are stated in terms ofV in Appendix B.

Equations (2.135), (2.136), and (2.137) are the lab frame projections of the beam

envelope and are what is typically measured by the instrumentation. Written in this

format, it is clear how the various coupling terms inV̄ contribute to the projected beam

sizes.

2.7.0.2 Summary

We have obtained the 6̂ 6 V̄ coupling matrix simply by extractingG from a properly

normalized eigen mode decomposition. This is a novel and direct method for obtaining

V̄. We have also established clear and simple relations between normal mode coordi-

nates and eigen mode coordinates.

Normal mode analysis has been applied to the fully-coupled demonstration storage

ring and the phase space and trajectory plots have been obtained. Additionally, the

normal mode Twiss parameters have been obtained from the eigen decomposition.

The beam size calculations given in [41], which project the normal mode quantities

into the lab frame, have been extended from two-dimensions to three-dimensions. Writ-

ing the projected beam sizes in terms ofV̄ reveals how the coupling terms effect the

measured beam sizes.
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2.8 Analytic Intrabeam Scattering Calculations

2.8.1 Kubo

The IBS formalism outlined here is described succinctly by Kubo in [20] and in detail

by Kubo and Oide in [21]. It is based on changes to the second-order moments of the

Σ-matrix of the beam distribution in the frame of the bunch, as

∆
〈

p̄i p̄ j

〉

“ cIR
〈

δw2
〉

RT , (2.138)

where,

〈

δw2
〉

“

¨

˚

˚

˚

˚

˚

˝

〈

δw2
1

〉

0 0

0
〈

δw2
2

〉

0

0 0
〈

δw2
3

〉

˛

‹

‹

‹

‹

‹

‚

(2.139)

andR is a matrix of eigenvectors defined below,
〈

δw2
1

〉

,
〈

δw2
2

〉

, and
〈

δw2
3

〉

are the rates

of change of the normal mode 2nd order moments, andcI is proportional to the bunch

charge.

IBS refers to scattering among nearby particles. The 2nd order moments of theΣ-

matrix describe the momentum spread of the entire bunch. Whatis needed is the “local”

momentum spread, or the spread in the momentum of particles inside a small spatial

element of the bunch. The difference between theΣ-matrix 2nd order moments and the

“local” moments is depicted in Fig. 2.13. The local momentumspread is obtained as

Σlpp ”
〈

p̄li p̄l j

〉

“ Σpp ´ ΣT
xpΣ

´1
xx Σxp, (2.140)

whereΣpp ”
〈

p̄i p̄ j

〉

, Σxx ”
〈

x̄i x̄ j

〉

, andΣxp ”
〈

x̄i p̄ j

〉

.
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Figure 2.13: The local momentumΣ-matrix describes the distribution of momentum in
a small spatial element of the bunch.

Σlpp is symmetric and positive-definite and can be decomposed as

Σlpp “ RGRT , (2.141)

whereG is a diagonal matrix of the eigenvalues ofΣlpp and the columns ofR are the

eigenvectors. The eigenvalues are denotedu1, u2, u3. Note thatRT “ R´1.

〈

δw2
〉

is obtained from

〈

δw2
1

〉

“ g2 ` g3 ´ 2g1, (2.142)
〈

δw2
2

〉

“ g1 ` g3 ´ 2g2, (2.143)
〈

δw2
3

〉

“ g1 ` g2 ´ 2g3, (2.144)

where

g1 “ g pu1, u2, u3q , (2.145)

g2 “ g pu2, u1, u3q , (2.146)

g3 “ g pu3, u1, u2q , (2.147)
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and

g pa, b, cq “
ż π{2

0

2a sin2 s coss
b

`

sin2 s ` a
b cos2 s

˘ `

sin2 s ` a
c cos2 s

˘

ds. (2.148)

g1, g2, andg3 are analogous to the temperatures of the 3 normal modes of thebunch.

cI is defined as

cI “ r2
e Ne∆s

4πγ4ǫaǫbǫc
CΛ, (2.149)

whereǫa, ǫb, and ǫc are the normal mode emittances of the beam, and the Coulomb

LogarithmCΛ will be defined in the next section.Ne is the number of particles in the

bunch,re is the classical electron radius,γ is the relativistic factor, and∆s is the length

of the element.

2.8.2 Coulomb Logarithm

The Coulomb Log,CΛ, appears in the integration of the Rutherford scattering cross-

section over all scattering angles. The integral diverges for small scattering angles,

which correspond to large impact parameters. This requiresthe introduction of a largest

impact parameter cutoff. We follow the prescription by Kubo and Oide [21] and use the

smaller of the mean inter-particle distance and smallest beam dimension as the maxi-

mum impact parameter,

bmax “ min
`

n´1{3, σx, σy, γσz

˘

, (2.150)

wheren is the particle density in the bunch frame,

n “ Ne

p4πq3{2
σxσyγσz

. (2.151)

As for the largest scattering angle (smallest impact parameter), both Piwinski and

Bjorken-Mtingwa assume thatθmax “ π{2. It was suggested in [33] that scattering events
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which occur less frequently than once per radiation dampingtime should be excluded

from the calculation of the IBS rise time. This is because suchevents do not occur

frequently enough for the central limit theorem to apply andtherefore do not contribute

to the Gaussian core of the beam. Such infrequent events willgenerate non-Gaussian

tails. It is the size of the Gaussian core that we can measure,so for comparison with the

data, we exclude contributions to the tails.

In an electron/positron storage ring, photons are emitted when the beam travels

through bend magnets and wigglers. The emitted photon carries away some transverse

momenta, which reduces action, but the sudden change of the total particle momenta

causes an increase in its betatron oscillation amplitude. The overall change to the parti-

cle’s action depends on the local optics and betatron phase of the particle at the time of

photon emission. Photon emission is a stochastic process that occurs at unpredictable

locations along the particle’s trajectory. Each time a photon is emitted, the amount of

transverse momentum carried away and amount by which the closed orbit jumps are

drawn from stochastic distributions.

Very many photon emission events occur per damping period. The number of pho-

tons emitted per second by a beam particle is [53],

9Nph “ 15
?

3
8

Pγ

ǫc
, (2.152)

wherePγ is the rate at which the particle radiates energy andǫc is the critical photon

energy of the synchrotron radiation. For CesrTA at 2.1 GeV, Pγ is 0.2 MeV/turn, and

the damping time is 20000 turns. For a 2.1 GeV beam and a bending radius of 122 m,

the critical photon energyǫc is 156 eV. Each electron emits about 20ˆ 106 photons per

damping period.

The central limit theorem predicts that the average of a large number of stochastic

events drawn from a distribution with a finite mean and variance is a Gaussian distribu-
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Table 2.3: Nominal conditions for a bunch with 6.4 ˆ 1010 particles.

Beam Energyγ 4080

Average Densityρ 4.2 ˆ 1021 part/m3

Twissγx 0.51 ḿ 1

Emittanceǫa 3.0 nm-rad

tion. Because the momenta of each particle in the bunch is the average of very many

stochastic momentum kicks, the distribution of particle momenta in a bunch is Gaussian.

Similarly, there are a large number of small-angle intrabeam scattering events that

likewise excite oscillations. The IBS momentum kicks are stochastic and have a well-

defined mean and variance. These IBS events increase the widthof the momentum

distribution. However, very few large-angle scattering events occur per damping time.

A particle with velocityv, traveling through a gas with densityρ, and an interaction

cross-sectionσ, will undergo scattering events at a rate 1{τ “ ρvσ. Writing σ “ πb2,

whereb is the effective impact parameter yields

1
τ

“ πρvb2. (2.153)

For non-relativistic Coulomb scattering, the impact parameter is related to the scattering

angleψ by

b “ re

2β̄2
cot

ψ

2
(2.154)

whereβ̄c is the velocity of the particles in their center-of-momentum frame. Substituting

Equation (2.154) into (2.153) gives the rate at which particles are scattered into angles

less than or equal toψ:
1
τ

“ 1
γ

πρcr2
e

4γ3 pǫγaq
3
2

cot2
ψ

2
(2.155)

where
?
ǫγa has been used for̄β, ǫ is emittance, andγa is thea-mode Twissγ. The

relevant beam parameters for CesrTA are shown in Table 2.3. The rate of scattering
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Figure 2.14: (a) Events which occur less than once per damping time are excluded from
the calculated growth rate. (b) Equilibrium beam size calculations assuming different
cut-offs.

events,Γs, in units of radiation damping time,Γr, as a function of maximum scattering

angle is shown in Fig. 2.14(a). The tail-cut consists of excluding those events which

occur less than once per radiation damping period. A measureof the sensitivity to the

cutoff is illustrated in Fig. 2.14(b). The calculated equilibriumbeam size is shown for a

range of two orders of magnitude of the cutoff. The data shown are the same as plotted

in Fig. 2.28(a).

The tail-cut consists of restricting the calculation of theIBS growth rate to include

only those events which occur at least once per damping period. Events which occur

less frequently than once per damping period generate lightly populated non-Gaussian

tails that do not contribute to the Gaussian core. The Gaussian core is what determines

luminosity in a collision experiment and brightness of a light source. It is the Gaussian

core that we measure in our beam size measurements.

The tail-cut is applied by setting the minimum impact parameter as

bmin “
d

1
nπτbν

, (2.156)

whereτb is the longest damping time in the bunch frame andν is the average particle

velocity in the bunch frame. Ifǫa is greater thanǫb andσpσz

γ2 , thenν « cγ
b

ǫa

βa
.
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The computed IBS growth rate is directly proportional to the Coulomb Log and is

expressed as the logarithm of the maximum impact parameter over the minimum,

CΛ “ log
bmax

bmin
. (2.157)

In hadron and ion machines, such as the Tevatron and RHIC, the damping time is

very long and there are enough of even the very large-angle scatters to populate a Gaus-

sian distribution. A tail-cut does not significantly affect the calculated IBS distributions

for those machines. However, for machines with strong damping, such as lepton storage

rings, very few large-angle scattering events occur per damping time, and applying the

tail-cut is essential to reliably computing the equilibrium distribution of the Gaussian

core of the bunch. In CesrTA, applying the tail-cut significantly changes the calculated

growth rate. With the tail-cut, the average Coulomb log in CesrTA at 1.6 ˆ 1010 parti-

cles/bunch is 9.4. Without the tail-cut, that is, if we assume that the maximum scattering

angle is 90̋, the average Coulomb log is 17.6.

2.8.3 Eigen decomposition as a patch between beam-envelope ma-

trix and Twiss-based schemes

The IBS formalism described in Sec. 2.8.1 is an example of aΣ-matrix based formalism,

also known as a beam-envelope formalism. In such formalismsthe beam-envelope is

propagated using,

Σ2 “ M1Ñ2Σ1MT
2Ñ1, (2.158)

whereM1Ñ2 is the transfer matrix that takes coordinates from location1 to location

2, and could easily be the 1-turn matrix. In the beam-envelope formalism, radiation

damping is incorporated into the transfer matrix and quantum excitation is added as a
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diffusion term [27],

Σ2 “ MΣ1MT ` B, (2.159)

whereB contains changes to the 2nd-order moments of theΣ matrix due to photon

emission.

Twiss based formalisms, on the other hand, parameterize thebeam in terms of 3

emittances and 9 optics functions (βa,b,c, αa,b,c, andφa,b,c). Radiation damping and exci-

tation are applied as kicks which depend on the optics functions and bend angles [16].

Using the relationships between the eigen decomposition and theΣ-matrix devel-

oped in Sec. 2.6.1 and the normal mode decomposition and eigen decomposition estab-

lished in Sec. 2.7, it is possible to switch between Twiss & emittance-based descriptions

of the beam andΣ-matrix descriptions of the beam.

Bmad is a Twiss-based environment, while Kubo’s IBS formalism is based on theΣ-

matrix. Beam tracking and synchrotron radiation are are handled inBmad’s Twiss-based

infrastructure. To calculate IBS growth, we first build theΣ-matrix using the normal

mode emittances and eigen decomposition of the 1-turn map. Then we adjust the 2nd

order moments of theΣ-matrix according to Kubo’s formalism. Finally, we calculate

the new emittances by calculating the eigenvalues ofΣS.

2.8.4 Modified Piwinski with Tail Cut

2.8.4.1 Introduction

The first widely used formalism for the calculation of IBS scattering rates was by Anton

Piwinski in 1974 [30]. The original derivation contained a cumbersome 3-dimensional
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integral. In 1980, Evans and Zotter made an exact replacement of the triple integral with

a single integral [25]. This formalism was extended by Martini in 1984 [25] to include

derivatives of the lattice optics.

Piwinski’s original formalism contains a Coulomb Logarithmthat assumes a maxi-

mum scattering angle ofπ{2 and contains the momentum dependence of the scattering

particles. The formalism was originally intended for hadron and ion accelerators. As

discussed in Sec. 2.8.2, large angle scattering events are rare in lepton accelerators on

the time scale of a damping time.

In this section, Piwinski’s original formalism for the calculation of IBS scattering

rates is re-derived assuming a constant Coulomb Logarithm ofthe same form used by

Kubo [21] and Bjorken & Mtingwa [5]. This makes it possible to apply Piwinski’s

original formalism to lepton rings and compare the results to those obtained by the

Kubo and Bjorken & Mtingwa formalisms.

As a bonus, this derivation puts Piwinski’s formalism in a very simple form. Even

with Zotter’s integral, Piwinski’s formalism is considered cumbersome to evaluate and

opaque approximations of varying reliability are often used [58].

When a constant Coulomb Logarithm is assumed, two of the three integrals in Piwin-

ski’s original derivation can be solved exactly. The resultis an IBS scattering formula

that is quick to evaluate, and which can be derived from Piwinski’s original formula

with the application of only one easy to understand approximation.

2.8.4.2 Derivation

Piwinski’s original formalism differs from the Bjorken-Mtingwa formalism in that it

preserves the relative momentum dependence in the Coulomb Logarithm. It may be
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argued that preserving this dependence is more accurate. However, when applied to

machines with significant damping it is found that the CoulombLog must be adjusted

according to the tail-cut procedure. The tail-cut procedure assumes a Coulomb Log that

is not dependent on momentum.

In the classic theory, the smallest scattering is calculated from the smallest beam

dimension and the largest scattering angle isπ
2,

log
sin π

2

sin ψmin

2

« log
1
ψmin

« log
2β2bmax

re
, (2.160)

wherebmax is the largest impact parameter (typically the beam height), re is the electron

radius,β is the relative velocity of the two colliding particles, andwe have used,

tanψ “ re

2β2b
. (2.161)

In the tail-cut theory, the largest scattering angle is alsosmall, typically less than

0.01 radians, and the relative velocity of the two particles drops out,

log
sin ψmax

2

sin ψmin

2

« log
ψmax

ψmin
« log

bmax

bmin
. (2.162)

Note, however, thatbmin, Eqn. (2.156), is proportional to the square root of the particle

velocity. Kubo’s formula for the tail-cut replaces the relative velocity of individual

particles with the average particle velocity.

The integral for Piwinski’s original derivation is [30],

f pa, b, cq “ 2
ż 8

0

ż π

0

ż 2π

0
log

`

q2r
˘ `

1 ´ 3 cos2 θ
˘

exp
`

´r
`

cos2 θ `
`

a2 cos2 φ ` b2 sin2 φ
˘

sin2 θ
˘˘

sinθdφdθdr, (2.163)

where the Coulomb Logarithm is the log factor inside the integral.
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Before assuming the constant Coulomb Logarithm, we apply the first few steps from

Evans and Zotter’s derivation [12], where they convert the triple integral to a single

integral.

First, notice that cos2 θ and sin2 θ are symmetric aboutπ{2. Replace the integration

of θ over 0 toπ with an integration over 0 toπ{2 and multiply the integral by 2,

f pa, b, cq “ 4
ż 8

0

ż π
2

0

ż 2π

0
log

`

q2r
˘ `

1 ´ 3 cos2 θ
˘

exp
`

´r
`

cos2 θ `
`

a2 cos2 φ ` b2 sin2 φ
˘

sin2 θ
˘˘

sinθdφdθdr. (2.164)

The same can be applied to the variableφ, replacing the integration over 0 to 2π with

and integration over 0 toπ{2 and multiplying the integral by 4,

f pa, b, cq “ 16
ż 8

0

ż π
2

0

ż π
2

0
log

`

q2r
˘ `

1 ´ 3 cos2 θ
˘

exp
`

´r
`

cos2 θ `
`

a2 cos2 φ ` b2 sin2 φ
˘

sin2 θ
˘˘

sinθdφdθdr. (2.165)

Next make use of the identities sin2 φ “ 1´cos 2φ
2 and sin2 φ “ 1`cos 2φ

2 ,

f pa, b, cq “ 16
ż 8

0

ż π
2

0

ż π
2

0
log

`

q2r
˘ `

1 ´ 3 cos2 θ
˘

exp
`

´r
`

cos2 θ `
`

a2 ` b2 `
`

a2 ´ b2
˘

cos 2φ
˘

sin2 θ
˘˘

sinθdφdθdr. (2.166)

Replace 2φ with y,

f pa, b, cq “ 8
ż 8

0

ż π
2

0

ż π

0
log

`

q2r
˘ `

1 ´ 3 cos2 θ
˘

exp
`

´r
`

cos2 θ `
`

a2 ` b2 `
`

a2 ´ b2
˘

cosy
˘

sin2 θ
˘˘

sinθdydθdr. (2.167)
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Replace cosθ with x,

f pa, b, cq “ 8
ż 8

0

ż 1

0

ż π

0
log

`

q2r
˘ `

1 ´ 3x2
˘

exp

ˆ

´r

ˆ

x2 ` 1
2

`

a2 ` b2 `
`

a2 ´ b2
˘

cosy
˘ `

1 ´ x2
˘

˙˙

dydxdr. (2.168)

At this point, Evans and Zotter use an identity to integrate overr exactly. We diverge

from their derivation by replacing the logarithm with a constant and moving it outside

the integral,

f pa, b, cq “ 8pclogq
ż 8

0

ż 1

0

ż π

0

`

1 ´ 3x2
˘

exp

ˆ

´r

ˆ

x2 ` 1
2

`

a2 ` b2 `
`

a2 ´ b2
˘

cosy
˘ `

1 ´ x2
˘

˙˙

dydxdr. (2.169)

The integration overr is now straightforward,

f pa, b, cq “

16pclogq
ż 1

0

ż π

0

1 ´ 3x2

a2 ` b2 ` p2 ´ a2 ´ b2q x2 ` pa2 ´ b2q p1 ´ x2q cosy
dydx. (2.170)

The integration overy is also straightforward and yields the final result,

f pa, b, cq “ 8π pclogq
ż 1

0

1 ´ 3x2

a

a2 ` p1 ´ a2q x2
a

b2 ` p1 ´ b2q x2
dx. (2.171)

2.8.4.3 Discussion

Equation (2.171) is a numerically easy to integrate form of the integral in Piwinski’s

original derivation. The only approximation made is that the Coulomb Log was assumed

to not depend on the relative momentum of the colliding particles.

Note that this equation is very similar to Evans and Zotter’sderivation. Their result

has a logarithmic term inside the integral that is the momentum-dependent version of
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the Coulomb Logarithm,

f pa, b, cq “ 8π
ż 1

0

1 ´ 3x2

?
PQ

ˆ

2 log

ˆ

C
2

ˆ

1?
P

` 1?
Q

˙˙

´ γ̃

˙

dx, (2.172)

whereγ̃ is Euler’s constant and,

P pxq “ a2 `
`

1 ´ a2
˘

x2 (2.173)

Q pxq “ b2 `
`

1 ´ b2
˘

x2. (2.174)

Equation (2.171) is also very similar to Bane’s approximation [58] to the Bjorken-

Mtingwa formalism, except that our equation treatsx and y equally, where Bane’s

derivation does not give sensible results when the verticaldispersion is zero.

2.8.5 Method Comparison

In addition to Kubo and Oide’s method, two other commonly used methods for calcu-

lating IBS growth rates are one by Bjorken and Mtingwa [5] and a version of Piwin-

ski’s original derivation that includes derivatives of thelattice optics [30]. The constant

Coulomb Log integral derived in Sec. 2.8.4 is used here. Shownin Fig. 2.15 are hori-

zontal beam size versus current calculated using the three methods.

We treat the Coulomb Log the same way in each method and apply the tail-cut.

Applying the tail-cut to Piwinski’s original method requires modifying the derivation so

that the minimum and maximum scattering angles can be set as parameters.

Bjorken & Mtingwa’s and Piwinski’s methods are based on Twissparameters. We

use normal mode Twiss parameters in place of lab frame Twiss parameters when evalu-

ating either formalism. The growth rates given by the formulas are applied to the normal

mode emittances.
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Figure 2.15: Comparing (a) horizontal, (b) vertical, and (b)longitudinal beam size ver-
sus current for three different IBS formalisms. The high emittance lattice hasǫx0 “ 4.6
nm¨rad,ǫy0 “ 14.3 pm̈rad, andσz0 “ 10.0 mm. The low emittance lattice hasǫx0 “ 2.8
nm¨rad,ǫy0 “ 1.5 pm̈rad, andσz0 “ 10.3 mm.

These calculations suggest that, provided the Coulomb Log istreated the same, the

three most general IBS formalisms predict similar equilibrium beam sizes.

2.9 Intrabeam Scattering Monte Carlo Simulations

In addition to the analytic IBS calculations discussed above, we have developed a Monte

Carlo simulation based on Takizuka and Abe’s plasma collision model [48]. An ensem-

ble of 2000 particles representing the bunch distribution is tracked element-by-element

using theBmad standard tracking methods [37]. Tracking through the strong, nonlinear

field of the superconducting damping wigglers is done with a symplectic Lie method
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based on a map of the wiggler field [39].

At each element, the ensemble is converted from canonical tospatial coordinates

and boosted into its center of momentum frame where the particles are non-relativistic.

Then Takizuka and Abe’s collision model is applied:

1. The bunch is divided into cells. This enforces locality.

2. Particles in each cell are paired off. Each particle undergoes only one collision.

3. The change in the momentum of the pair is calculated, taking into account their

relative velocities and the density of particles in the cell.

The ensemble is then boosted back to the lab frame and transformed back into canonical

coordinates.

Note that this is not a Monte Carlo simulation of individual scattering events. Such

a simulation would require the calculation ofN!
2 scattering events per element and is not

computationally feasible. Takizuka & Abe’s formalism calculates the expectation value

of the change in the momentum of a test particle traveling through a “wind” of nearby

particles. The relative velocity of the paired particles determines the velocity vector

of the wind. The rate of change of the particle momentum due toscattering events is

assumed to be constant through the length of the element.

A log term corresponding to the Coulomb Log appears in Takizuka & Abe’s for-

malism. The calculation of the expectation value of the change in the momentum of

the particles assumes many small-angle scattering events.This method of Monte Carlo

simulation is subject to the central limit theorem and tail-cut in the same way as the

analytic calculations.

87



2.9.1 Generating a Distribution of Particles Matched to the Ma-

chine

The equilibrium beam distribution in a lepton storage ring is the result of stochastic

radiation damping and excitation. Any arbitrary distribution injected into a storage ring

will in time assume a Gaussian distribution that is invariant under the 1-turn map. For

CESR, this occurs on the a scale of approximately 20000 turns, or about 50 ms.

In principle, the Monte Carlo simulation could be seeded withany arbitrary distri-

bution and end up with the same result. However, the Monte Carlo simulation is time

consuming. If the simulation is seeded with a distribution that corresponds to the equi-

librium distribution, then it will equilibrate faster. Tracking 2000 particles for 20000

turns on a 32 CPU Xeon E5-4650 cluster takes about 12 hours.

A distribution of particles matched to the machine is generated by first generating

the distribution in the eigen basis. In the eigen basis the particle coordinates are simply

given by,

~a “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

?
2Ja cosφa

´
?

2Ja sinφa

?
2Jb cosφb

´
?

2Jb sinφb

?
2Jc cosφc

´
?

2Jc sinφc

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.175)

This is identical to Eqn. (2.82) and is reproduced here for convenience. In one dimen-

sion, a distribution of particles in equilibrium has a flat distribution inφ, and a Gaussian
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distribution in actionJ,

ρ pJ, φq “ 1
2πǫ

e
´

J
ǫ , (2.176)

whereǫ is the emittance.

A flat distribution inφ for N particles is easily obtained by generating a set ofN

random real numbers between 0 and 1 and multiplying the set by2π.

A Gaussian distribution inJ is obtained using inverse transform sampling. A set of

N random real numbers with a flat distribution between 0 and 1 istransformed into a

Gaussian distribution with vanishing first order moment andwidth ǫ using

Ji “ ´ǫ logpXiq , (2.177)

whereX1 ¨ ¨ ¨ XN is the flat distribution of random real numbers.

Generating three distributions ofN particles inpJa, φaq, pJb, φbq, andpJc, φcq we now

have a distribution of particles in the eigenbasis of the machine. This is converted into a

distribution of particles matched to the machine using Eqn.(2.67),

~x “ N~a. (2.178)

2.9.2 Coordinate Transformations

2.9.2.1 Bmad coordinates to spatial coordinates

After tracking a distribution of particles to some locations in the lattice, for each particle

we knowpx psq , px psq , y psq , py psq , z psq , pz psqq. These are the canonical coordinates

of the particles at the locations, and do not represent the spatial distribution of the

bunch.
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To find the spatial distribution, we need to find the location of the particles at the

time t0, this is the time that the reference particle arrived ats. Thez coordinate of each

particle isz psq “ ´β psq c pt psq ´ t0 psqq, from which we obtain,

∆t ” t psq ´ t0 psq “ z psq
´β psq c

. (2.179)

At this point each particle with∆t ă 0 should be propagated backwards through

the previous element for a time∆t, and each particle with∆t ą 0 should be propagated

forward through the next element for a time∆t. For simplicity, we simply propagate the

particles through a drift. This approximation is reasonable as long as the betatron phase

advance over the length of the bunch is much much less thanπ{2 and the guide field

strength not too strong.

The time-dependent Hamiltonian for a particle of chargee and massm moving

through a field-free region is [46],

Ht px, px, y, py, s, ps; tq “ c

˜

ˆ

mc
P0

˙2

` p2
x ` p2

y ` p2
s

¸1{2

“ γmc2

P0
, (2.180)

wherepx,y,s “ Px,y,s{P0, Px,y,s is the momentum of the particle andP0 is the momentum

of the reference particle. The equations of motion are obtained as,

dx
dt

“ BHt

Bpx
“ pxc

c

´

mc
P0

¯2
` p2

x ` p2
y ` p2

s

dpx

dt
“ ´BHt

Bx
“ 0

dy
dt

“ BHt

Bpy
“

pyc
c

´

mc
P0

¯2
` p2

x ` p2
y ` p2

s

dpy

dt
“ ´BHt

By
“ 0

ds
dt

“ BHt

Bps
“ psc

c

´

mc
P0

¯2
` p2

x ` p2
y ` p2

s

dps

dt
“ ´BHt

Bs
“ 0.

Note that making the paraxial approximationpx, py ăă 1 and assumingmc{P0 ăă

1 yields,

90



dx
dt

“ px

ps
c

dy
dt

“
py

ps
c

ds
dt

“ c.

The longitudinal momentumps “ Ps{P0 of the particle can obtained from its canon-

ical coordinates,

P2
s “ P2

0

´

p1 ` pzq2 ´ p2
x ´ p2

y

¯

. (2.181)

We can now write the map from canonical coordinatesxc to spatial coordinatesxs “

pxs, pxs, ys, pys, s, psq,

xs “ xc ` ∆t
dx
dt

(2.182)

pxs “ pxc (2.183)

ys “ yc ` ∆t
dy
dt

(2.184)

pys “ pyc (2.185)

s “ ∆t
ds
dt

(2.186)

ps “ Ps

P0
, (2.187)

where∆t is given by Eqn. (2.179).

Shown in Fig. 2.16 are thexy, xz, andyz projections of a bunch ats “ 0 (Bmad

coordinates) andt “ 0 (spatial coordinates). The bunch lies on a non-zero closedorbit.

2.9.2.2 Spatial coordinates toBmad coordinates

The map from spatial coordinates back toBmad coordinates is obtained from thes-

dependent Hamiltonian of a particle in a field-free region [46],

Hs px, px, y, py, t,´E; sq “ ´

d

ˆ

E
c

˙2

´ p2
x ´ p2

y ´ m2c2 “ βsγmc, (2.188)

which is the kinetic momentum in thes direction. The equations of motion are,
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Figure 2.16:x, y, andz coordinates of a bunch ats “ 0 andt “ 0. The bunch lies on a
non-zero closed orbit.

dx
ds

“ BHs

Bpx
“ pxc

c

´

mc
P0

¯2
` p2

x ` p2
y ` p2

s

dpx

ds
“ ´BHs

Bx
“ 0

dy
ds

“ BHs

Bpy
“

pyc
c

´

mc
P0

¯2
` p2

x ` p2
y ` p2

s

dpy

ds
“ ´BHs

By
“ 0

dz
ds

“ BHs

BE
“ psc

c

´

mc
P0

¯2
` p2

x ` p2
y ` p2

s

dpz

ds
“ ´BHs

Bs
“ 0.

2.9.2.3 Spatial coordinates to COM frame

The Monte Carlo IBS formalism applied at CesrTA is based on Takizuka & Abe’s binary

collision model [49]. It is a non-relativistic plasma collision model. Particles in an
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electron/positron accelerator are typically ultra-relativistic. However, in bunched beams

with a small energy spread and divergence, one can boost intothe center of momentum

(COM) frame of the bunch where the particles will be non-relativistic. We calculate the

particle interactions in the COM frame, then boost the particles back into the lab frame.

All coordinates in this section are spatial coordinates where x, y, ands represent the

spatial coordinates of the particle relative to the reference particle, andpx, py, andps are

the horizontal, vertical, and longitudinal momentum of theparticle normalized byP0.

At first glance, one might simply boost alongs using the reference momentum.

However, this is not ideal if the closed orbit is non-zero. Inthat case, the boost will

be not be parallel with the bunch COM and particles in the boosted frame will have

an unnecessarily large relativisticβ. Misalignments and strong wiggler fields are two

possible contributions to a non-zero closed orbit.

The Lorentz transformation for a boost in any direction~β “ pβx, βy, βsq is,

Λ “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

γ ´γβx ´γβy ´γβs

´γβx 1 ` pγ ´ 1q β
2
x

β2
pγ ´ 1q

βxβy

β2
pγ ´ 1q βxβs

β2

´γβy pγ ´ 1q
βyβx

β2
1 ` pγ ´ 1q

β2
y

β2
pγ ´ 1q

βyβs

β2

´γβs pγ ´ 1q βsβx

β2
pγ ´ 1q

βsβy

β2
1 ` pγ ´ 1q β

2
s

β2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (2.189)

whereγ “
d

1 ´ 1

|~β|2
. A particle with four-momentumpE, px, py, psq in the lab frame
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will have momentum
`

E1, p1
x, p1

y, p1
s

˘

in the boosted frame,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

E1

p1
x

p1
y

p1
s

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

γ ´γβx ´γβy ´γβs

´γβx 1 ` pγ ´ 1q β
2
x

β2
pγ ´ 1q

βxβy

β2
pγ ´ 1q βxβs

β2

´γβy pγ ´ 1q
βyβx

β2
1 ` pγ ´ 1q

β2
y

β2
pγ ´ 1q

βyβs

β2

´γβs pγ ´ 1q βsβx

β2
pγ ´ 1q

βsβy

β2
1 ` pγ ´ 1q β

2
s

β2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

E

px

py

ps

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

(2.190)

whereE “
b

P2
x ` P2

y ` P2
s ` m2

0c2 .

We want to boost into a frame where the sum of the individual particle momentum

is zero,

n
ÿ

i“1

~p1
xi “ 0 (2.191)

n
ÿ

i“1

~p1
yi “ 0 (2.192)

n
ÿ

i“1

~p1
si “ 0 (2.193)

where~p1, ~p2, ...~pn are the lab-frame momenta in spatial coordinates. Solving this system

of equations viaMathematica yields,

βx “

n
ř

i“1
~pxi

n
ř

i“1
Ei

βy “

n
ř

i“1
~pyi

n
ř

i“1
Ei

βs “

n
ř

i“1
~psi

n
ř

i“1
Ei

(2.194)

After boosting the distribution of particles according to Eqn. (2.189) and (2.194),

the momentum of the particles will average to zero.
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The spatial coordinatespx, y, zq must also be transformed. The four-vector is ˜x “

p0, x, y, zq. By setting the first element of the four-vectorcτ to zero, we are stating that

an observer measures the location of each particle simultaneously. The transformed

distribution is obtained by applying̃xi “ Λxi for each particlei in the ensemble.

Time dilation reduces the amount of time passed in the boosted frame by a factor of

γ,

∆t1 “ ∆t
γ

“ ∆t
a

1 ´ β2 , (2.195)

whereβ “
b

β2
x ` β2

y ` β2
z . In the lab frame, l

βc seconds pass as the particle travels

through an element of lengthl. In the boosted frame, the amount of time passed is much

shorter, l
γβc .

The total energy of a particlei in the boosted frame is,

Ei “ c
b

P12
i,x ` P12

i,y ` P12
i,s ` m2

ec2 , (2.196)

where the prime indicates quantities in the boosted frame. The velocity of particlea in

the boosted frame in units of meters per second is

vi,x “ Pi,xc2

Ei
, (2.197)

vi,y “
Pi,yc2

Ei
, (2.198)

vi,s “ Pi,sc2

Ei
, (2.199)

vi “
b

v2
i,x ` v2

i,y ` v2
i,s . (2.200)

Takizuka and Abe’s plasma collision algorithm is non-relativistic. Figure 2.17 is a

histogram of the relative velocity between particle pairs in the boosted frame. There are

100000 particles in the ensemble.
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Figure 2.17: Relative velocity of particle pairs in the center of momentum frame of the
ensemble.

2.9.3 Collisions

Intrabeam scattering considers only those collision events with an impact parameter

small enough to significantly perturb the momentum of the colliding particles in a single

event. Only the collisions that a particle has with nearby particles contribute to the IBS

growth rate. In Monte Carlo simulation, this requirement is enforced by binning the

distribution of particles.

In the boosted frame, the particles are divided into cells defined by a 10̂ 10ˆ 15

grid. In each cell, the particles are paired off for collision. If there are an odd number

of particles in the cell, then one triplet is selected and thecollision is calculated such

that particle 1 imparts a momentum change to particle 2, which imparts a momentum

change to particle 3, which imparts a momentum change to particle 1. The pre-collision

momentum of particle 3 is used when calculating the momentumchange imparted to
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particle 1.

If a cell happens to have only one particle, then no collisions are calculated for that

particle. This will usually happen only for particles at theextremities of the bunch where

particle density, and thus the collision rate, is very low.

The pairing must be done such that each particle is matched toexactly one other

particle. This is done efficiently using Durstenfeld’s algorithm for generating a random

permutation of a finite set [10]. The algorithm isO pnq. Naive methods for determining

the pairs tend to beO pn2q and can significantly slow down the simulation.

Each particle in the ensemble represents the same numberne of actual particles. If a

bunch ofN “ 1011 electrons is represented by an ensemble of 2000 particles, then each

particle in the ensemble representsne “ 0.5 ˆ 108 electrons. The density of particles in

the cell is calculated from the total number of ensemble particles n in the cell and the

dimensions of the cellw, h, andl,

ρ “ n ˚ ne

w ˆ h ˆ l
. (2.201)

At this point we have selected two particles for collision and will refer to them as

particlea and particleb.

Particlea is treated as a test particle taking a random walk through a “wind” of

particles all with the same velocity vector as particleb. The density of particles in the

wind is determined by the density of particles in the cell.

As a result of travelling through the wind, the relative velocity of the two particles is

changed. The change is computed in the center of momentum frame of the two particles,

where the collision is head on. This change is parameterizedas zenithθ and azimuth

φ. To calculate the change inφ, a random number is selected between 0 and 2π. To
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calculate the change inθ, a random number is selected from a Gaussian distribution

with variance,

δ2 “ e4ρ∆t

4πm2
eǫ

2
0∆u3

log
bmax

bmin
, (2.202)

wheree is the electric charge,ρ is the density of particles in the cell,∆t is the length

of time over which the particles interact,me is the electron mass,ǫ0 is the permittivity

of free space,∆u is the relative speed of the two particles in their center of momen-

tum frame,bmax is the maximum impact parameter (typically taken as the height of the

bunch), and

bmin “ 1
πτρ∆u

, (2.203)

whereτ is the damping time. This calculation forbmin represents the tail-cut. It says

that as the particle makes its random walk through the wind, only those collisions which

occur more than once per damping time are included in the calculation.

With change in azimuthφ and zenithθ thus obtained, the change in the relative

momentum of two particles is,

∆ux “ ux

uK
uz sinθ cosφ ´

uy

uK
u sinθ sinφ ´ ux p1 ´ cosθq (2.204)

∆uy “
uy

uK
uz sinθ cosφ ` ux

uK
u sinθ sinφ ´ uy p1 ´ cosθq (2.205)

∆uz “ ´uK sinθ cosφ ´ uz p1 ´ cosθq , (2.206)

where,

u “
b

u2
x ` u2

y ` u2
z (2.207)

uK “
b

u2
x ` u2

y , (2.208)

andux, uy, anduz are thex, y, andz components of the relative velocity of the particles.

Particlea receives à ux, `uy, and`uz kick. Particleb receives á ux, ´uy, and

´uz kick. After all particle pairs have been collided, the ensemble is boosted back to
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Figure 2.18: Horizontal beam size versus turn from Monte Carlo simulation that incor-
porates intrabeam scattering. The equilibrium distribution from the lower current runs
are used to seed the higher current runs.

the lab frame and tracked to the next element. This process isrepeated until the beam

distribution reaches equilibrium. Figure 2.18 shows the horizontal beam size versus turn

for current ranging from 0.0 mA to 8.0 mA. The initial beam size is different for each

run because the equilibrium distribution from the low current runs are used as the initial

distribution of the higher current runs. The beam sizes are determined by calculating

theΣ-matrix, Eqn. (2.102). The horizontal, vertical, and longitudinal beam sizes
?
Σ11 ,

?
Σ33 , and

?
Σ55 . Shown in Fig. 2.28 are the equilibrium beam sizes versus current

compared with analytic results and data.

In Sec. 2.12.2, Monte Carlo simulation of direct space chargeis discussed in the

context of incoherent tune shift.
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2.10 Potential Well Distortion (PWD)

Another current-dependent effect that impacts the bunch dimensions in a storage ring

is potential well distortion. Potential well distortion isdue to interactions between the

bunch and its surrounding environment.

The field of the bunch interacts with structures in the vacuumsystem, resulting in

wake fields that act back on the bunch. One consequence of thisis a voltage gradient

along the length of the bunch. Particles at the head of the bunch lose energy to the

vacuum system. Part of this energy is reflected back to the tail of the bunch, effectively

transferring energy from the head of the bunch to the tail. Inmachines that operate

above transition, particles with less energy move ahead relative to the reference particle,

and those with more energy move back. The result is bunch lengthening. The amount of

lengthening is sensitive to the total bunch charge, but not to the transverse dimensions

of the bunch.

Energy that is reflected back into the bunch does not change the total energy of the

bunch and is referred to as the inductive (L) or capacitive (C) part of the impedance.

Energy absorbed by the vacuum system does change the total energy of the bunch and

is referred to as the resistive part of the impedance (R). The effect of potential well

distortion can be modeled as an effective current-dependent RF voltage. The effective

RF voltage is [4]

V pτq “ Vr f cospωτ ` φq ` RIb pτq ` L
dIb pτq

dτ
, (2.209)

whereτ is relative to the bunch center. The resistive impedanceR tends to shift the

synchronous phase but does not contribute to lengthening. The inductive partL changes

the Gaussian profile of the bunch, leading to real bunch lengthening.
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Figure 2.19: Effect of (a) resistive and (b) inductive parts of the longitudinal impedance
on the longitudinal profile of the bunch.

In principle, there is also a capacitive part to the impedance. Its effect is to shorten

the bunch. In CesrTA, only bunch lengthening is observed. This is because the inductive

term in the overall impedance is much larger than the capacitive. Hence, the reactive part

of the impedance is modeled as entirely inductive. In theory, the inductive, capacitive,

and resistive parts of the impedance could each be determined from the shape of the

longitudinal profile of the bunch. However, our measurements are not detailed enough

to determine if there is a significant capacitive component.

A derivation of PWD based on Vlassov theory results in a differential equation for

the longitudinal profile of the bunch [4],

Bψ
Bτ “ ´ eE0ψ

σ2
EαT0

¨

˝

Vr f cospωτ ` φq ` QRψ ´ U0

1 ` eE0QLψ
σ2

EαT0

˛

‚, (2.210)

whereE0 is the beam energy,σE is energy spread,α is momentum compaction,T0 is the

period of the ring,Vr f is the total RF cavity voltage,ω is the RF frequency,φ is the phase

of the reference particle with respect to the RF,Q is the bunch charge,U0 is the energy

lost per particle per turn,R is the resistive part of the longitudinal impedance, andL is

the inductive part of the longitudinal impedance.ψ pτq is the longitudinal profile of the

bunch. Equation (2.210) is used to compute the effect of various resistive and inductive

impedances on the longitudinal profile of the bunch. The results are shown in Fig. 2.19.
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We have incorporated the effect of PWD in our analytic model of IBS. Equation

(2.210) is used to compute bunch length, including the energy spread resulting from

intrabeam scattering. Comparing the measured bunch length versus current data to the

simulation result,L is determined to be between 15 and 19 nH. Our bunch length pre-

dictions are largely insensitive toR, and we use the published value of 1523Ω given by

Holtzapple et al. [17]. At the time of this writing, PWD has notbeen implemented in

the Monte Carlo simulation.

As shown in Fig. 2.19, resistive impedance has a negligible effect on the shape of the

longitudinal profile, whereas the inductive impedanceL distorts the Gaussian profile and

generates bunch lengthening. Figure 2.20 shows the contribution of the potential well

distortion to the bunch length assuming various values for the inductive impedance.

The current-dependent energy spread in CesrTA is determinedby measuring the

dependence of the horizontal beam size on the horizontal dispersion at the instrument

source point. The dispersion is varied with the help of a closed dispersion bump around

the source-point. The horizontal beam size is measured under two sets of conditions as
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the number of particles in a single bunch decays from 1.3 ˆ 1011 down to 2.4 ˆ 1010.

Horizontal dispersion is 2.28 cm in the first set of conditions, and 22.1 cm in the second.

The measured energy spread isσE{E “ p8.505˘ 0.314q ˆ 10́ 4 and is independent of

current within the measurement uncertainty. The design value of the fractional energy

spread as determined using the standard radiation integrals theory is 8.129̂ 10́ 4. There

is no evidence of a microwave instability, which would appear as an energy spread that

increases with current above some threshold current.

2.11 Simulation Lattices

An element-by-element description of CesrTA is used for the analytic and tracking cal-

culations shown here. This description includes quadrupoles, sextupoles, bends, steer-

ings, skew quadrupole correctors, wigglers, and RF cavities. Systematic multipoles are

included for those sextupoles which have skew quadrupole orvertical steering windings.

We use an analytic model of the damping wiggler field, which isbased on a fit to a finite

element calculation [40]. Tracking through wigglers is by symplectic integration.

The vertical IBS rise time depends on the dispersion. However, vertical dispersion

is zero for an ideal flat ring. Vertical dispersion is included in our analytic IBS calcu-

lations by introducingyz coupling into the 1-turn transfer matrix. This is done at each

element by augmenting the 1-turn transfer matrix before utilizing it in the analytic IBS
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calculation. The transfer matrixT is replaced with with̃T, whereT̃ “ TW , and

W “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 ´η̃y

0 0 0 1 0 ´η̃1
y

0 0 η̃1
y ´η̃y 1 0

0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.211)

This transformation preserves the symplecticity of the transfer matrix. ˜ηy and η̃1
y are

dispersion-like quantities. An ideal lattice modified according to the above prescription

with η̃y “ 0.01 m and ˜η1
y “ 0.002 has an rms vertical dispersion of 10.9 mm and a

vertical IBS rise time similar to that of a lattice with an rms vertical dispersion of 10

mm.

The vertical dispersion in CesrTA is measured to be less than 15 mm. The upper

bound is limited by the resolution of our measurement technique. The coupling is de-

termined by direct measurement to bēC12 ă 0.003, using an extended Edwards-Teng

formalism [41].

The analytic simulation takes the measured low current horizontal and vertical beam

sizes and bunch length as input parameters and computes the current dependence. The

horizontal emittance used in the calculation is chosen to match the measured near zero

current emittance. The vertical emittance is also set to agree with the measurement

extrapolated to zero current. (The vertical emittance of the design simulation lattice

is zero.) The energy spread and bunch length used in the simulation are obtained by

evaluating the standard radiation integrals.

The Monte Carlo simulation includes photon emission and so requires a realistic ver-
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tical dispersion function. This is generated by applying a distribution of misalignments

to the ideal lattice, then correcting the phase advance, coupling, orbit, and vertical dis-

persion according to the same procedure that is applied to CesrTA [44]. The magnitude

of the misalignments is set such that the zero current vertical emittance is roughly 15

pm-rad.

2.12 IBS Experiments at CesrTA

2.12.1 Horizontal-Longitudinal Coupling in CesrTA

The horizontal beam sizes measured at the start of our IBS investigations at CesrTA

were about 240 um. This is significantly larger than the 175 umthat was expected.

Usingǫ “ σ2

β
, 240 um corresponds to about 6 nm-rad horizontal emittance.3 nm-rad is

what is expected from radiation integrals calculations.

Initial investigations focused on identifying discrepancies between the design optics

and actual machine optics. Discrepancies large enough to double the horizontal emit-

tance were not found. We also investigated the horizontal beam size monitor for sys-

tematics. The horizontal beam size monitor is calibrated using a source of known size.

Additionally, the instrument is validated by measuring thebeam size while varying hor-

izontal β-function at the source point. These investigations ruled out instrumentation

systematics as a cause of the larger-than-expected horizontal measurements.

The cause of the large horizontal beam sizes was found while developing the Monte

Carlo IBS simulation. Beam sizes are obtained from the Monte Carlo simulation by

computing the beam envelope matrix of the particle distribution. The horizontal and
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vertical beam size and bunch length are obtained from the 11,33, and 55 components

of the beam envelope matrix. The horizontal beam sizes obtained from the Monte Carlo

simulation agreed with the larger-than-expected measurements we were obtaining from

the machine.

It was then quickly discovered that the particle distribution was tilted in thexz plane.

Tilt in the xz plane increases thex-projection of the particle distribution, yielding a larger

measured horizontal beam size.

The source of thexz tilt is xz coupling introduced by horizontal dispersion in the

RF cavities. For low-emittance operation, it is necessary toeliminate dispersion in the

damping wigglers. This requirement constrains on the optics such that the horizontal

dispersion in the RF cavities cannot be zero. The horizontalβ-function and dispersion,

along withe locations of the four RF cavities, are shown in Fig. 2.21.

The xz tilt of the beam is given by theCac11 term of the coupling matrix.Cac11 is

the 15 term of theV matrix and is also known asV15 Shown in Fig. 2.22 isV15 along

CesrTA. Also shown is the location of the horizontal beam sizemonitor instrumentation

source points. The horizontal source point for positrons is374.247 m, and for electrons

is 493.1812.
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Figure 2.22:xz coupling termV15 along CesrTA. The blue bands show the locations of
the horizontal beam size monitor source points for positrons (374.247 m) and electrons
(394.1812 m).

Horizontal (a-mode) emittance in CesrTA is about 3 nm-rad. Longitudinal (c-mode)

emittance is about 9µm-rad. The coupling parameterγa is very close to one. At loca-

tions whereV15 is large, thec-mode emittance can make as much of a contribution to

the projected horizontal beam size as thea-mode emittance.

xz tilt can be managed by adjusting the phase advance between the RF cavities.

There are two pairs of RF cavities in CesrTA. Through the South region, they are sepa-

rated by approximately 1.5 betatron wavelengths. To mitigate thexz tilt, the horizontal

betatron phase advance between the two pairs is adjusted such that thexz coupling gen-

erated in one pair of RF cavities cancels that generated in theother pair. This results in

more tilt in the South region, but reduces tilt near the instrumentation source points.

Data taken during the April 2012 CesrTA run, shown in Sec. 2.12.3.1, is affected by

the xz tilt. This is evident in the large zero-current horizontal beam size. Data taken in

December 2012, shown in Sec. 2.12.3.2, was taken on a latticewith V15 compensation.

The horizontal beam sizes in the December data are noticeably smaller.

In and of themselves, tilted beams are not problematic. The difficulty is in calculat-

ing the beam size. In the presence ofxz coupling, the commonly used expression for
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calculating the beam size,

σ “
b

ǫβ ` η2σ2
p , (2.212)

is no longer valid and should not be used. However, calculating the beam size from the

beam envelope matrix, as discussed in Secs. 2.6.1 and 2.7.0.1, is valid.

2.12.2 Coherent and Incoherent Tune Shift

A current-dependent shift of the coherent tune is observed in CesrTA. At 2.1 GeV, the

vertical shift was measured to bé0.505˘ 0.006 kHz/mA. The horizontal shift was

measured to bé 0.072˘ 0.006 kHz/mA. (1 kHz corresponds to a change in fractional

tune of 0.0026.) The synchrotron tune has been measured versus current, and no shift

was observed. These tune shifts are relevant to IBS studies because the beam size will

in general depend on proximity of the coherent tune to resonance lines in the tune plane.

Preparation for IBS studies includes identifying a region ofthe tune plane where the

effect of resonance lines is minimized for the range of currentsto be explored. The

tune plane is scanned with direct measurement as well as tracking simulation. The

experimental tune scans are performed by recording the beamsizes as the tune is varied
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by adjusting quadrupole strengths.

Figure 2.24 shows the measured dependence of vertical and horizontal coherent tune

on bunch current. The betatron frequencies are measured viaa pair of spectrum analyz-

ers connected to beam position monitor (BPM) buttons.

Incoherent tune shifts may also contribute to the current-dependence of the measured

beam size. The difference between coherent and incoherent tunes is well-described

by Schindl [42]. In short, coherent tune refers to the motionof the bunch centroid.

Incoherent tune refers to the distribution of tunes in the bunch. One source of incoherent

tune shift is direct space charge, which is discussed in the context of linear collider

damping rings in [9, 51, 60]. Under the influence of direct space charge, each particle

in the bunch will in general have a different betatron tune that depends on the particle’s

invariantsJx andJy. The betatron tune will also depend onJz and the longitudinal phase

of the particle, as the defocusing force due to space charge depends on where the particle

is relative to the bunch center. The width of this distribution can become very large at a

few mA, making it difficult to position the bunch in the tune plane so that no particles

encounter resonance lines. If a particle encounters a difference resonance, its motion

becomes coupled and action can be transferred from the longitudinal or horizontal to

the vertical. If a particle encounters a sum resonance, its actions can become arbitrarily

large [46]. These effects will cause the vertical emittance to increase, and may also lead

to particle loss. A bunch with a large tune footprint may be influenced by the effect of

several resonance lines at once, making it difficult to predict beam behavior.

The incoherent tune shift due to direct space charge forces for a particle with spatial

coordinatesx, y, andz, is given by [9]

∆Qsc;x|y « LreNee
´z2

2σ2
z

p2πq3{2
γ3 ?

ǫxǫy σz

, (2.213)
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whereL is the ring circumference,re is the electron radius,Ne is the number of particles

in the bunch,σz is the bunch length,γ is the relativistic factor, andǫx,y are the geometric

emittances. A particle will sample a space charge focusing that varies as it executes

synchrotron oscillations.

Evaluating Eqn. (2.213) under typical CesrTA conditions fora particle atz “ 0 in

a bunch with 1.6 ˆ 1010 particles yields a fractional tune shift of́0.01. At z “ σz,

the shift is´0.004. The predicted shift scales linearly with current. Figure 2.26 shows

Monte Carlo simulations of the tune spread produced by directspace charge. At each

element in the lattice, for each particle, the electric fielddue to space charge is calculated

using the Bassetti-Erskine formula [3]. This electric field is used to apply a kick to the

particle.

Figure 2.25 shows the effect of direct space charge on the equilibrium vertical beam
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size. As current is added to the bunch, direct space charge generates a large tune spread

among the particles in the bunch. This drives the tune of individual particles over res-

onance lines, which increases the vertical beam size and diminishes the effect of direct

space charge.

The simulation tracks 2000 particles for 5000 turns each. For each particle, the tune

over the last 2048 turns is extracted with a fast Fourier transform (FFT). The FFT spectra

of the individual particles are averaged to give the plottedresult. This plot shows that

the spread in horizontal tune is small, but spread in vertical tunes becomes very large

above a few mA.

Figure 2.27 shows a simulated tune scan. The color scale shows the rms value of the

vertical-like normal mode actionJb of a particle tracked for 2000 turns, normalized by its

initial valueJb0. The thin lines are analytic calculations of the formrQx ` sQy ` tQz “

n. The labels are of the formpr, s, t, nq. Amplitude-dependent tune-shift causes the

resonance lines in the simulation to be offset from the analytic calculations. The initial

action of the tracked particle is set to be about ten times theequilibrium emittance. The

yellow line shows the range of coherent tune spanned as a bunch decays from 1.3ˆ 1011

particles to 1.6 ˆ 109 particles. The upper right hand point is the zero current tune.

Comparing Figs. 2.26 and 2.27, we see that above a few mA, the tune footprint spans a

significant region of the tune plane.

The simulated and experimental tune scans are generally only in approximate agree-

ment. The lower order resonances, such asp1,´1,´1,0q, tend to be much broader in

the experimental tune scan. The higher order resonances seen in the simulated scan do

not appear in the experimental scan. The choice of working point for the IBS measure-

ments is based on consideration of both of the tune scans and may be adjusted further

depending on machine behavior.
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2.12.3 Intrabeam Scattering Experiments

For measurements of intrabeam scattering, we load a specificlattice configuration, and

set beam energy, working point, and RF voltage. The machine istuned for minimum

vertical emittance according to the algorithm given in [44]. For experiments requiring a

largerǫy, the vertical emittance is increased by adjusting a closed coupling and vertical

dispersion bump that propagates vertical dispersion through the wigglers.
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A single bunch of about 1.6 ˆ 1011 particles (10 mA) is allowed to decay. The

measurements include horizontal and vertical beam sizes, streak camera measurements

of the longitudinal profile, and tunes in all three dimensions. The short beam lifetime is

due to Touschek scattering. In about 20 minutes, the beam current decays from 10 mA

to 1 mA. Below 1 mA the beam lifetime improves significantly. Inthe interest of time,

a large-amplitude pulsed orbit bump is used to scrape particles out of the beam in 0.25

mA increments. The discontinuities in the data at bunch charge ă 2 ˆ 1010 particles

correspond to the regime where beam is scraped out.

IBS measurements were done during dedicated periods of CesrTAoperation in April

2011, June 2011, December 2011, April 2012, and December 2012. The IBS measure-

ments in 2011 led us through iterative improvements in our understanding of how to

operate the accelerator and how to measure IBS effects. Improvements on the acceler-

ator side included a better understanding of the tunes and the selection of the working

point (tunes as determined by lattice optics), a better understanding of the coupling

and its impact on the measurements, and the development of more exact procedures for

establishing the desired machine configuration. Improvements to the instrumentation in-

cluded the implementation of beam size measurements for both electrons and positrons

and the development of more accurate and robust analysis software.

This thesis includes data from the April and December 2012 machine studies. The

configuration procedures, analysis methods, and simulation methods implemented in

April yielded data where it seems clear that the horizontal beam size versus current is

dominated by IBS and agrees well with simulations.

The December results confirm and build upon the April measurements. The exact

same IBS calculation method that yielded good agreement withthe April 2012 data,

also yielded fair agreement when applied to the December 2012 data. The December
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Figure 2.28: (a) horizontal, (b) vertical, and (c) longitudinal beam size versus current
for e` bunch in conditions tuned for minimum vertical emittance.

2012 includes measurements at 2.3 GeV and data taken versus RF voltage. The April

measurements are all at 2.1 GeV and the IBS calculation methods we use were devel-

oped on 2.1 GeV data. The fact that the model worked, without modification, on the 2.3

GeV data was reassuring. IBS growth rates have a strong
1
γ4

dependence.

2.12.3.1 April 2012 Data

Shown in Fig. 2.28 is data from a positron bunch in conditionstuned for minimum

vertical emittance.

The approximate statistical uncertainties at high currentare shown in Tab. 2.4. For

the bunch length and horizontal beam size measurements, thestatistical uncertainty in

the current and size is plotted for each data point. The errorbars may be below the
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Table 2.4: Approximate statistical uncertainties at high current.

Measurement Uncertainty

Current (horiz. binning) 0.3%

Current (bunch length binning) 0.9%

Horizontal Size 0.2%

Bunch Length 1.0%

Vertical Size 0.2%

resolution of the plot.

The vertical measurement represents the average of the fits over 1024 consecutive

turns. Error bars representing the statistical uncertainty are plotted, though they may be

below the resolution of the plot. Much of the point-to-pointfluctuation can be attributed

to noisy transverse feedback amplifiers that were diagnosedafter this data was taken.

The sharp decrease in the vertical beam size and subsequent real fluctuations in beam

size at low current is puzzling. Our first reaction is that thedata looks like a low-current

instrumentation systematic. However, our analysis of the raw instrument data has not

pointed to any particular systematic which could cause the drop-off. We have been

unable to explain the drop-off with any of the current-dependent effects that have been

addressed in our studies.

The vertical measurements are subject to a„ ˘2 micron systematic that will be

addressed in detail in my colleagues thesis [45]. For now we note that IBS is sensitive

to the vertical beam size, but not so sensitive that˘2 micron is significant. The theory

results shown below are evaluated over a range of vertical beam sizes that covers the the

potential systematic uncertainty. As will be explained below, we observe IBS blow-up

in the horizontal dimension, but not so much in the vertical dimension. The vertical

dimension is important to our IBS predictions because it setsthe particle density, which

in turn affects the horizontal IBS blow-up.
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Analytic results from theΣ-matrix formalism described in Sec. 2.8.1 and the Monte

Carlo simulation described in Sec. 2.9 are shown along with the data. The accuracy of

the simulation is limited by the ambiguity of the Coulomb Log and limited knowledge

of the zero current vertical beam size of the machine. The simulation result shown here

follows the usual convention for the tail-cut of 1 event/damping time as the cutoff.

A major contribution to the vertical measurement systematic uncertainty is the “pin-

hole subtractor”. The pinhole subtractor is the size that would be reported by the instru-

ment if the beam has zero vertical size. It is calculated using a simulation of the vertical

beam size monitor. The vertical beam size measurementσm is

σm “
b

σ2
D ´ σ2

P , (2.214)

whereσD is the size reported by the instrument andσP is the pinhole subtractor. The

value of the pinhole subtractor at 2.1 GeV is p15. ˘ 2.q micron, and at 2.3 GeV is

p13.5 ˘ 2.q micron. The systematic uncertainty in the beam sizeσσm due to uncertainty

in the pinhole subtractorσσp is calculated from,

σσm “ σP

σm
σσp. (2.215)

This gives a systematic uncertainty of about˘1.2 um at 2.1 GeV for a 25 um beam,

and˘1.4 um at 2.3 GeV for a 20 um beam. Other sources of systematic uncertainty

include magnification of the pinhole optic and uncertainty of the lattice optics at the

image source point.

TheΣ-matrix IBS simulation is run twice, once with a zero current vertical emittance

that extends to the bottom range of the measurement uncertainty, and once that extends

to the upper range of the measurement uncertainty. The shaded region is the area be-

tween those two results. This serves two purposes. First, itreflects our uncertainty

about the vertical beam size. Second, it gives the reader an idea of how the horizontal

simulation result depends upon particle density as determined by the vertical beam size.
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Figure 2.29: CesrTA designa-mode (horizontal-like)β and dispersionη.

The zero current vertical emittances that bound the data in Fig. 2.28(b) are 17.4 pm

and 24.6 pm. The shaded regions of 2.28(a) and 2.28(c) show how the horizontal and

vertical simulation results change as the zero current vertical emittance is varied from

the lower bound to the upper bound.

The measured zero current horizontal emittance, which is aninput parameter to the

simulation, is 3.8 nm-rad. The calculated value is 2.7 nm-rad for the perfectly aligned

lattice. This discrepancy between the measured and calculated horizontal emittance

is not well understood. For the bunch length and energy spread, we use the values

calculated from the radiation integrals.

The simulation uses a perfectly aligned CesrTA lattice. Vertical dispersion is in-

cluded by modifying the 1-turn transfer matrix withW before passing it to the IBS

rise-time calculation. ˜η is set to 10 mm. The horizontal emittance increases from 3.8

nm-rad at low current (ă 1.5 ˆ 109 particles/bunch) to 10.4 nm-rad at 1.3 ˆ 1011 parti-

cles/bunch. The reason for the relatively large horizontal blow-up is the large horizontal

dispersion in CesrTA. The lattice functionsβa andηa are shown in Fig. 2.29. The rms

horizontal dispersion,ηa, is 1.0 m and peaks at 2.46 m. For comparison, the rms vertical

dispersion is less than 15 mm.

In Fig. 2.30 the zero current vertical emittance of the bunchwas increased by prop-

agating vertical dispersion through the damping wigglers with the help of a closed cou-
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Figure 2.30: (a) horizontal, (b) vertical, and (c) longitudinal beam size versus current
for e` bunch with increased zero current vertical emittance.

pling and dispersion bump. The larger vertical beam size decreases the particle density,

which in turn reduces the amount by which IBS blows up the horizontal beam size. The

zero current horizontal emittance is 3.7 nm-rad. The zero current vertical emittances

that bound the data are 48.0 pm and 56.3 pm.

IBS theory is species-independent. Measurements of bothe´ and e` can help

identify machine and instrumentation systematics and distinguish IBS from species-

dependent beam physics such as electron cloud and ion effects.

Figure 2.31 shows data from an electron bunch in conditions tuned for minimum ver-

tical emittance. During the electron experiments, an improperly setup transverse feed-

back system was mistakenly left on. It drove the coherent tunes onto thep1,´1,1,0q

resonance line at currents above 5.6 ˆ 1010 part/bunch. The measured horizontal emit-
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Figure 2.31: (a) horizontal, (b) vertical, and (c) longitudinal beam size versus current for
e´ bunch in conditions tuned for minimum vertical emittance. An uninitialized trans-
verse feedback system was mistakenly turned on during this run. It drove the coherent
tunes onto thep1,´1,1,0q resonance line at currents 5.6 ˆ 1010 above part/bunch.

tance is 4.3 nm-rad at zero current and 8.2 nm-rad at 4.8 ˆ 1010 particles/bunch. The

zero current vertical emittances that bound the data are 17.0 pm and 22.5 pm.

Shown in Fig. 2.32 is data from ane´ run where the vertical emittance was increased.

The horizontal emittance is 4.2 nm-rad at zero current and 5.5 nm-rad at 4.8 ˆ 1010

particles/bunch. The vertical emittances that bound the data are 172 pmand 188 pm.

Figure 2.33 shows the combined data from the twoe´ and twoe` April 2012 data

sets. Simulation parameters for the April 2012 data are summarized in Tab. 2.5.

121



 240

 245

 250

 255

 260

 265

 270

 275

 280

 285

 290

 0  2  4  6  8  10  12  14

H
or

iz
on

ta
l B

ea
m

 S
iz

e 
(µm

)

(N/bunch)⋅1010

a)

Model (Ideal Lat+η~=10 mm)
Data (binned)

 75

 80

 85

 90

 95

 0  2  4  6  8  10  12  14

V
er

tic
al

 B
ea

m
 S

iz
e 

(µm
)

(N/bunch)⋅1010

b)

Model (Ideal Lat+η~=10 mm)
Data

 9.5

 10

 10.5

 11

 11.5

 12

 0  2  4  6  8  10  12  14

B
un

ch
 L

en
gt

h 
(m

m
)

(N/bunch)⋅1010

c)

Model (Ideal Lat+η~=10 mm)
Data (binned)

Figure 2.32: (a) horizontal, (b) vertical, and (c) longitudinal beam size versus current
for e´ bunch with increased zero current vertical emittance. An uninitialized transverse
feedback system was mistakenly turned on during this run. Itdrove the coherent tunes
onto thep1,´1,1,0q resonance line at currents above 5.6 ˆ 1010 part/bunch.

Table 2.5: Simulation parameters used to model April 2012 data.

Min. ǫy0 Max. ǫy0 ǫx0 ǫx at high current

(pm rad) (pm rad) (nm rad) (nm rad)

e` Low ǫy0 17.4 24.6 3.8 10.6

e` High ǫy0 48.0 56.3 3.7 8.1

e´ Low ǫy0 17.0 22.5 4.3 -

e´ High ǫy0 172. 188. 4.2 -
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Figure 2.33: Aggregated (a) horizontal, (b) vertical, and (c) longitudinal data compar-
ing e` ande´ in minimum emittance conditions and conditions where the zero current
vertical emittance was blown up using closed coupling and dispersion bumps.
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2.12.3.2 December 2012 Data

Prior to the December 2012 machine studies, the same latticehad been used for all IBS

experiments. This lattice is referred to as “CD40” and has 12 wigglers at full power, and

the optics are configured for low emittance. This lattice also has about 1 m of horizontal

dispersion in the RF cavities.

In the April 2012 measurements, and during all earlier machine studies, the horizon-

tal beam size was observed to be about 80µm larger than calculated. Around 160µm

was expected, but around 240µm was measured.

The large horizontal beam size was puzzling. There were manyinvestigations into

possible optics problems and instrumentation systematics. Then, during the develop-

ment of the Monte Carlo simulations discussed in Sec. 2.9, it was noticed that the same

large horizontal beam sizes were being reproduced. Simulation investigations led us to

the conclusion that the cause was dispersion in the RF cavities.

Dispersion in the RF cavities creates horizontal-longitudinal coupling that is re-

flected in non-zeroV15 coupling terms. These coupling terms tilt the beam in the

horizontal-longitudinal plane. This was the cause of the large horizontal beam size

measurements. The beam was tilted in thex ´ z plane at the instrumentation source

points.

In preparation for the December 2012 machine studies, two remedies were prepared.

The first remedy was to create a new lattice that controlled the horizontal phase advance

between the RF cavities. The phase advance was adjusted in order to cancel theV15

terms in the regions where the instrumentation is located. This lattice is referred to as

“V15 Managed”.
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Table 2.6: Simulation parameters used to model December 2012 2.1 GeV data. All data
is from positron beams. Optics adjusted to minimizeV15 at the beam size instrumenta-
tion source points.

Min. ǫy0 Max. ǫy0 ǫx0 ǫx at high current

(pm rad) (pm rad) (nm rad) (nm rad)

Low ǫy0 12.9 17.7 3.6 10.8

Med. ǫy0 59.6 69.6 4.1 8.1

High ǫy0 180. 197. 3.4 5.8

The second remedy was to prepare a lattice with 6 of the 12 damping wigglers pow-

ered off. Powering off the extra wigglers frees up the constraints on the lattice optics and

allows for the dispersion at the RF cavities to be set to zero. This naturally eliminates the

V15 coupling, at the expense of half the damping. This lattice isreferred to as “eta-free”.

To validate these remedies, beam size versus RF voltage measurements were taken

on all 3 lattices: CD40, V15 Managed, and eta-free. The results are shown in Figs. 2.41,

2.42, and 2.43. TheV15 coupling term varies with the RF voltage and so changing the RF

voltage adjusts the tilt at the instrumentation source points. A reduction in the RF volt-

age is expected to reduce the tilt at the instrumentation source point and therefore reduce

the measured horizontal beam size. However, reducing the RF voltage also lengthens

the bunch, which reduces IBS effects. The beam size versus RF voltage measurements

were done at low current, 0.5 mA and 1.0 mA to minimize the effect of IBS. Nonethe-

less, IBS effects are still present in the horizontal at these low currents and the predicted

results for these experiments include IBS calculations.

The V15 Managed lattice proved to be a success not only for thebeam size versus

current measurements, but also for the beam size versus current measurements. Beam

size versus current data for the V15 Managed lattice is shownin Figs 2.34, 2.35, 2.36,

and 2.37. Simulation parameters are shown in Tab. 2.6.
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The beam size versus current data for the eta-free lattice was dominated by non-

IBS current-dependent effects. Beam size versus current measurements for the eta-free

lattice are not shown. Loading the eta-free lattice into CesrTA, obtaining decent injec-

tion, and tuning for low emittance were very challenging. This lattice will be revisited

in future CesrTA machine studies and more attention will be spent on working out its

systematics.

Prior to the December 2012 machine studies, it was found thatthe transverse feed-

back amplifiers were adding a substantial amount of noise to the beam. The amplifiers

were exciting beam motion at the betatron tunes and increasing the emittance of the

beam. This effect was seen even if feedback was not being applied to the beam. To

remedy this solution, the feedback amplifiers were physically turned off during the IBS

measurements. This resulted in a 5 pm reduction in vertical emittance and substantially

less measurement-to-measurement scatter in the horizontal beam size measurement.

Difficulties were encountered when trying to obtain data with electrons during the

December 2012 machine studies. We were not able to obtain reliable IBS data with

electron beams. It is not known whether species-dependent beam physics, such as ions

or electron cloud, played a role, or if there were problems with the instrumentation.

Positron beams and electron beams are measured with different instrumentation. All

reported data from the December 2012 machine studies is frompositron beams.
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Lattice With Managed Horizontal-Longitudinal Coupling
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Figure 2.34: Measurements on V15 Managed lattice. (a) horizontal, (b) vertical, and
(c) longitudinal beam size versus current fore` bunch in CesrTA configured for low
emittance. The simulation is run twice. Once with a zero-current vertical beam size
that extends to the bottom range of vertical size measurements, and once that extends to
the upper range. The area between these two simulation results is shaded in blue. The
lower range vertical emittance is 12.9 pm-rad, and the upper range is 17.7 pm-rad. Zero
current horizontal emittance is 3.6 nm-rad.
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Figure 2.35: Measurements on V15 Managed lattice. (a) horizontal, (b) vertical, and (c)
longitudinal beam size versus current fore` bunch in CesrTA configured for approxi-
mately 55 pm vertical emittance.
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Figure 2.36: Measurements on V15 Managed lattice. (a) horizontal, (b) vertical, and (c)
longitudinal beam size versus current fore` bunch in CesrTA configured for approxi-
mately 160 pm vertical emittance
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Figure 2.37: Measurements on V15 Managed lattice. Aggregated (a) horizontal, (b)
vertical, and (c) longitudinal data comparinge` in minimum emittance conditions and
conditions where the zero current vertical emittance was blown up using closed coupling
and dispersion bumps.
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Measurements at 2.3 GeV

Comparison of data and simulation result over a range of beam energies is an im-

portant check of the accuracy of IBS theory and our method for predicting current-

dependent beam sizes.

Intrabeam scattering growth rates have a
1
γ4

dependence on beam energy. Two of

these factors of
1
γ

come from adiabatic damping of the geometric emittance. Onefactor

of
1
γ

comes from length contraction. In the center of momentum frame of the bunch,

the particle density is reduced by a factor of
1
γ

. The last factor ofγ comes from time

dilation in the center of momentum frame.

Shown in Figs. 2.38 and 2.39 is data from CesrTA positron beamsat 2.3 GeV. In

Fig. 2.38, the machine is tuned for minimum vertical emittance. In Fig. 2.39, the zero

current vertical emittance is increased using a closed optics bump that increased the

coupling and vertical dispersion in the wiggler regions.

Shown in Tab. 2.7 are the simulation parameters used to modelthe December 2012

2.3 GeV IBS data.

Shown in Fig. 2.40 is the aggregated data from the December 2012 2.3 GeV IBS

studies.

Note that the vertical beam sizes observed in CesrTA at 2.3 GeV are smaller than

those observed at 2.1 GeV. This suggests that the current-independent verticalemittance

of the machine is generated in large part by noise in the machine. Emittance generated

due to photon emission goes asγ2, while emittance generated due to noise is reduced as

beam energy is increased.
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Figure 2.38: (a) horizontal, (b) vertical, and (c) longitudinal beam size versus current
for 2.3 GeVe` bunch in CesrTA configured for approximately 6 pm vertical emittance.

Table 2.7: Simulation parameters used to model December 2012 2.3 GeV data. All data
is from positron beams. Optics are adjusted to minimizeV15 coupling at the beam size
instrumentation source points.

Min. ǫy0 Max. ǫy0 ǫx0 ǫx at high current

(pm rad) (pm rad) (nm rad) (nm rad)

Low ǫy0 8.68 12.8 5.63 11.3

High ǫy0 63.4 73.9 5.63 8.05

132



 200

 210

 220

 230

 240

 250

 260

 270

 0  2  4  6  8  10  12  14

H
or

iz
on

ta
l B

ea
m

 S
iz

e 
(µm

)

(N/bunch)⋅1010

a)

Model (Ideal Lat+η~=10 mm)
Data (binned)  50

 51

 52

 53

 54

 55

 0  2  4  6  8  10  12  14
V

er
tic

al
 B

ea
m

 S
iz

e 
(µm

)

(N/bunch)⋅1010

b)

Model (Ideal Lat+η~=10 mm)
Data

 10.5

 11

 11.5

 12

 12.5

 13

 0  2  4  6  8  10  12  14

B
un

ch
 L

en
gt

h 
(m

m
)

(N/bunch)⋅1010

c)

Model (Ideal Lat+η~=10 mm)
Data (binned)

Figure 2.39: (a) horizontal, (b) vertical, and (c) longitudinal beam size versus current for
2.3 GeVe` bunch in CesrTA configured for approximately 54 pm vertical emittance.

133



 200

 220

 240

 260

 280

 300

 320

 0  1  2  3  4  5  6  7  8  9

H
or

iz
on

ta
l B

ea
m

 S
iz

e 
(µm

)

Current (mA)

Model
High εy0
Low εy0

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0  1  2  3  4  5  6  7  8  9
V

er
tic

al
 B

ea
m

 S
iz

e 
(µm

)

Current (mA)

Model
High εy0
Low εy0

 11

 11.5

 12

 12.5

 13

 0  1  2  3  4  5  6  7  8  9

B
un

ch
 L

en
gt

h 
(m

m
)

Current (mA)

High εy0
Low εy0

Figure 2.40: Aggregated 2.3 GeV data. (a) horizontal, (b) vertical, and (c) longitudi-
nal beam size versus current. Optics are configured to minimize V15 coupling at the
horizontal beam size monitor source point.
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Measurements versus RF Voltage
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Figure 2.41: Horizontal beam size versus RF voltage. Both V15 tilt and IBS effects are
observed in this data.
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Figure 2.42: Vertical beam size versus RF voltage. The simulation lattices here are ideal
with no vertical dispersion. Expected response is flat versus RF voltage.
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Figure 2.43: Bunch length versus RF voltage. The primary effect see here is the change
in bunch length due to change in RF cavity voltage.
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2.13 Discussion

2.13.1 Data

IBS effects are most evident in the horizontal dimension, where large horizontal dis-

persion leads to significant blow-up. In comparison, IBS is not a strong effect in the

vertical. This is because the vertical dispersion and transverse coupling are so small.

The direct transfer of momentum from the horizontal to the vertical by IBS is small at

2.1 GeV.

The amount of the blow-up can be controlled by varying the zero-current vertical

emittance, and thus the particle density. The simulations show bunch lengthening due

to IBS, but we are unable to distinguish IBS lengthening from potential well distortion

in our measurements.

An interesting anomaly we have encountered is the behavior of the vertical beam

size at high currents. The effect is seen in Fig. 2.28(b) above 9̂1010 particles/bunch,

Fig. 2.38(b) above about 5̂1010 particles/bunch, and also in Fig. 2.34(b), Fig. 2.35(b),

and Fig. 2.36(b). We observe that vertical beam size plottedversus current increases

with positive curvature. Much more severe cases of this blow-up have been observed

during the machine studies. We find that adjusting betatron and synchrotron tunes during

experiments affects the blow-up, but in a somewhat unpredictable way.

The horizontal beam size is observed to decrease when the vertical size increases.

This is expected behavior in an IBS-dominated beam. The increase in the vertical size

decreases the particle density, which therefore reduces the strength of the IBS effect.

The blow-up is believed to be due in part to coherent tune shift and incoherent tune

137



footprint. When the coherent tune we measure approaches a resonance line, the vertical

beam size is seen to increase. While the incoherent tune cannot be measured, analytic

calculations and Monte Carlo space charge simulation suggests that, at high current, the

footprint of the bunch in the tune plane is very large and spans many resonance lines.

At high current, the vertical beam centroid position over 32768 turns was recorded

using the turn-by-turn vertical beam size-monitor. An FFT of these data does not show a

clear signal above background, so we cannot attribute the anomalous growth in vertical

size to an instability. Adjustments to the corrected chromaticity did not impact the blow

up.

Coupling measurements at high current have been taken in conditions where the

anomalous blow-up was observed, and no evidence was found ofcurrent-dependent

transverse coupling.

The low current bunch length we measure is consistently about 0.5 mm longer than

the predicted value, or about 5%. Given that bunch length is afairly simple, and pre-

sumably robust, calculation, it is puzzling why our measurements are systematically off.

The size of the discrepancy seems to have been smaller duringthe December run. The

streak camera has been checked thoroughly for systematics and a cause has not been

found.

Good agreement between our IBS calculation methods and experiment were found

in April and December for 2.1 GeV beams. In December, we also obtained data at 2.3

GeV. We find that the predictions of our IBS calculation methods are in good agreement

with the 2.3 GeV data. No modifications to the simulation method were necessary, and

no parameters were adjusted aside from loading in the 2.3 GeV lattice. We believe this

is a strong argument in support of our IBS calculation methods.
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2.13.2 Theory

The presence of the Coulomb Log is a well-known ambiguity in IBStheory as it requires

the introduction of loosely defined cutoffs in the minimum and maximum scattering

angle. The choice of one event per damping time as the boundary between multiple-

event and single-event scattering is somewhat arbitrary. That said, the data shown here

are in reasonable agreement with theory, suggesting that with implementation of the

tail-cut, the IBS theory is a reasonable model of performancefor electron machines.

Furthermore, as shown in Fig. 2.14(b), the theory gives a good description of the data

even when the large angle cutoff used in the calculation is varied by more than an order

of magnitude.

The theory used here is Kubo & Oide’sΣ-matrix based IBS formalism. This model

is a generalization of Bjorken & Mtingwa’s formalism that canhandle arbitrary coupling

of the horizontal, vertical, and longitudinal motion. It includes the tail-cut. Coupling in

CesrTA for the experiments shown here was not large enough to noticeably impact the

IBS growth rates. If coupling were significantly larger, thenthe predictions from Kubo

& Oide’s method may diverge from those of Bjorken & Mtingwa’s method. Such will

be the subject of future investigations.

2.13.3 Conclusions

In this first half of the thesis, we have derived methods for calculating IBS growth rates

and incorporated them into a normal modes simulation environment. These methods

have been used to predict beam size versus current behavior in CesrTA.

Measurements in all three dimensions of beam size versus current in single-bunch
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beams dominated by IBS effects at 2.1 and 2.3 GeV have been taken. The measure-

ments compare well with predictions over the range of currents where IBS effects are

dominant.

At high current, another effect takes over causing the vertical beam size versus cur-

rent to increase with positive curvature. Early investigations suggest that this blow-up

could be due to incoherent tune due to direct space charge. Analytic calculations suggest

that the tune shift due to direct space charge will be large above a few mA, and Monte

Carlo simulations have produced a tune foot print that encounters the half-integer reso-

nance. Future CesrTA experiments will examine this effect by exploring regions of the

tune plane far away from low-order resonance lines.

We have discussed other current-independent effects, such as working point, and

current-dependent effects such as potential well distortion, coherent tune shift, and direct

space charge. We have shown that these additional effects need to be considered when

studying low-emittance electron/positron beams.

Measurements of beam size versus RF voltage at low current have been taken and

confirm our hypothesis that the larger-than-expected horizontal beam sizes that were ob-

served in CesrTA were due to horizontal-longitudinal coupling introduced by horizontal

dispersion in the RF cavities.
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CHAPTER 3

PARTICLE LOSS DUE TO TOUSCHEK EFFECT IN ENERGY RECOVERY

LINEAR ACCELERATOR

3.1 Introduction

Intra-beam scattering (IBS) refers to collisions among the particles that make up a beam.

All particle beams occupy a finite region of phase space, and therefore the particles are

constantly moving relative to the center of momentum (c.o.m.) of the bunch and can

collide with each other. These collisions change the energyof the particles. Changes in

energy in the c.o.m. frame translate to changes in energy relative to the magnetic lattice

that guides the beam, and collisions between particles therefore change the trajectories

of the colliding particles through the accelerator.

The energy difference between two scattering particles is typically on theorder of the

beam’s energy spread and thus several orders of magnitude smaller than their average

energy. A scattering event can transfer energy from transverse motion to the longitudinal

which, as it turns out, is larger by the relativistic factorγ in the lab frame than in the

center of momentum frame. Collisions that change a particle’s momentum parallel to the

average momentum can therefore result in energy changes large enough to significantly

perturb the trajectory of particles whenγ is large, causing the particle to collide with the

beam chamber downstream of the scattering event.

Particles lost along the chamber walls due to single-event IBS are called Touschek

losses and have been explored theoretically [32, 23] and experimentally [28, 18]. Tou-

schek losses can reduce the beam lifetime [22], and cause radiation hazards as discussed

in this chapter.
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Intra-beam scattering that does not result in particle losses can change the emittance

and energy spread of a beam [30, 5]. The effect can impose a current limit on low-

emittance storage rings such at ATF at KEK [2] and CesrTA at Cornell [11].

This chapter discusses IBS and Touschek losses in linear accelerators. Because the

beam in a linear accelerator does not circulate, there is no beam lifetime to be con-

cerned about, but the radiation hazard from particles lost along the chamber walls and

the change in energy spread and emittance of the beam can be significant.

Touschek scattering is of particular interest for Energy Recovery Linear accelera-

tors (ERLs), where the beam undergoes deceleration. This increases the relative energy

deviation∆E{E of the particles which increases the dispersive contribution to the os-

cillation amplitude of the particles’ trajectories. When a particle scatters in a dispersive

region and its energy changes, so does its action invariantJ. This effect is of increased

importance in an ERL becauseJ increases with 1{γ by adiabatic anti-damping during

deceleration.

In an ERL, a particle that has lost energy in a scattering eventthat occurred at high

energy can be stopped in an RF cavity and accelerated backwards during the energy

recovery (deceleration) phase. These stopped particles may pose a problem for super-

conducting RF cavities.

The theory for our study of IBS in ERLs is based on a derivation byPiwinski [32].

Here we offer an alternative derivation of Piwinski’s formula that is more rigorous and

gives the orders in divergence, momentum spread, and relativistic γ to which the result

is accurate. Whereas the earlier derivation in [32] is used todefine a beam lifetime for

storage rings, our derivation is used to determine the distribution of scattered particles

generated at each element in an accelerator. This distribution of scattered particles is
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tracked along the accelerator to determine where each particle is lost, yielding a distri-

bution of particle loss along the accelerator. This method of simulating Touschek losses

was first developed at APS for their ERL design[59].

To facilitate the tracking, an additional simulation is used to determine the element-

by-element energy aperture of the accelerator. This aperture is the largest positive or

negative energy change that a particle can be given at a particular element such that the

particle is not lost further down the accelerator. This information allows us to avoid

tracking particles that are not lost, and therefore not of interest. The energy aperture is

allowed to be non-symmetric.

Additionally, we determine the background of scattered particles exiting the linac.

Capturing this background is an important requirement for a beam dump design.

A methodology for placing collimators to control where IBS losses occur is de-

scribed. The trajectories of scattered particles are analyzed to determine the best loca-

tions for collimators. We demonstrate how this methodologyhas been applied to the

Cornell ERL.

Large energy-change scattering events are infrequent enough that multiple scattering

events do not lead to significant losses, but multiple small energy change events can

change the emittance or energy spread of the beam. IBS formulas from [5] are applied

to determine emittance growth due to multiple scattering events along the ERL.

3.2 Theory

The rateR at which particles are scattered out of a bunch is found by integrating over the

scattering cross-sectionσ for particle loss. This cross-section is obtained by integrating
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the Moller differential scattering cross-section over all scattering events that result in

particle loss. In general,σ depends on the momenta~p1 and~p2 of the scattering particles,

and it can depend on the location~r within the beam at which a scattering event occurs.

A test particle with momentum~p1 at position~r1 moving with velocity∆v relative to

other particles in the bunch at position~r will make

r p~r~p1q “
ż

∆v p~p1, ~p2q ρ p~r, ~p2qσd3p2 (3.1)

collisions per time, whereρ p~r, ~pq is the phase space density of the bunch andσ is the

cross-section for collisions that lead to particle loss. Integrating over each particle in the

bunch colliding with all of the other particles yields

R “ 1
2

ż ż

∆v p~p1, ~p2q
ż

σρ p~r, ~p1q ρ p~r, ~p2q d3rd3p1d3p2. (3.2)

The factor 1{2 comes from the fact that particle 1 colliding with particle2 is the same

event as particle 2 colliding with particle 1.

For bunches with Gaussian distribution and withoutx-y coupling in the accelerator,

ρ p~r, ~pq “ N expp´Q px, x1q ´ Q py, y1q ´ Q p∆s, δqq , (3.3)

whereN is a normalization and theQs are quadratic forms that depend on the Twiss

parameters.

We now restrict to the common case where the beam’s cross section is much smaller

than the beam pipe. In this case, the initial position coordinate of the particle is small

compared to the trajectories that result in particle loss. It is then a good approximation

that the cross-section for particle lossσ does not depend on initial coordinate~r.

Subsequently,∆v andσ are approximated in orders of the following small quantities:

1. the angleχ between~p1 and~p2.
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2. energy spreadδE of the bunch.

3. relativistic 1{γ2
0 of the reference particle.

Collectively, approximations in these three parameters arereferred to as of orderO. It is

one of the main contributions of this chapter to rigorously carry the order of these small

quantities to estimate the theory’s degree of accuracy.

To leading order, it will be shown that∆v andσ depend only onχ2, allowing the

integration over all terms in the exponential exceptχx,y, yielding

R “ N
ż

∆vσexpp´Q pχx, χyqq dχxdχy. (3.4)

With χx “ χ cosφ andχy “ χ sinφ, one can further integrate overφ where the exponen-

tial of a trigonometric function generates a Bessel function,

R “ N
ż

∆v pρqσ pρq expp´aχq I0 pbχq dχ. (3.5)

The derivation that leads to the scattering rate is organized as follows: (a) integrate

Gaussians over~r, (b) approximate∆v, (c) approximateσ, (d) integrate over the initial

angleφ between the two particles.

3.2.1 Integrate Gaussians over~r

The integration over~r can be performed immediately. It is assumed that the bunch with

Np particles has a Gaussian distribution which can be written in Twiss parameters as,

ρ p~r, ~pq “
Np

8π3ǫxǫyσsσp
exp

«

´
x2
β `

´

αxxβ ` βxx1
β

¯2

2σ2
xβ

´
y2
β `

´

αyyβ ` βyy1
β

¯2

2σ2
yβ

´ ∆s2

2σ2
s

´
δ2

p

2σ2
p

ff

, (3.6)
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where, with the dispersionpDx,Dyq and the reference momentumpr,

xβ “ x ´ Dxδp,

yβ “ y ´ Dyδp,

x1
β “ x1 ´ D1

xδp,

y1
β “ y1 ´ D1

yδp,

x1 “ px{pr,

y1 “ py{pr. (3.7)

The integration over~r “ tx, y,∆su can be written in the form,

ż 8

´8
exp

ˆ

´∆s2

2σ2
s

˙

d∆s
ż 8

´8
exp

`

´
`

axx2 ` bxx ` cx

˘˘

dxˆ
ż 8

´8
exp

`

´
`

ayy
2 ` byy ` cy

˘˘

dy, (3.8)

where the coefficients ofx2, x1, andx0 have been collected intoax,y, bx,y, andcx,y, which

are not functions ofx, y, and∆s, but are functions ofpx, py, andδp. Evaluating the three

integrals in Eqn. (3.8) yields,

?
π σs ˆ

c

π

ax
exp

ˆ

b2
x

4ax
´ cx

˙

ˆ
c

π

ay
exp

˜

b2
y

4ay
´ cy

¸

. (3.9)

The result is,

R “
N2

p

128π5ǫ2
xǫ

2
yσsσ2

p

c

π

axay

ż

~p1

ż

~p2

∆v p~p1, ~p2qσ p~p1, ~p2q ˆ

exp

˜

´
#

δ2
p1 ` δ2

p2

2σ2
p

` b2
x

4ax
´ cx `

b2
y

4ay
´ cy

+¸

d3p1d3p2. (3.10)
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3.2.2 Approximate∆v

Here we find formulas for the relative velocity∆v between two particles. We begin by

constructing a coordinate system based on the momenta of twoparticles that are about to

collide. The particles’ coordinates are transformed into this coordinate system and their

relative velocity in terms of the initial angle between their momenta is determined. Next,

the particles are boosted into their center-of-momentum frame where their post-collision

momenta are written in terms of scattering angles. The post-collision momenta are

transformed back into the lab frame for the change in energy.Thresholds on scattering

angles leading to particle loss are obtained by evaluating this formula for a maximum

allowable change in energy. The Moller scattering cross-section is integrated over these

angles to obtain the cross-section for particle loss used inEqn. (3.10).

The pre-collision momenta of the two particles in the lab-frame are,

~p1,2 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

E1,2{c

px1,2

py1,2

pz1,2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

px̂,ŷ,ẑq

. (3.11)

The sum of these two momenta is defined as~p ” 1
2 p~p1 ` ~p2q. A new orthonormal

coordinate system, depicted in Fig. 3.1 is defined by,

ĵ “ k̂ ˆ l̂, k̂ “ ~p2ˆ~p1

|~p1ˆ~p2| , l̂ “ ~p
|~p| .

In this coordinate system, the momenta of the particles can be written as a longitudinal

part~pl1,2 and a transverse part~pK. As constructed, the momenta of the incident particles
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x
`

y
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l
`
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`

j
`

Figure 3.1: ĵ, k̂, l̂ coordinate system.

are in theĵ, k̂, l̂ system:

~pµ1,2 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

E1,2{c

˘pK

0

pl1,2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

p ĵ,k̂,l̂q

, (3.12)

pK “ ~p1 ¨ ĵ “ |~p2 ˆ ~p1|
2 |~p| , (3.13)

pl1,2 “ ~p1,2 ¨ ~p
|~p| . (3.14)
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The following quantities are introduced, which will be usedthroughout this chapter:

E0 ” E1 ` E2

2
, δE ” E1 ´ E2

E0
, (3.15)

γ0 ” E0

m0c2
, β0 ”

d

1 ´ 1

γ2
0

, (3.16)

p0 ” c´1E0β0, (3.17)

p1,2 ” c´1E0

d

ˆ

1 ˘ δE

2

˙2

´ 1

γ2
0

. (3.18)

Note thatp1,2 “ |~p1,2| and,

p0 “ p1 ` p2

2

`

1 ` O2
˘

, (3.19)

p1p2 “ p2
0

`

1 ` O2
˘

, (3.20)

E1E2 “ E2
0

`

1 ` O2
˘

. (3.21)

From Eqn. (3.14) the velocity of the particles in thep ĵ, k̂, l̂q-frame is,
¨

˚

˚

˚

˚

˚

˝

v j1,2

vk1,2

vl1,2

˛

‹

‹

‹

‹

‹

‚

p ĵ,k̂,l̂q

“ 1
γ1,2m0

¨

˚

˚

˚

˚

˚

˝

˘pK

0

pl1,2

˛

‹

‹

‹

‹

‹

‚

p ĵ,k̂,l̂q

,

whereγ1,2 ” E1,2{m0c2. The relative velocity of the two particles is∆v “ ~v1 ´ ~v2.

Definingχ as the angle between~p1 and~p2, the ĵ-component of the velocity simplifies

as,

∆v j “ pK

γ1m0
´ ´pK

γ2m0

“ |~p2 ˆ ~p1|
2 |~p| m0

ˆ

1
γ1

` 1
γ2

˙

“ 1
m0

p1p2 sinχ
|~p1 ` ~p2|

ˆ

m0c2

E1
` m0c2

E2

˙

“ c2 p1p2

p1 ` p2
χ

`

1 ` O2
˘

ˆ

E1 ` E2

E1E2

˙

,

“ c2 p0

E0
χ

`

1 ` O2
˘

“ cβ0χ
`

1 ` O2
˘

. (3.22)
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The l̂-component of the velocity simplifies as,

∆vl “ 1
m0

ˆ

pl1

γ1
´ pl2

γ2

˙

“ 1
|~p|m0

ˆ

1
2

p~p1 ` ~p2q ¨
ˆ

~p1

γ1
´ ~p2

γ2

˙˙

“ 1
2|~p|m0

ˆ

p2
1 ` p1p2 cosχ

γ1
´

p2
2 ` p1p2 cosχ

γ2

˙

“ c2

2 |~p|

˜ E2
0

c2

´

`

1 ` δE
2

˘2 ´ 1
γ2

0

¯

` p2
0 p1 ` O2q

E1

´
E2

0

c2

´

`

1 ´ δE
2

˘2 ´ 1
γ2

0

¯

` p2
0 p1 ` O2q

E2

¸

“ E0

2 |~p|

ˆ

δE

γ2
0

` O2

˙

“ E0

2 |~p|O
2. (3.23)

Therefore, for high-energy accelerators with small divergence and energy spread,

∆v pχq “ β0cχ
`

1 ` O2
˘

. (3.24)

3.2.3 Change in energy due to a scattering event

Continuing from Eqn. (3.14), we derive the formula for the energy change in terms of

scattering angles. Boosting along thel̂-axis gives,

p̄µ1,2 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

γc pE1,2{c ´ βc pl1,2q

˘pK

0

γc p´βcE1,2{c ` pl1,2q

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

p j̄,k̄,l̄q

. (3.25)
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The relativistic factorsγc andβc are chosen to boost into the c.o.m. frame, i.e. such that

p̄l1 “ ´ p̄l2 ” p‖, resulting in,

βc “ c|~p|
E0

, (3.26)

with γc “ 1{
a

1 ´ β2
c . The momenta in the boosted frame can be written as,

p̄µ1,2 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

γc pE1,2{c ´ βc pl1,2q

˘pK

0

˘p‖

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

p j̄,k̄,l̄q

.

Next we rotate by an angle arctan
´

pK

p‖

¯

so that the momenta are entirely along one axis.

The rotated frame is denoted byp j̃, k̃, l̃q,

p̃µ1,2 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

γc pE1,2{c ´ βc pl1,2q

0

0

˘ p̄

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

p j̃,k̃,l̃q

where,

p̄2 “ p2
K ` p2

‖ .

After the particles collide, the magnitude of the momenta donot change in the

p j̃, k̃, l̃q-frame, but their direction does change. Usingψ for the zenith froml̃ andφ

for the azimuth about̃l measured from̃k, the momenta following the collision are,

p̃
1µ

1,2 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

γc pE1,2{c ´ βc pl1,2q

˘ p̄ sinψ sinφ

˘ p̄ sinψ cosφ

˘ p̄ cosψ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

p j̃,k̃,l̃q

(3.27)
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Next we rotate back fromp j̃, k̃, l̃q to p j̄, k̄, l̄q, then boost back fromp j̄, k̄, l̄q to p ĵ, k̂, l̂q. The

result is,

~p
1µ

1,2 “
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

γ2
c

´

E1,2

c ´ pl1,2

β´1
c

¯

¯ βcγc ppK sinψ sinφ ´ p‖ cosψq

˘p‖ sinψ sinφ ˘ pK cosψ

˘ p̄ sinψ cosφ

βcγ
2
c

´

E1,2

c ´ pl1,2

β´1
c

¯

¯ γc ppK sinψ sinφ ´ p‖ cosψq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

p ĵ,k̂,l̂q. (3.28)

From Eqn. (3.28) the energy of each particle following the collision is,

E1
1,2 “ γ2

c pE1,2 ´ βccpl1,2q ¯ βcγcc ppK sinψ sinφ ´ p‖ cosψq . (3.29)

We are interested in the change in energy. However, in order to derive a concise

form for the change in energy, we must first derive another relation. From Eqn. (3.25),

p‖ = γc ppl1 ´ βcE1{cq

` p‖ =´γc ppl2 ´ βcE2{cq

2p‖ =´γc

`

pl2 ´ pl1 ´ βc
E2´E1

c

˘

Then applying Eqn. (3.14) we obtain,

p‖ “ γc

2

ˆ

´βc

c
pE1 ´ E2q ´ ~p2 ¨ ~p

|~p| ` ~p1 ¨ ~p
|~p|

˙

“ γc

2

ˆ

´βc

c
pE1 ´ E2q ´ p~p1 ` ~p2q

2|~p| ¨ p~p2 ´ ~p1q
˙

.
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Now applyingE2
1,2 “ p2

1,2c2 ` m2
0c4 and then using Eqn. (3.26),

p‖ “ γc

2c
pE1 ´ E2q

ˆ

´βc ` E2 ` E1

2|~p|c

˙

“ γc

2c
pE1 ´ E2q

ˆ

´βc ` 1
βc

˙

“ ∆E
2cγcβc

, (3.30)

where∆E ” E1 ´ E2.

The change in energy is defined as∆E1
1,2 “ E1

1,2 ´ E1,2,

∆E1
1,2 “

`

γ2
c ´ 1

˘

E1,2 ´ γ2
cβccpl1,2

¯βcγcc ppK sinψ sinφ ´ p‖ cosψq

“ ´βcγ
2
cc

ˆ

´βcE1,2

c
` pl1,2

˙

¯βcγcc ppK sinψ sinφ ´ p‖ cosψq

“ ¯βcγcc ppK sinψ sinφ ` p‖ ´ p‖ cosψq ,

using Eqn. (3.25) for the last line.

Finally, making use of Eqn. (3.30), we obtain,

∆E1
1,2 “ ¯γcβccpK

ˆ

∆E
γcβccpK

sin2

ˆ

ψ

2

˙

` sinψ sinφ

˙

. (3.31)

If cpK is of the same order or larger than∆E, then the∆E term in the parentheses

goes as 1{γc and can be neglected at high energy,

∆E1
1,2 “ ¯γcβccpK sinψ sinφ

ˆ

1 ` O
ˆ

1
γc

˙˙

. (3.32)

Equation (3.32) is the change in energy in the lab frame due toa collision between

two co-propagating relativistic particles.ψ andφ are the scattering angles in thep j̃, k̃, l̃q-

frame.
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3.2.4 Derive scattering cross-sectionσ

The minimum energy change that results in particle loss is referred to as∆Emax. Using

this threshold, Eqn. (3.32) is rewritten to give a conditionfor particle loss in terms of

scattering angles in thep j̃, k̃, l̃q-frame,

sinψ sinφ ą ∆Emax

γcβccpK
” B. (3.33)

To first order,B depends only on the initial angle between the two particles.This is seen

from,

B “ ∆Emax

γcβcc

2|~p|
|~p1 ˆ ~p2|

“ ∆Emax

γcβcc
p1 ` p2

p1p2χ

`

1 ` O2
˘

“ ∆Emax

γcβcc
2

p0χ

`

1 ` O2
˘

. (3.34)

The relativistic factors of the boosted frame,βc andγc can be approximated as,

β2
c “ c2 |~p|2

E2
0

“
c2

ˇ

ˇ

1
2 p~p1 ` ~p2q

ˇ

ˇ

2

E2
0

“
c2

`

p2
1 ` p2

2 ` 2p1p2 cosχ
˘

4E2
0

“ β2
0

ˆ

1 ´ χ2

4
` O3

˙

,

from which follows,

γ2
c “ 1

1 ´ β2
c

“
γ2

0

1 ` χ2β2
0γ

2
0

4 ` O2

“ γ2
0

ˆ

1 ´ 1
4
γ2

0χ
2 ` O2

˙

. (3.35)
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Using these expressions forβc andγc in Eqn. (3.34) yields,

B “ 2∆Emax

p0cγ0β0χ
ˆ p1 ` O2q

c

´

1 ´ χ2

4 ` O3
¯

`

1 ´ 1
4β

2
0γ

2
0χ

2 ` O2
˘

“ 2δE,max

γ0β
2
0χ

ˆ

1 ` 1
8
χ2γ2

0 ` O2

˙

`

1 ` O2
˘

“ 2δE,max

γ0χ

d

1 `
γ2

0χ
2

4

`

1 ` O1
˘

, (3.36)

whereδE,max ” ∆E{E0. A binomial expansion of the square root in the last line could

be made and the result would still be accurate to the same order. However, such an

approximation is not necessary to reach our final goal, and the square root is actually

simpler notation than its binomial expansion.

For elastic identical-particle Coulomb scattering, the Moller scattering cross-section

is used,

dσ̄ “ r2
e

4γ̃2

˜

ˆ

1 ` 1

β̃2

˙2 ˆ

4

sin4ψ
´ 3

sin2ψ

˙

` 4

sin2ψ
` 1

¸

sinψdψdφ, (3.37)

whereγ̃ andβ̃ are the relativistic factors in the frame of the two particles.

This equation is integrated over angles that meet the condition in Eqn. (3.33),

σ̄ “ r2
e

γcγ̃2

ż π
2

φmin

ż π
2

ψthpφq

˜

ˆ

1 ` 1

β̃2

˙2 ˆ

4

sin4ψ
´ 3

sin2ψ

˙

` 4

sin2ψ
` 1

¸

sinψdψdφ,

whereψth pφq ” arcsin B
sinφ , φmin ” arcsinB. The factor if 1{γc comes from transforming

the cross-section back to the lab frame.

The integration is performed in Appendix 1. The result is,

σ̄ “ πr2
e

2γcγ̃2

˜

ˆ

3 ´ 2

β̃2
´ 1

β̃4

˙

ln

ˆ

1
B

˙

´ B ` 1 `
ˆ

1 ` 1

β̃2

˙2 ˆ

1
B2

´ 1

˙

¸

, (3.38)

We see that the cross-section depends only onχ, and so make a change of variables
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in Eqn. 3.10 fromx1
1 andx1

2 to their average angleξ and relative angleχ,

ξx “
x1

1 ` x1
2

2

ξy “
y1

1 ` y1
2

2

χx “ x1
1 ´ x1

2

χy “ y1
1 ´ y1

2,

and the divergence can written as,

x1
β1 “ χx

2
` ξx ´ D1

x

∆p
p

x1
β2 “ ´ χx

2
` ξx ´ D1

x

∆p
p

y1
β1 “

χy

2
` ξy ´ D1

y

∆p
p

y1
β2 “ ´

χy

2
` ξy ´ D1

y

∆p
p

.

Note thatχ “
b

χ2
x ` χ2

y in the paraxial approximation. Since the relative velocity∆v

and cross-sectionσ depend only on the angleχ between the particles’ momenta, the

integral for the rate, Eqn. (3.10), can be written as,

N2
p

128π5ǫ2
xǫ

2
yσsσ2

p

c

π

axay

ż

χx

ż

χy

∆v pχqσ pχq ˆ

ż

δp2

ż

δp1

ż

ξy

ż

ξx

exp

˜

´
δ2

p1 ` δ2
p2

2σ2
p

` b2
x

4ax
´ cx `

b2
y

4ay
´ cy

¸

dξxdξydδp1dδp2dχydχx. (3.39)

δp2, δp1, ξy, andξx can be integrated at this point. The integration is done in Appendix

D. The result yields,

N2
pσh

64π2
?
π ǫxǫyσsσp

ż

χx

ż

χy

∆v pχqσ pχq exp
`

´
`

kxχ
2
x ` kyχ

2
y ´ lχxχy

˘˘

dχydχx, (3.40)
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where,

D̃x,y “ Dx,yαx,y ` D1
x,yβx,y

1

σ2
h

“ 1
σ2

p

` Hx

ǫx
`
Hy

ǫy
(3.41)

kx,y “
βx,y

4ǫx,y
´
σ2

hD̃2
x,y

4ǫ2
x,y

l “
σ2

hD̃xD̃y

2ǫxǫy
,

whereHx,y “ η2
x,yγx,y ` 2αx,yηx,yη

1
x,y ` βx,yη

12
x,y.

3.2.5 Integration overφ

To integrate over the relative angle of the two particles, the following change of variables

is introduced, which is true in the paraxial approximation,

χx “ χ cosφ , (3.42)

χy “ χ sinφ , (3.43)

which simplifies Eqn. (3.40) to,

N2
pσh

64π2
?
π ǫxǫyσpσs

ż χ2
max

χ2
min

∆v pχqσ pχq exp

ˆ

χ2

2
pkx ` kyq

˙

ˆ
ż 2π

0
exp

ˆ

χ2

2

b

l2 ` pkx ´ kyq2 cosp2φ ` ψq
˙

dφdχ, (3.44)

where,

ψ “ arcsin

¨

˚

˝

kx ´ ky
b

l2 ` pkx ´ kyq2
´ π

2

˛

‹

‚
.

The following identity for the modified Bessel function,

I0

ˆ

χ2

2
C0

˙

“ 1
2π

ż 2π

0
exp

ˆ

χ2

2
C0 cosp2φ ` ψq

˙

dφ,
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simplifies Eqn. (3.44) to,

N2
pσh

32π3{2ǫxǫyσpσs

ż χ2
max

χ2
min

∆v pχqσ pχq ˆ

exp

ˆ

χ2

2
pkx ` kyq

˙

I0

ˆ

χ2

2

b

l2 ` pkx ´ kyq2
˙

dχ. (3.45)

χmin can be obtained from Eqn. (3.33), which restrictsB to be less than one,

Bmax “ 1 “ 2δE,max

γ0χmin
,

χ2
min “

4δ2
E,max

γ2
0

. (3.46)

The relativistic factors in the cross-section, Eqn. (3.38), γ̃ andβ̃, are of the particles

in the c.o.m. frame. They can be written in terms ofγ0 andγc. From Eqn. (3.27) the

relativisticγ of the particles in the boosted frame is,

γ̃ “ γ̃2 “ γ̃1 “ γc pE1 ´ βccpl1q
m0c2

,

andβ̃ “ β pγ̃q.

An exact relation relation betweenγ0, γc, andγ̃, is derived as,

γ̃ “ γ̃1 ` γ̃2

2
“ γc

2m0c2
pE1 ` E2 ´ βcc ppl1 ` pl2qq

“ γc

2m0c2

ˆ

2E0 ´ βcc

ˆ

~p
|~p| ¨ p~p1 ` ~p2q

˙˙

“ γc

2m0c2
p2E0 ´ 2βcc |~p|q

“ E0

m0c2

d

1
1 ´ β2

c

ˆ

1 ´ βcc |~p|
E0

˙

“ E0

m0c2

b

1 ´ β2
c “ γ0

γc
. (3.47)

With Eqn. (3.47), the cross-section can be approximated andwritten in terms ofχ.

Beginning with the first term we write,

3 ´ 2

β̃2
´ 1

β̃4
“ 4 ´

ˆ

1 ` 1

β̃2

˙2

, (3.48)
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and proceed by approximating the term in the parentheses.

1 ` 1

β̃2
“

2 ´ γ2
c

γ2
0

1 ´ γ2
c

γ2
0

“
2γ2

0 ´ 1
1´β2

c

γ2
0 ´ 1

1´β2
c

“
2γ2

0

`

1 ´ β2
0 ` β2

0χ
2{4 ` O3

˘

´ 1

γ2
0

`

1 ´ β2
0 ` β2

0χ
2{4 ` O3

˘

´ 1

“ 2 ` 4

γ2
0χ

2
` O1. (3.49)

Using Eqn. (3.49) in Eqn. (3.48),

3 ´ 2

β̃2
´ 1

β̃4
“ 4 ´

ˆ

2 ` 4

γ2
0χ

2
` O1

˙2

“ ´ 16

γ4
0χ

4
´ 16

γ2
0χ

2
` O1. (3.50)

3.2.5.1 Touschek Rate

We now introduce the following parameter,

τ ”
γ2

0χ
2

4
, (3.51)

and then combine Eqs. (3.45), (3.24), (3.38), and (3.49) to obtain,

R “
N2

pσh

32π
?
π ǫxǫyσpσs

ż χ2
max

χ2
min

cβ0χ
πr2

e

2γ̃2γc
˜

ˆ

3 ´ 2

β̃2
´ 1

β̃4

˙

ln

ˆ

1
B

˙

´ B ` 1 `
ˆ

1 ` 1

β̃2

˙2 ˆ

1
B2

´ 1

˙

¸

ˆ

exp

ˆ

´
kx ` ky

2
χ2

˙

I0

¨

˚

˝

b

l2 ` pkx ´ kyq2

2
χ2

˛

‹

‚
ˆ

`

1 ` O2
˘

dχ

(3.52)
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Simplifying with Eqs. (3.47), (3.49), (3.50), (3.35), (3.36), and (3.51) gives,

R “
N2

pσhr2
ecβ0

16
?
π ǫxǫyσpσsγ

4
0

ż 8

δ2
E,max

?
τ?

1 ` τ
˜

ˆ

1
τ2

` 4
τ

˙

ln

ˆ

δE,max

?
1 ` τ?
τ

˙

´ δE,max

?
1 ` τ?
τ

` 1

`
ˆ

1
τ

` 2

˙2
˜

τ

δ2
E,maxp1 ` τq

´ 1

¸ ¸

ˆ

exp

ˆ

´2
kx ` ky

γ2
0

τ

˙

I0

¨

˚

˝
2

b

l2 ` pkx ´ kyq2

γ2
0

τ

˛

‹

‚
ˆ

`

1 ` O1
˘

dτ.

(3.53)

Note that the arguments of the exponential and the Bessel function areO´1 ˆ τ.

3.2.6 Integration Bounds

The integrand is accurate toO1 in τ, but the integration is overτ from δ2
E,max, which is

O1, to 8. It is shown that the strong exponential decay of the integrand allows us to

restrict the integration range to the vicinity ofO1.

The behavior of the integrand for largeχ is found by examining the behavior of an

exponential timesI0. We begin by rewriting the argument of the Bessel function,

I0

ˆ

2

γ2
0

b

l2 ` pkx ´ kyq2
τ

˙

“ I0

˜

2

γ2
0

pkx ` kyq
d

1 ´
4kxky ´ l2

pkx ` kyq2
τ

¸

. (3.54)

The argument of the Bessel function is always smaller than theargument of the expo-

nential,pkx ` kyq. This is seen by looking at the sign of the numerator under thesquare

root,

4kxky ´ l2 “ ´
σ2

hD̃2
yβx

4ǫxǫ2
y

´
σ2

hD̃2
xβy

4ǫyǫ2
x

`
βxβy

4ǫxǫy

4ǫxǫy

βxβy

`

4kxky ´ l2
˘

“ ´
σ2

hD̃2
y

σ2
y

´
σ2

hD̃2
x

σ2
x

` 1.
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Now look at the Eqn. (3.41),

1

σ2
h

“ 1
σ2

p

` Hx

ǫx
`
Hy

ǫy

1 “
σ2

h

σ2
p

` σ2
h

Hx

ǫx
` σ2

h

Hy

ǫy

1 “
σ2

h

σ2
p

` σ2
h

D̃2
x ` D2

x

σ2
x

` σ2
h

D̃2
y ` D2

y

σ2
y

´
σ2

hD̃2
x

σ2
x

´
σ2

hD̃2
y

σ2
y

` 1 “
σ2

h

σ2
p

`
σ2

hD2
x

σ2
x

`
σ2

hD2
y

σ2
y

ą 0. (3.55)

Since Eqn. (3.55) is always positive, the radical in Eqn. (3.54) is always less than one.

Furthermore, it is clear from the LHS of Eqn. (3.54) that the radical is always real. The

Bessel function can then be written as,

I0

ˆ

2

γ2
0

pkx ` kyq p1 ´ λq τ
˙

,

whereλ is O0 and between 0 and 1. For very small arguments,exI0 pxq « 1. For large

arguments,I0 pxq expands as,

I0 pxq “ exppxq?
2πx

ˆ

1 ` O
ˆ

1
x

˙˙

.

For large values ofτ our exponential times the Bessel function becomes,

exp

ˆ

´ 2

γ2
0

pkx ` kyq τ
˙

I0

ˆ

2

γ2
0

pkx ` kyq p1 ´ λq τ
˙

« exp

ˆ

´ 2

γ2
0

pkx ` kyq τ
˙ exp

´

2
γ2

0
pkx ` kyq p1 ´ λq τ

¯

b

4π
γ2

0
pkx ` kyq p1 ´ λq τ

“
exp

´

´λ 2
γ2

0
pkx ` kyq τ

¯

b

4π
γ2

0
pkx ` kyq p1 ´ λq τ

“ expp´O´1τq?
O´1τ

. (3.56)

The denominator makes the integrand large for smallτ, and the exponential decay sup-

presses the integrand with a decay constant that isO1. Evaluating Eqn. 3.56 atτ “ O1

yields„ 1. At τ “ 10ˆ O1 the integrand is suppressed toO1, and atτ “ 100ˆ O1 the
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integrand is suppressed toO7. The accuracy of our equation for the Touschek scattering

rate is maintained as long as the upper integration bound is at least 100̂ O1, but for

convenience we use 1,

R “
N2

pσhr2
ecβ0

16
?
π ǫxǫyσpσsγ

4
0

ż 1

δ2
E,max

?
τ?

1 ` τ
˜

ˆ

1
τ2

` 4
τ

˙

ln

ˆ

δE,max

?
1 ` τ?
τ

˙

´ δE,max

?
1 ` τ?
τ

` 1

`
ˆ

1
τ

` 2

˙2
˜

τ

δ2
E,maxp1 ` τq

´ 1

¸ ¸

ˆ

exp

ˆ

´2
kx ` ky

γ2
0

τ

˙

I0

¨

˚

˝
2

b

l2 ` pkx ´ kyq2

γ2
0

τ

˛

‹

‚
ˆ

`

1 ` O1
˘

dτ.

(3.57)

where,

B “ δE,max?
τ

,

C1 “ 2
kx ` ky

γ2
0

,

C2 “ 2

b

l2 ` pkx ´ kyq2

γ2
0

.

Equation (3.57) gives the Touschek scattering rate accurate toO
´

χ, δp,
1
γ2

0

¯1
. δp and

1{γ2
0 are determined by beam properties.δE,max is the dynamic energy aperture of the

accelerator. We find for the Cornell ERL that the dynamic energyaperture can range as

low as 0.01%. Therefore, theχ of interest is on the order ofδ2
E,max.

A form of Eqn. (3.57) more accommodating to numerical integration is obtained by

making a change of variables toω “ logτ.
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3.2.7 Recreation of Classical Form

With a few slight modifications to our derivation, Piwinski’s classical formula for the

Touschek scattering rate can be obtained. It is found that the classical formula is consis-

tent to within factors of the relativisticβ0 of the beam.

In [32], B is written as,

Bp ” δE,max

b

4 ` β2
0γ

2
0χ

2

γ0β
2
0χ

, (3.58)

where the subscriptp indicates the form found in Piwinski’s paper. We find that if this

equation is approximated toO1 in 1{γ2
0 andχ, Eqn. (3.36) is obtained. Additionally,

τp ”
β2

0γ
2
0χ

2

4
,

τpmin ”
β2

0γ
2
0χ

2
min

4
,

which allows Eqn. (3.59) to be written as

Bp “
a

1 ` τp
?
τp

δE,max

β0
.

Using these quantities yields,
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2
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l2 ` pkx ´ kyq2
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2
0
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˛

‹

‚
dτp. (3.59)

The factor of one-half is because the classical formula assumes a symmetric energy

aperture, so that two particles are lost for every scattering event. Our formula assumes
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an non-symmetric energy aperture, where the threshold for particle loss due to energy

gain may be different from the threshold for particle loss due to energy loss.

We produce Eqn. (3.59) only to demonstrate that our derivation agrees with Piwin-

ski’s classic derivation. The arguments of the exponentialand Bessel function, as well

as the factor, are algebraically equivalent to the classic derivation.

3.2.8 Trajectory of scattered particles

The amplitude of the trajectory of a particle that receives an energy kick is sensitive to

the value of the dispersion invariantH at the location of the kick.

The linearized phase-space coordinate of a particle is given by,
¨

˚

˚

˝

x0

x1
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˛

‹

‹

‚
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(3.60)

A scattering event that imparts a momentum change to the particle changes its Courant-

Snyder invariantJ and betatron phaseφ,
¨
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(3.61)
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Since the scattering event does not instantaneously changethe positionx0 and diver-

gencex1
0, Eqn. (3.60) and 3.61 can be equated to yield, after a bit of algebra,
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where∆δp ” δ0 ´ δp0, and the RHS of the equation is defined as~V. Squaring~V yields,

p
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And φ is obtained by,

sinφ
cosφ

“ Vx

Vy

φ “ arctan
Vx

Vy
(3.63)

Writing out Eqn. (3.62) and simplifying yields,
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a

J0 ∆δp ` J0 ,(3.64)

whereH0 is the familiar dispersion invariant. In the Cornell ERL,J0 is on the order

of 10́ 10. The IBS scattering rate typically becomes appreciable at∆δp “ 0.005. This
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makes the first term in Eqn. (3.64) of order∆δ2
p “ 2.5 ˆ 10́ 5, the second term of order

∆δp

?
J0 “ 5 ˆ 10́ 8, and the third term of orderJ0 “ 10́ 10. Keeping only the lowest

order term yields,

Jn � H0

∆δ2
p

2
, (3.65)

whereJn has been normalized byγ0, the boost at the time of the scattering. Equation

(3.65) is the newJ of a particle that has undergone a scattering event which imparted to

it a momentum change∆δp.

To linear approximation, the horizontal coordinate of a particle as it travels through

the accelerator is given by,

x rss “
c

2Jβ rss γ0

γ rss sinrψ rss ` φs ` η rss δp
γ0

γ rss . (3.66)

Using Eqn. (3.65) in Eqn. (3.66) yields,

x rss “
c

γ0

γ rssH0∆δ
2
Eβ rss sinrψ rss ` φs ` η rss δE

γ0

γ rss “

δE0

„
c

γ0

γ rss

b

H0β rss sinrψ rss ` φs ` γ0

γ rssη rss


. (3.67)

Equation (3.67) for the transverse displacement of a scattered particle has two terms.

The first term is a betatron contribution and the second is a dispersive contribution.

Particles scattered to a momentum change∆pm at a location with a particularH0, have

the potential to be lost at locations whereβ rss andη rss causex rss to exceed the radius

of the beam pipe.

3.2.8.1 Effects of nonlinearities on particle trajectories

TheBmad standard tracking routines we use in our simulations take into account nonlin-

earities, but are not fully nonlinear. The routines are designed to balance accuracy and
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speed [38]. More accurate tracking routines are available in Bmad, but they are slower.

To check whether the standard routines are sufficiently accurate to reliably determine if

a scattered particle collides with the beam pipe, the contribution to the particle trajectory

from higher orders of dispersion is examined.

Higher orders of dispersion are calculated by combining theTaylor maps of the

individual elements that represent the beam line. The map picks up dispersion terms

from the bend and wiggler elements. Dispersion is obtained from the matrix elements

of the map with,

η1 “ T1,6

T6,6

η2 “ T1,6,6

T 2
6,6

η3 “ T1,6,6,6

T 3
6,6

...and so on..., (3.68)

whereη1, η2, η3, are the 1st, 2nd, and 3rd orders of dispersion. The contribution to the

particle trajectory from dispersion of ordern is,

∆xn “ ηn ˆ
ˆ

∆p
p

˙n

. (3.69)

Shown in Fig. 3.2 is the contribution to the transverse coordinate from nonlinear dis-

persion up to order 4 for a particle with à10 MeV energy defect. Figure 3.2 suggests

that prior to the final decelerating stage, higher orders of dispersion displace the particle

trajectory by a negligible amount. The displacement is lessthan 0.02 mm, and we are

interested in displacements larger than 13 mm. However, during the final decelerating

stage, the relative momentum spread blows up and higher orders of dispersion can be-

come significant. This can cause a large number of particles to collide with the final

decelerating cavities, which may lead to multipacting. It can also create a background
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Figure 3.2: Displacement of trajectory of particle with̀10 MeV/c momentum defect
due to 2nd, 3rd, and 4th order dispersion. The beam pipe diameter is 13 mm.

of particles around the beam and impact the design of the beamdump. The effect of

nonlinearities at the end of the linac is seen in Fig. 3.12.

3.3 Implementation

3.3.1 Element-by-element energy aperture

Representing IBS particles with precision requires trackingseveral 10’s of particles

through each of the several thousand optical elements that make up the Cornell ERL.

This is a computationally intensive task and it is best to avoid tracking particles that

are not lost and therefore not of interest. To avoid trackingparticles that are not lost,

an element-by-element energy aperture is determined. The element-by-element energy
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aperture is the minimum energy change that needs to be given to a particle in an element

such that it collides with the chamber walls somewhere down the accelerator.

Due to nonlinearities and asymmetries, along with the fact that only particles with a

negative energy change have the potential to be stopped during deceleration, the positive

energy apertureδ`
E is not symmetric with the negative energy apertureδ´

E , i.e. δ´
E ,

´δ`
E . It is necessary to determine the positive and negative aperture independently.

To determine the positive aperture, at the first optical element in the accelerator a

test particle is given an initial energy changeδE. Since the beam size is on the order

of 10́ 6m and the beam pipe size is on the order of 10´2m, the initial coordinate has a

negligible impact on the trajectory of a particle lost to thebeam pipe, and it is accurate

toO4 to assume that each particle starts in the center of the beam pipe.

The test particle is tracked to determine if it is lost. If it is lost, the energy change is

decreased and the tracking done again. If it is not lost, the energy change is increased.

Once an upper and lower bound for the aperture have been established, a binary search is

performed to determine the aperture to arbitrary precision. The process is then repeated

for the second optical element, and so on to the end of the accelerator. Similarly the

negative energy aperture is determined.

An example energy aperture is shown in Fig. 3.3. This exampleis from a Cornell

ERL lattice version 3.0. This version is characterized by a tight 40 m east turn around.

The stages of the accelerator are shown in table 3.1. In this example the negative energy

aperture is dominated by IBS particles stopping during deceleration. The positive aper-

ture is determined entirely by beam pipe collisions. Noticethat the energy aperture in

the accelerating structures is about an order of magnitude larger than the energy aperture

in high-dispersion regions.
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Figure 3.3: Example energy aperture from CERL lattice version3.0. The positive aper-
ture is determined entirely by beam pipe collisions. The negative aperture is dominated
by stopping during deceleration.

Table 3.1: Stages of CERL lattice version 3.0 used for example plots in this chapter.
Sections that are crossed by the beam twice are labeled by ”z1” and ”z2”. Particles are
injected at 0 m with 10 MeV.

Start (m) End (m) Label Description

0 318 LAz1, LBz1 acceleration to 2.5 GeV

318 490 TAz1 East turn around

490 808 LCz1, LDz1 acceleration to 5.0 GeV

808 1284 SA user region, x-ray prod.

1284 1889 CE CESR turn around

1889 2207 NA user region, x-ray prod.

2207 2525 LAz2, LBz2 deceleration to 2.5 GeV

2525 2696 TAz2 East turn around

2696 3014 LCz2, LDz2 deceleration to 10 MeV

3014 3014 beam dump
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Figure 3.4: Cumulative generation of scattered particles.

3.3.2 Touschek scattering rates

The rate at which particles are scattered aboveEp1 ` δ`
E q or belowEp1 ´ δ´

E q is found

by evaluatingRpδ`,´
E q, given by Eqn. 3.57, using the Twiss and beam parameters at each

element. The current of scattered particles generated per bunch is found by multiplying

the rateR by the fundamental charge and the time the bunch is in the element,l{c, where

l is the length of the element andc is the speed of light.

The cumulative current generated for CERL 3.0 is shown in Fig. 3.4. This Fig. says

that the total current of scattered particles generated is 20 nA. The slope of this curve is

proportional to the scattering rate.
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3.3.3 Test particle distribution

At each element in the accelerator, two distributions of test particles are tracked, one

representing particles that gain energy through scattering, and one for those that lose

energy. The distributions are constructed such that they contain only particles with

energy greater thanEp1 ` δ`
E q or less thanEp1 ´ δ´

E q.

The distribution of particles that gain energy is constructed by calculating the rate

Rpδ`
E q at which particles are scattered above the positive energy apertureδ`

E . This rate

is divided by the number of test particles to be tracked,Nt. Each test particle is taken

as representing a rate ofRpδ`
E q{Nt scattered particles. The energy change represented

by each test particle is determined by inverting a linear interpolation ofRpδEq. This

gives δEpRq, and theith test particle is assigned a momentum changeδEpRiq where

Ri “ pi`1{2qRpδEq
Nt

. Similarly the distribution of particles that lose energy is constructed.

The number of scattered particles each test particle represents is obtained by mul-

tiplying the rateR by l{c. The current represented by each test particle is found by

multiplying the number of scattered particles it represents by the bunch repitition rate

and the fundamental charge. The power each test particle represents is found by multi-

plying its current by its energy.

In Fig. 3.5 an exampleRpδ`
E q curve is shown along with the test particles used to

represent it. The curve starts at the positive energy aperture of the optical element,

δ`
E “ 0.2%. It says that 5̂ 107 particles are scattered aboveδ`

E per second. The

distribution has 50 test particles, and each test particle represents5ˆ107

50 particles per

second.
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Figure 3.5: Example Touschek curve with test particle distribution used to represent it.

3.3.4 Tracking losses

Each test particle is tracked usingBmad standard tracking routines from the optical ele-

ment where the scattering occurs to the element where it is lost.

A particle can be lost by striking the beam pipe or stopping during deceleration. If

the loss is due to a beam pipe collision, the current the test particle represents is added

to the current deposited into that element of the accelerator. The power is also recorded.

Shown in Fig. 3.6 is the current of scattered particles striking the beam pipe for

CERL 3.0. The current stopping at the end of the linac is shown inFig. 3.7. Where Fig.

3.4 shows where the scattering occurs, Figs. 3.6 and 3.7 showwhere the particles are

lost. The total current deposited into the CERL 3.0 beam pipe is7.7 nA. The current

stopped during deceleration is 12.3 nA.
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Figure 3.6: Current per meter of scattered particles striking beam pipe. The current at
the end of the linac peaks at 2230 pA/m due to the 1{γpsq dependence in Eqn. (3.67).

The tracking of test particles is parallelized with MPI. A master node is designated

and its role is to send test particles to worker nodes which run the tracking routine. Each

worker node tracks the test particle it received from where it is generated to where it

is lost, and sends the results back to the master node. The master node will then send

another test particle to the worker node if there are any leftto track. The parallelization

is set up to run on managed clusters, as well as ad-hoc clusters, which can be composed

of idle work stations. A typical tracking run requires approximately 10 CPU-hours on 2

GHz CPUs.
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Figure 3.7: Current per decelerating cavity of scattered particles stopping at the end of
the linac. The design energy at the end of the linac is 10 MeV. Each cavity decelerates
the beam by 13 MeV.

3.3.5 Tracking background

In addition to tracking IBS particles that are lost in the linac, the simulations can be

adjusted to track IBS particles that make it to the end of the linac but lie outside 10

sigma of the beam phase-space. These particles can be important when designing the

beam dump.

An additional element-by-element energy aperture, definedas the largest momentum

kick that can be introduced without the particle laying outside 10 sigma of the beam

dimensions at the end of the accelerator, is required for tracking the background of

scattered particles.

The background is determined by tracking test particles with energy changes larger
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than the ‘10 sigma’ aperture, but smaller than the ‘loss’ aperture. These particles are

tracked to the end of the linac. Their phase-space coordinates and their current and

energy are recorded. An example background is shown in Fig. 3.12.

3.3.6 Multiple-event IBS

3.3.6.1 Losses

Thus far only single-event IBS has been considered; we have discussed only those par-

ticles that are ejected from the beam after a single scattering event that imparts an en-

ergy change∆δE. In multiple-event IBS, the cumulative effect of many small scattering

events is considered.

The effect of multiple-event IBS is to increase the standard deviation of the bunch

dimensions. We use the Completely Integrated Modified Piwinski (CIMP) result from

reference [19] to obtain a rise timeτx for the emittance of the bunch. This result takes

into account scattering in dispersive regions.

The emittance growth due to multiple-event IBS is found to be 1.3%. This is trans-

lated into the number of particles lost by integrating over anormal distribution,

Nlost “ Nbunch

ş8
x,pipe e

´ x2

2pp1`κqσxq2 dx ´
ş8

x,pipe e
´ x2

2σ2
x dx

ş8
x,pipe e

´ x2

2σ2
x dx

, (3.70)

wherex, pipe is the beam pipe radius,σx is the RMS beam width,Nbunch is the number

of particles in the bunch, andκ is the emittance growth. The narrowest beam pipe in

the Cornell ERL is 1.27 cm and the average RMS beam width is 35µm. Evaluating

Eqn. (3.70) with these parameters gives a resultă 10́ 20000. At 5 ˆ 108 particles per

bunch and 1.3 GHz, it is seen that the losses due to multiple-event IBS scattering are nil.
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Looked at from another perspective, the simulations indicate that approximately 100

particles are scattered out of each bunch due to single-event IBS. Each bunch contains

5 ˆ 108 particles. Therefore, the probability of a particle in a bunch undergoing a col-

lision that scatters it into the beam pipe is 100{ p5 ˆ 108q. If it is estimated that the

probability of a particle undergoing a collision that imparts to it half the energy change

necessary for a loss is 1000{ p5 ˆ 108q, then the probability of a particle in a bunch un-

dergoing two such collisions in the same direction is1
2p1000{ p5 ˆ 108qq2. With 1.3ˆ109

bunches per second, about 0.003 particles are lost per second due to two successive col-

lisions, a negligible rate. This confirms our previous estimate that multiple-event IBS

does not contribute to Touschek losses.

3.3.6.2 Energy Spread

It is worth digressing for a moment to examine the effect IBS has on energy spread

in the Cornell ERL. Multiple-event IBS may not contribute to particle loss, but it does

contribute to growth in energy spread. The CIMP formulation is used to calculate the

growth in∆E{E through the linac.

The growth rates 1{Tp, 1{Th, and 1{Tv are calculated at the first element in the lattice

according to equation 16 from reference [19]. These growth rates are used to calculate

how the beam dimensions change due to IBS. The formula for propagating the change

in σE due to IBS from one element to the next is,

σE,i`1 “ σE,i ˆ
ˆ

1 ` 2∆ti

Tp

˙

ˆ Ei

Ei`1
, (3.71)

where∆ti is the time the beam spends in elementi, Ei is the beam energy at the start of

elementi, andEi`1 is the beam energy at the start of elementi ` 1.

A σE defined by the injector is started at element 1 and propagatedthrough the linac.
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Figure 3.8: Growth∆E{E through linac due to IBS. The injected∆E{E is 10́ 3. At the
end of the linac,∆E{E is 4.9 ˆ 10́ 3.

The results are shown in Fig. 3.8. Multiple event IBS increases EσE by a factor of 5

from the beginning to the end of the lattice.

3.4 Results

The magnitude ofH around CERL 3.0 is shown in the top plot in Fig. 3.9. Shown in

the bottom plot is a simulation result for the number of scattered particles generated per

bunch passing per meter that collide with the beam pipe somewhere down the linac. The

relation betweenH andR is given by Eqn. (3.67). Notice the correlation betweenH

and the number of particles generated.

Figure 3.6 shows the locations where these particles collide with the beam pipe.

Notice that at the very end of the accelerator the deposited current rapidly increases to
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Figure 3.9:H and current of scattered particles produced per meter for Cornell ERL.

a peak of 2230 pA/m. This is due to theγ0{γpsq dependence of the betatron term in

Eqn. (3.67). The dispersive term is negligible since the magnitude of the dispersion at

the end of the accelerator is 2̂10́ 5 andγ0{γpsq is at most 500.

The impulses shown in Fig. 3.7 are the current of particles stopped in the last four

decelerating cavities. Each cavity decelerates the beam by13 MeV, and the design

energy at the end of the linac is 10 MeV. The current stopping in the final cavity is 56

nA. The trajectories of particles stopped in the cavities are unknown but expected to

be exotic. Detailed tracking simulations are necessary to determine their behavior and

determine if they could pose a hazard. Particles that are accelerated into the cavity wall

could lead to multipacting.
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3.4.1 Collimation

Shielding the user regions with a reasonable thickness of concrete requires that the cur-

rent striking the beam pipe there be limited to below 3 pA/m. Additionally, radiation

can decrease the MTBF of components anywhere in the accelerator tunnel. For these

reasons, shielded collimators are used to control where scattered particles are lost.

Since the beam in the user regions is at full energy and has lowenergy spread, losses

there will be mostly due to betatron oscillations. IBS particles lost due to betatron

oscillations are generated in high dispersion regions of the lattice. The high dispersion

regions of the Cornell ERL lattice are the east turn around, CESRturn around, and the

user regions themselves.

Collimators cannot be placed in the linacs, since the linacs are constructed of cry-

omodules, which would make maintenance of collimators difficult. Placing collimators

in the user regions is problematic due to the radiation generated. Therefore, the best

location for collimators is in the turn-arounds, but collimators may be placed in the user

regions if necessary.

To shield the first user region from IBS particles, note by looking at table 3.1 that it

is proceeded by the east turn around. IBS particles lost in thefirst user region will be

generated in either the East turn around or in the user regionitself.

The simulation is set to look at particles scattered in the first turn around around and

lost in the first user region. The trajectories of these particles through the accelerator are

recorded and histogrammed. The histogram is analyzed to determine where a collimator

of a given radius would be most effective.

The bars in Fig. 3.10 show the current of IBS particles that would be stopped by a
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Figure 3.10: Histogram of the current of particles scattered in TA and lost in SA that
would be caught by a collimator at the given location. The horizontal coordinate spans
the TA region.

collimator placed at that location. The horizontal coordinate is the accelerator element

index and spans the TA region. Only particles that will be lost in the first user region are

counted. i.e. the plot indicates that a collimator placed at484.6 m would stop 120 pA

of electrons that would otherwise be lost in the SA user region.

The procedure for collimating the first user region consistsof placing a 10 mm di-

ameter collimator at the location of the highest peak in Fig.3.10, then rerunning the

simulation to determine both the effectiveness of the collimator and where the next col-

limator should be placed. This is repeated until losses in the user region from particles

scattered in the East turn around are below 3 pA/m. The diameter of the collimators was

chosen by balancing effective collimation that comes with a smaller diameter against

the detrimental effect of wake fields.
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Figure 3.11: Results of collimating Cornell ERL to reduce current of scattered particles
deposited into user regions. The red bars are before collimation, and the green bars after
collimation. All green bars are below the 3 pA/m threshold.

If it if found that there are no locations in the turn-around where a collimator would

be effective, but the losses in the user region are still above 3 pA/m, the simulation is

adjusted to look at particles generated and lost in the user region. A collimator is placed

where it would be effective and where there is room to surround it with shielding.

It is found that a scheme of eight 10 mm collimators are sufficient to reduce the

current of scattered particles lost in the user regions to below 3 pA/m. Two collimators

are located in the east turnaround, three in the CESR turnaround, one in the South user

region, and two in the North user region. These results are shown in Fig. 3.11. The

scheme is shown in table 3.2.
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Table 3.2: Location and current absorbed for scheme of 10 mm diameter collimators that
limits current deposited into user regions to below 3 pA/m. The beam passes through
the TA collimators twice, once during the accelerating phase and once during the decel-
erating phase.

Loc. Region Current Absorbed

(m) (pA)

470.1/2676.7 TA1/2 1949

484.6/2691.1 TA1/2 984

1147.0 SA 26

1756.9 CE 56

1852.6 CE 154

1871.9 CE 617

2041.9 NA 108

2134.7 NA 18

3.4.2 Beam dump considerations

Particles that are scattered such that the amplitude of their trajectory at the end of the

linac is larger than 10-sigma of the beam dimensions, but small enough that they do not

strike the beam pipe, form a background of scattered particles that needs to be dumped

along with the beam. The simulation is adjusted to track these particles and their hori-

zontal phase-space coordinates at the end of the linac are recorded.

Shown in Fig. 3.12 is the horizontal phase space of the background of scattered

particles at the end of the linac. The total current of scattered particle laying outside 10-

sigma of the beam dimensions is 413 nA. 413 nA is small compared to the beam current

of 100 mA, but the phase space area of the scattered particlesis much larger than that

of the beam. The scattered particles are much more difficult to steer into the dump. The

beam dump needs to be designed such that the trajectories of the scattered particles does
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Figure 3.12: Horizontal phase-space distribution of scattered particles at the end of the
linac. The total current of particles laying outside 10 sigma of the beam is 413 nA,
compared to a beam current of 100 mA. The radius of the beam pipe at this part of the
accelerator is 1.95 cm. This data was run on the uncollimated lattice.

not cause too much current to be deposited into sensitive structures such as magnets.

3.4.3 Touschek Scattering Between Overlapping Beams of Different

Energy

Multiple turn accelerators have been proposed for ERLs. In these accelerators beams of

different energy may overlap in the linacs and arcs. Here we adaptthe previously derived

formula for the Touschek rate to apply to scattering betweenoverlapping bunches of

different energy. The change required is to assume that the two colliding particles have

an energy difference∆E “ E2 ´ E1, whereE2 andE1 are the energies of the high energy

beam and low energy beam, respectively. Additionally, eachbunch has different Twiss
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parameters and a different energy aperture. If∆E " δE1,2, then energy spread can be

ignored.

The different Twiss parameters change the quadratic forms in Eqn. (3.3). This results

in new expressions forkx, ky, andl. These new expressions are exact but complicated.

Refer to Apx. E for the expressions related to Touschek scattering between overlapping

beams.

The energy difference∆E changes the relative velocity∆v of the two particles and

also their cross-sectionσ. The components of their relative velocity can be written as,

∆v j “ β1β2

2|~p| pE1 ` E2qχ ` O3

∆vl “ 1
2|~p| pβ2 ´ β1q pβ2E2 ` β1E1q

ˆ

1 ´ χ2

2

˙

` O4.

When∆E is large, the relative velocity between the two particles has a longitudinal

component and a transverse component. The relative velocity can then be written in the

form,

∆v “
b

∆v2
j ` ∆v2

l

“ c1

`

1 ` c2χ
2
˘

` O3 . (3.72)

Note that this is the velocity “seen” by the particles, not the closing velocity. From

Eqn. (3.72) we see that the relative velocity has a constant part and a part that depends

on χ. A plot of the relative velocity between two particles with different energy is in

Fig. (3.13). The longitudinal part is significant if the relativistic γ of one of the particles

is small.

Recall that the cross-section for particle loss was obtainedby integrating the Moller

scattering cross-section over all angles that lead to particle loss. To obtain these angles,
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Figure 3.13: Relative velocity between two particles with different relativisticγ as a
function of angle between their momenta.

Eqn. (3.31) was interpreted as a condition for particle loss,

∆Emax ă ˘
ˆ

∆E sin2

ˆ

ψ

2

˙

` γcβccpK sinψ sinφ

˙

. (3.73)

There are two contributions to the energy change following the collision. The first term

is due to the energy difference between the two particles. The second term is due to

their relative transverse momentum. In single beam Touschek scattering, the first term

is much smaller than the second and is ignored. However, if∆E is large, then the first

term needs to be taken into consideration.

A closed-form expression for the integrated cross-sectionis found in the one-beam

case because ignoring the first term allows for an explicit expression forψ,

ψ “ arcsin
B

sinφ
. (3.74)

If both terms in Eqn. (3.73) are significant, then an exact expression forψ cannot be

found and our method for deriving the Touschek rate breaks down. However, if each
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term is examined independently, it is found that neither term results a significant Tou-

schek rate. This is because both cross-sections become large only whenβ̃ is small. If

the energy difference between the two bunches is large, then there is a lowerbound on

β̃.

The cross-section for losses due to the∆E contribution to the energy change is found

by integrating Moller differential scattering cross-section, Eqn. (3.37) over,

2 arcsin

c

∆Emax

∆E
ď ψ ă π ,

0 ď φ ă 2π ,

yields,

σ∆E “ πr2
e

γ̃2

«

1
2

ˆ

3 ´ 2

β̃2
´ 1

β̃4

˙

log

ˆ

2 ´ D
D

˙

´ D ` 1 `
ˆ

1 ` 1

β̃2

˙2 ˆ

2 ´ 2D
D p2 ´ Dq

˙

ff

, (3.75)

where,

D “
2∆Eaperture

E2 ´ E1
. (3.76)

The higher energy beam is referred to with subscript 2, and the lower energy beam with

subscript 1.

Both Eqs. (3.75) and (3.10) scale with 1{β̃4. Plotted in Fig. (3.14) is̃β for three

combinations of overlapping beams with different energies. If∆E is large, then there are

no particle pairs with small̃β. It follows that the cross-section for Touschek scattering

between beams with a large∆E is small.

Observing Fig. (3.13), a large∆E increases the rate at which collisions occur. Ob-

serving Fig. (3.14), a large∆E makes it less likely for those collisions to result in particle

loss. To find out which contribution dominates, a numerical study is done on a prototype
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Figure 3.14:β̃, the velocity of colliding particles in the c.o.m. frame, plotted versusχ.
When∆E is large, there are no particle pairs with smallβ̃.

2-turn ERL lattice. In this lattice, a beam which acceleratesfrom 10 MeV to 2510 MeV

overlaps a beam which accelerates from 2510 MeV to 5000 MeV. The results are shown

in Fig. (3.15). Two loss mechanisms are shown: 1) Transfer ofenergy between particles

2) Transfer of transverse momentum between particles. The beams overlap in the linacs.

These results demonstrate that the scattering rate betweenoverlapping bunches of dif-

ferent energy is small. The scattering rate among particlesin the higher energy beam is

shown for comparison.

3.4.4 Conclusion

Touschek scattering is relevant to ERLs because the current of lost particles can pose a

radiation hazard. To facilitate proper collimator placement, the locations where scattered

particles are generated and where they are lost need to be calculated. We have re-derived
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Piwinski’s well-known formula for Touschek scattering stored beams to determine that

it is valid for ERL beams. This required reworking the calculation to keep track of

approximations and determined that it is good to 1st order in combinations of∆E{E,

1{γ0, andχ. We then re-purposed Piwinski’s formula to give the rate at which particles

with a certain energy offset are generated at each location in the ERL. Using standard

tracking methods we are able to determine the trajectory of these particles to where they

are lost.

Scattered particles can assume large-amplitude oscillations and guide field non-

linearities may become important. We have also checked whether nonlinearities need to

be taken into account when tracking. Our conclusion is that non-linearities do not have

a significant impact on particle trajectories until the laststages of deceleration.
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These simulations have been applied to develop an effective collimation scheme for

the Cornell ERL. Before collimation, loss rates in the user regions are as high as 47

pA/m. After collimation, the rate is below 3 pA/m.

The phase-space of the background of scattered particles atthe beam dump has been

determined. This information can be used to design a beam dump that efficiently dumps

not only the beam, but also the background of scattered particles around the beam.
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APPENDIX A

TRANSFER MATRICES FOR “THESIS LAT”

M q f “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0.996877 0.24974 0 0 0 0

´0.024974 0.996877 0 0 0 0

0 0 1.00313 0.25026 0 0

0 0 0.025026 1.00313 0 0
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˚

˚

˚

˚

˚

˚

˚

˝

1.0025 0.500417 0 0 0 0
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‹

‹

‹
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M qdt “
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APPENDIX B

BEAM SIZE PROJECTIONS IN TERMS OF V

Equations 2.135, 2.136, and 2.137 are the projected beam sizes in terms of thēV cou-

pling matrix. Writing the projections in terms ofV reveals how the normal mode Twiss

parameters affect the expression of the coupling terms.

Starting fromΣ-matrix in terms of real-valued matrices, Eqn. 2.112,

ΣS “ NΛrealN´1, (B.1)

we use the definition ofN in terms of the normal mode matricesV andG to obtain,

ΣS “ VG´1
ΛrealGV´1. (B.2)

Takingσ2
x “ Σ11, σ2

y “ Σ33, andσ2
z “ Σ55 and simplifying gives the projections of the

beam envelope into the lab frame,

σ2
x “ γ2

aβaǫa `
˜

ˆ

Cab11

a

βb ´ Cab12
αb?
βb

˙2

`
ˆ

Cab12
1?
βb

˙2
¸

ǫb

`
˜

ˆ

Cac11

a

βc ´ Cac12
αc?
βc

˙2

`
ˆ

Cac12
1?
βc

˙2
¸

ǫc (B.3)

σ2
y “ γ2

bβbǫb `
˜

ˆ

´Dba22

a

βa ´ Dba12
αa?
βa

˙2

`
ˆ

Dba12
1?
βa

˙2
¸

ǫa

`
˜

ˆ

Cbc11

a

βc ´ Cbc12
αc?
βc

˙2

`
ˆ

Cbc12
1?
βc

˙2
¸

ǫc (B.4)

σ2
z “ γ2

cβcǫc `
˜

ˆ

´Dca22

a

βa ´ Dca12
αa?
βa

˙2

`
ˆ

Dca12
1?
βa

˙2
¸

ǫa

`
˜

ˆ

´Dcb22

a

βb ´ Dcb12
αb?
βb

˙2

`
ˆ

Dcb12
1?
βb

˙2
¸

ǫb (B.5)
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APPENDIX C

INTEGRATED CROSS-SECTION FOR TOUSCHEK DERIVATION

The Moller scattering cross-section is,

dσ̄ “ r2
e

4γ2

˜

ˆ

1 ` 1
β2

˙2 ˆ

4

sin4ψ
´ 3

sin2ψ

˙

` 4

sin2ψ
` 1

¸

sinψdψdφ. (C.1)

This equation is integrated such that sinψ sinφ ą B, whereB is some constant,

σ̄ “ r2
e

γ2

ż π
2

φmin

ż π
2

ψthpφq

˜

ˆ

1 ` 1
β2

˙2 ˆ

4

sin4ψ
´ 3

sin2ψ

˙

` 4

sin2ψ
` 1

¸

sinψdψdφ,

(C.2)

whereφmin “ arcsinB andψth pφq “ arcsin B
sinφ .

Integrating first over azimuth yields,

σ̄ “ r2
e

γ2

ż π
2

φmin
«

ˆ

1 ` 1
β2

˙2 ˆ

2
tanψth sinψth

` log tan

ˆ

ψth

2

˙˙

´ 4 log tan

ˆ

ψth

2

˙

` cosψth

ff

dφ. (C.3)

The equation is written in terms ofφ by using the following trigonometric identities,

tan arcsin

ˆ

B
sinφ

˙

“ B
b

sin2 φ ´ B2

, (C.4)

sin arcsin

ˆ

B
sinφ

˙

“ B
sinφ

, (C.5)

log tan

¨

˝

arcsin
´

B
sinφ

¯

2

˛

‚“ 1
2

log

¨

˚

˝

sinφ ´
b

sin2 φ ´ B2

sinφ `
b

sin2 φ ´ B2

˛

‹

‚
, (C.6)

and

cos arcsin

ˆ

B
sinφ

˙

“

b

sin2 φ ´ B2

sinφ
. (C.7)
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Yielding,

σ̄ “ r2
e

γ2

ż π
2

φmin

«

ˆ

1 ` 1
β2

˙2

¨

˚

˝

2 sinφ
b

sin2 φ ´ B2

B2

˛

‹

‚
`

b

sin2 φ ´ B2

sinφ

`
˜

1
2

ˆ

1 ` 1
β2

˙2

´ 2

¸

log

¨

˚

˝

sinφ ´
b

sin2 φ ´ B2

sinφ `
b

sin2 φ ´ B2

˛

‹

‚

ff

dφ. (C.8)

Integrating the first two terms overφ is straightforward. The third term is integrated by

differentiating under the integral,

ż π
2

arcsinB
log

¨

˚

˝

sinφ ´
b

sin2 φ ´ B2

sinφ `
b

sin2 φ ´ B2

˛

‹

‚
dφ

“
ż π

2

arcsinB

ż B

sinφ

B
BB̃

log

¨

˚

˝

sinφ ´
b

sin2 φ ´ B̃2

sinφ `
b

sin2 φ ´ B̃2

˛

‹

‚
dB̃dφ

“
ż π

2

arcsinB

ż sinφ

B

´2 sinφ

B̃
b

sin2 φ ´ B̃2

dB̃dφ

“
ż 1

B

ż π
2

arcsinB̃

´2 sinφ

B̃
b

sin2 φ ´ B̃2

dφdB̃

“
ż 1

B
´π

B̃
dB̃

“ π log B. (C.9)

Giving for Eqn. (C.8),

σ̄ “ πr2
e

2γ2

«

ˆ

3 ´ 2
β2

´ 1
β4

˙

log
1
B

´ B ` 1 `
ˆ

1 ` 1
β2

˙2 ˆ

1
B2

´ 1

˙

ff

. (C.10)
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APPENDIX D

INTEGRATION OVER ξX, ξY , δP1, AND δP2 FOR TOUSCHEK DERIVATION

The four inner integrations of Eqn. 3.39 can be written as,

ż

δp2

ż

δp1

exp

˜

´
δ2

p1 ` δ2
p2

2σ2
p

¸

ż

ξx

exp

ˆ

b2
x

4ax
´ cx

˙

dξx

ż

ξy

exp

˜

b2
y

4ay
´ cy

¸

dξydδp1dδp2.

(D.1)

whereax, bx, cx, ay, by, andcy containξx, ξy, δp1, andδp2. Powers ofξx are collected as,

b2
x

4ax
´ cx “ ξ2

xdx ` ξxex ` fx. (D.2)

Integrating overξx yields,

ż 8

´8
exp

`

´
`

ξ2
xdx ` ξxex ` fx

˘˘

dξx “
c

π

´dx
exp

ˆ

e2
x

4dx
´ fx

˙

. (D.3)

The same is done forξy. The result is,

π
a

dxdy

exp

˜

´
δ2

p1 ` δ2
p2

2σ2
p

` e2
x

4dx
´ fx `

e2
y

4dy
´ fy

¸

.

(D.4)

Powers ofδp1 andδp1 can be collected as,

´
δ2

p1 ` δ2
p2

2σ2
p

´ e2
x

4dx
` fx ´

e2
y

4dy
` fy “

gp

`

δ2
p1 ` δ2

p2

˘

` hp pδp1 ´ δp2q ` ipδp1δp2 ` jp. (D.5)

After integrating overδp1 andδp2 we find that Eqn. (D.1) evaluates to,

2π2

b

dxdy

`

4g2
p ´ i2p

˘

exp

˜

h2
p

ip ´ 2gp
` jp

¸

. (D.6)
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APPENDIX E

DERIVATION OF TOUSCHEK SCATTERING BETWEEN OVERLAPPING

BEAMS

This appendix contains a Mathematica notebook converted into Latex. The Touschek

scattering rate between overlapping beams of different energy is derived. This derivation

was done in Mathematica because the algebra is very cumbersome. This formula was

derived when considering the feasibility of a 2-turn energyrecovery linear accelerator.

For the Cornell ERL, we found that the scattering rate between overlapping beams

was negligible. This is because the relative velocity between the overlapping beams in

their center of momentum is significantly larger than in the single beam case. Touschek

scattering between overlapping beams made an insignificantcontribution to the overall

scattering rate, which includes scattering between particles in a single beam.
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The Touschek scattering rate for two overlapping beams at 
different energies is given by:

R=ÙΡ1Ar1 , p1E Ρ2Ar2 , p2E DvAp1, p2E ΣAp1, p2E âV   

dV = d r1 d r2 d p1 d p2

= dx1 dx2 dy1 dy2

dpx1 dpx2 dpy1 dpy2 d Ds1 d Ds2 dJ Dp1

p1
N dJ Dp2

p2
N

rÓ=HxΒ, yΒ, DsL
p1=Hx1 ', y1 ', Dp1L
p2=Hx2 ', y2 ', Dp2L
Ρ1 and Ρ2 are the Gaussuan phase-space densities of 
beam 1 and beam 2 Dv is the velocity of a particle in 
beam 1 with a momentum p1 relative to a particle in 
beam 2 with a momentum p2 Σ is the scattering 
cross-section.

The density in phase-space of each beam is, 

Ρ1@xΒ1, yΒ1, Ds1, x1 ', y1 ', Dp1D=
1

8 Π3 Εx1 Εy1 Σs1 p1 Σp1
ExpB- xΒ1

2+HΑx1 xΒ1+Βx1 x1 ' L2

2 ΣxΒ1
2 -

yΒ1
2+HΑy1 yΒ1+Βy1 y1 ' L2

2 ΣyΒ1
2

-
Ds1 2

2 Σs1
2 -

1

2 Σp1
2 J Dp1

p1
NF

Ρ2@xΒ2, yΒ2, Ds2, x2 ', y2 ', Dp2D=
1

8 Π3 Εx2 Εy2 Σs2 p2 Σp2
ExpB- xΒ2

2+HΑx2 xΒ2+Βx2 x2 ' L2

2 ΣxΒ2
2 -

yΒ2
2+HΑy2 yΒ2+Βy2 y2 ' L2

2 ΣyΒ2
2

-
Ds2 2

2 Σs2
2 -

1

2 Σp2
2 J Dp2

p2
NF

The position of particle 1 is given by,

x1 = xΒ1 + Dx1 Dp1

p1

y1 = yΒ1 + Dy1 Dp1

p1

which can be rearranged as,
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xΒ1 = x1 - Dx1
Dp1

p1

yΒ1 = y1 - Dy1
Dp1

p1

The divergence of particle 1 is given by,

xp1 = xpΒ1 + Dpx1
Dp1

p1

yp1 = ypΒ1 + Dpy1
Dp1

p1

which can be rearranged as,

xpΒ1 = xp1 - Dpx1
Dp1

p1

ypΒ1 = yp1 - Dpy1
Dp1

p1

Similar equations can be written for particle 2.  Since 

we are only interested in the difference of the 

divergence of the two particles we introduce the variables,

Ζx:=
x1’+x2’

2

Ζy:=
y1’+y2’

2

Θx:=x1’-x2’

Θy:=y1’-y2’

These variables allow the equations for xpΒ1 and ypΒ1 to be 

written as,

xpΒ1 =
Θx

2
+ Ζx - Dpx1

Dp1

p1

xpΒ2 = -
Θx

2
+ Ζx - Dpx2

Dp2

p2

ypΒ1 =
Θy

2
+ Ζy - Dpy1

Dp1

p1

ypΒ2 = -
Θy

2
+ Ζy - Dpy2

Dp2

p2

And writing out the x1, x2, y1, and y2 formulas,
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xΒ1 = x1 - Dx1
Dp1

p1

xΒ2 = x2 - Dx2
Dp2

p2

yΒ1 = y1 - Dy1
Dp1

p1

yΒ2 = y2 - Dy2
Dp2

p2

Dp1, Dp2, Ds1, Ds2 remain unchanged,

Dp1 = Dp1

Dp2 = Dp2

Ds1 = Ds1

Ds2 = Ds2

The above three sets of equations give a change of 

variables from, 

xpΒ1, xpΒ2, ypΒ1, ypΒ2, xΒ1, yΒ1, xΒ2, yΒ2, Dp1/p1, 

Dp2/p2, Ds1, Ds2,

to 

Θx, Θy, Ζx, Ζy, Dp1/p1, Dp2/p2, x1, x2, y1, y2, Ds1, Ds2.  

The Jacobian of this transformation is 1.

Abs[DetB

1

2
0 1 0 0 0 0 0 -Dpx1 0 0 0

-1

2
0 1 0 0 0 0 0 0 -Dpx2 0 0

0
1

2
0 1 0 0 0 0 -Dpy1 0 0 0

0
-1

2
0 1 0 0 0 0 0 -Dpy2 0 0

0 0 0 0 1 0 0 0 -Dx1 0 0 0

0 0 0 0 0 1 0 0 -Dy1 0 0 0

0 0 0 0 0 0 1 0 0 -Dx2 0 0

0 0 0 0 0 0 0 1 0 Dy2 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

FF = 1

The volume elemental is,
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dV* = dx1 dx2 dy1 dy2 dΖx dΖy dΘx dΘy

dJ Dp1
p1
N dJ Dp2

p2
N dDs1 dDs2

The density functions are broken down into transverse and 

longitudinal parts, 

Ρ1@x1,Ζx,Dp1,Θx,y1,Ζy,Dp1,Θy,Ds1,Dp1D=
Ρs1@Ds1D Ρp1@Dp1D Ρx1@x1,Ζx,Dp1,ΘxD Ρy1@y1,Ζy,Dp1,ΘyD
Ρx1@x1,Ζx,Dp1,ΘxD=

1

2 Π Εx1
ExpB- Jx1 - Dx1

Dp1

p1
N2+JΑx1 Jx1 - Dx1

Dp1

p1
N+Βx1 J Θx

2
+ Ζx - Dpx1

Dp1

p1
NN2

2 ΣxΒ12
F

Ρy1@y1,Ζy,Dp1,ΘyD=
1

2 Π Εy1
ExpB- Jy1 - Dy1

Dp1

p1
N2+JΑy1 Jy1 - Dy1

Dp1

p1
N+Βy1 J Θy

2
+ Ζy - Dpy1

Dp1

p1
NN2

2 ΣyΒ12
F

Ρp1@Dp1D= 1

2 Π p1 Σp1
ExpB- 1

2 Σp12
Dp12

p12
F

Ρs1@Ds1D= 1

2 Π Σs1
ExpB- Ds12

2 Σs12
F

Ρ2@x2,Ζx,Dp2,Θx,y2,Ζy,Dp2,Θy,Ds2,Dp2D=
Ρs2@Ds2D Ρp2@Dp2D Ρx2@x2,Ζx,Dp2,ΘxD Ρy2@y2,Ζy,Dp2,ΘyD
Ρx2@x2,Ζx,Dp2,ΘxD=

1

2 Π Εx2
ExpB- Jx2 - Dx2

Dp2

p2
N2+JΑx2 Jx2 - Dx2

Dp2

p2
N+Βx2 J- Θx

2
+ Ζx - Dpx2

Dp2

p2
NN2

2 ΣxΒ22
F

Ρy2@y2,Ζy,Dp2,ΘyD=
1

2 Π Εy2
ExpB- Jy2 - Dy2

Dp2

p2
N2+JΑy2 Jy2 - Dy2

Dp2

p2
N+Βy2 J- Θy

2
+ Ζy - Dpy2

Dp2

p2
NN2

2 ΣyΒ22
F

Ρp2@Dp2D= 1

2 Π p2 Σp2
ExpB- 1

2 Σp22
Dp22

p22
F

Ρs2@Ds1D= 1

2 Π Σs2
ExpB- Ds12

2 Σs22
F

The velocity and cross-section are dependent on only the 

angle between the scattering particles and so can be 

written as,

Dv@Θx,ΘyD=DvAp1,p2E
Σ@Θx,ΘyD=ΣAp1,p2E
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@ D A E@ D A E
We require that two colliding particles have the same 

spatial coordinates

x := x1 = x2

y := y1 = y2

Ds := Ds1 = Ds2

These three constraints are met by inserting delta 

functions,

R=ÙΡ1@x1,Ζx,Dp1,Θx,y1,Ζy,Dp1,Θy,Ds1,Dp1D
Ρ2@x2,Ζx,Dp2,Θx,y2,Ζy,Dp2,Θy,Ds2,Dp2D
Dv@Θx,ΘyD Σ@Θx,ΘyD ∆@x1-x2D ∆@y1-y2D
∆@Ds1-Ds1D dx1 dx2 dy1 dy2 dΖx dΖy dΘx dΘy

dJ Dp1
p1
N dJ Dp2

p2
N dDs1 dDs2

=ÙΡ1@x,Ζx,Dp1,Θx,y,Ζy,Dp1,Θy,Ds,Dp1D
Ρ2@x,Ζx,Dp2,Θx,y,Ζy,Dp2,Θy,Ds,Dp2D
Dv@Θx,ΘyD Σ@Θx,ΘyD dx dy dΖx dΖy dΘx dΘy

dJ Dp1
p1
N dJ Dp2

p2
N dDs

Next the density functions are arranged to simplify 

integration,

R=ÙΡs1@DsD Ρs2@DsD âDs ´ Ù ÙDv@Θx,ΘyD Σ@Θx,ΘyD´Ù ÙΡp1@Dp1D Ρp2@Dp2DA Ù ÙΡx1@x,Ζx,Dp1,ΘxD Ρx2@x,Ζx,Dp2,ΘxD âx âΖx EA Ù ÙΡy1@y,Ζy,Dp1,ΘyD Ρy2@y,Ζy,Dp2,ΘyD ây âΖyE
dJ Dp1

p1
N dJ Dp2

p2
N âΘx âΘy

The two inner transverse integrals,

Ù ÙΡx1@x,Ζx,Dp1,ΘxD Ρx2@x,Ζx,Dp2,ΘxD âx âΖxÙ ÙΡy1@y,Ζy,Dp1,ΘyD Ρy2@y,Ζy,Dp2,ΘyD ây âΖy
are evaluated first.

These two integrals are symmetric.  Only one needs to be 
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These two integrals are symmetric.  Only one needs to be 

evaluated, and the other can be obtained by transcribing 

y for x.  The integral we will be evaluating is,

Ù ÙΡx1@x,Ζx,Dp1,ΘxD Ρx2@x,Ζx,Dp2,ΘxD âx âΖx
=

1

4 Π2 Εx1 Εx2 à
à ExpB- Jx-Dx1 Dp1

p1
N2+JΑx1 Jx-Dx1 Dp1

p1
N+Βx1 J Θx

2
+Ζx-Dpx1

Dp1

p1
NN2

2 ΣxΒ12

-
Jx-Dx2 Dp2

p2
N2+JΑx2 Jx-Dx2 Dp2

p2
N+Βx2 J- Θx

2
+Ζx-Dpx2

Dp2

p2
NN2

2 ΣxΒ22
F

âx âΖx

where both variables are evaluated from -¥ to +¥.  

The integral over x is of the form,

ÙExpAax x2+bx x +cxE âx
This integral has the solution,

Π

-ax
ExpB- bx2

4 ax
+cxF

The coefficients ax, bx, and cx are obtained by setting the 

argument of the exponential equal to ax x2+bx x +cx and 

comparing coefficients of like powers.

ax x2+bx x +cx=

-
Jx-Dx1 Dp1p1 N2+JΑx1 Jx-Dx1 Dp1p1 N+Βx1 J Θx2 +Ζx-Dx1’ Dp1

p1
NN2

2 ΣxΒ1
2

-
Jx-Dx2 Dp2p2 N2+JΑx2 Jx-Dx2 Dp2p2 N+Βx2 J- Θx2 +Ζx-Dx2’ Dp2

p2
NN2

2 ΣxΒ2
2

 

This yields,
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ax=-
1

2 ΣxΒ12
-

Αx12

2 ΣxΒ12
-

1

2 ΣxΒ22
-

Αx22

2 ΣxΒ22

bx=
Dx1 Dp1

p1 ΣxΒ12
+
Dx1 Αx12 Dp1

p1 ΣxΒ12

-
Αx1 Βx1 J- Dpx1 Dp1

p1
+Ζx+

Θx

2
N

ΣxΒ12
-
Αx2 Βx2 J- Dpx2 Dp2

p2
+Ζx-

Θx

2
N

ΣxΒ22

+
Dx2 Dp2

p2 ΣxΒ22
+
Dx2 Αx22 Dp2

p2 ΣxΒ22

cx=-
Dx12 Dp12

2 p12 ΣxΒ12
-
Dx12 Αx12 Dp12

2 p12 ΣxΒ12

+
Dx1 Αx1 Βx1 Dp1 J- Dpx1 Dp1

p1
+Ζx+

Θx

2
N

p1 ΣxΒ12
+
Dx2 Αx2 Βx2 Dp2 J- Dpx2 Dp2

p2
+Ζx-

Θx

2
N

p2 ΣxΒ22

-
Dx22 Dp22

2 p22 ΣxΒ22
-
Dx22 Αx22 Dp22

2 p22 ΣxΒ22

-
Βx12 J- Dpx1 Dp1

p1
+Ζx+

Θx

2
N2

2 ΣxΒ12
-
Βx22 J- Dpx2 Dp2

p2
+Ζx-

Θx

2
N2

2 ΣxΒ22

These cumbersome coefficients can be simplified by using 

Βx1 Γx1=1+Αx1
2 and defining the quantities below.  

The y-dimension counterparts are obtained by transcribing 

y for x.

Γx1 Γx2

F

N

N

N

F

F

L

Ν

L

F

F

MO

204



ΓΓpx =
Γx1

Εx1
+
Γx2

Εx2
;

ΑΑpx =
Αx1

Εx1
+
Αx2

Εx2
;

ΑΑmx =
Αx1

Εx1
-
Αx2

Εx2
;

Dtwx1=Αx1 Dx1+Βx1 Dpx1;

Dhatx1 =Dx1 Γx1+Αx1 Dpx1;

Djx1 = Dpx1 Dtwx1+Dhatx1 Dx1;

Dtwx2=Αx2 Dx2+Βx2 Dpx2;

Dhatx2 =Dx2 Γx2+Αx2 Dpx2;

Djx2 = Dpx2 Dtwx2+Dhatx2 Dx2;

ΓΓpy =
Γy1

Εy1
+
Γy2

Εy2
;

ΑΑpy =
Αy1

Εy1
+
Αy2

Εy2
;

ΑΑmy =
Αy1

Εy1
-
Αy2

Εy2
;

Dtwy1=Αy1 Dy1+Βy1 Dpy1;

Dhaty1 =Dy1 Γy1+Αy1 Dpy1;

Djy1 = Dpy1 Dtwy1+Dhaty1 Dy1;

Dtwy2=Αy2 Dy2+Βy2 Dpy2;

Dhaty2 =Dy2 Γy2+Αy2 Dpy2;

Djy2 = Dpy2 Dtwy2+Dhaty2 Dy2;

giving,

ax = -
1

2
ΓΓpx

bx =
Dhatx1

Εx1
J Dp1

p1
N+ Dhatx2

Εx2
J Dp2

p2
N-ΑΑpx Ζx-ΑΑmx Θx

2

cx = -
Djx1

2 Εx1
J Dp1

p1
N2- Djx2

2 Εx2
J Dp2

p2
N2

+
Dtwx1

Εx1
IΖx+ Θx

2
M J Dp1

p1
N+ Dtwx2

Εx2
IΖx- Θx

2
M J Dp2

p2
N

-
Βx1

2 Εx1
IΖx+ Θx

2
M2- Βx2

2 Εx2
IΖx- Θx

2
M2

1

F
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N

N
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ay = -
1

2
ΓΓpy

by =
Dhaty1

Εy1
J Dp1

p1
N+ Dhaty2

Εy2
J Dp2

p2
N-ΑΑpy Ζy-ΑΑmy Θy

2

cy = -
Djy1

2 Εy1
J Dp1

p1
N2- Djy2

2 Εy2
J Dp2

p2
N2

+
Dtwy1

Εy1
IΖy+ Θy

2
M J Dp1

p1
N+ Dtwy2

Εy2
IΖy- Θy

2
M J Dp2

p2
N

-
Βy1

2 Εy1
IΖy+ Θy

2
M2- Βy2

2 Εy2
IΖy- Θy

2
M2

The integral now looks like,

1

4 Π2 Εx1 Εx2

Π

-ax
ÙExpB- bx

2

4 ax
+cxF âΖx

Similar to before, the argument of the exponential is a 

quadratic.  Three new coefficients dx, ex, and fx 

are obtained from,

dx Ζx
2
+ex Ζx+fx=-

bx
2

4 ax
+cx

And we have,

1

4 Π2 Εx1 Εx2

Π

-ax
ÙExpAdx Ζx2+ex Ζx+fxE âΖx

which yields,

1

4 Π2 Εx1 Εx2

Π2H-axL H-dxL ExpB- ex2

4 dx
+fxF.

The new coefficients dx, ex, and fx are simplified by 

introducing the following quantities.  

ay, by, cy, dy, ey, and fy are obtained 

by replacing all x with y in 

the ax, bx, cx, dx, ex, and fx 

coefficients.
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ΒΒpx=
Βx1

Εx1
+
Βx2

Εx2
;

ΒΒmx=
Βx1

Εx1
-
Βx2

Εx2
;

GApx=ΒΒpx-
ΑΑpx2

ΓΓpx
;

GAmx=ΒΒpx-
ΑΑmx2

ΓΓpx
;

GBx=ΒΒmx-
ΑΑmx ΑΑpx

ΓΓpx
;

Ppx1=Dtwx1-
Dhatx1 ΑΑpx

ΓΓpx
;

Ppx2=Dtwx2-
Dhatx2 ΑΑpx

ΓΓpx
;

Pmx1=Dtwx1-
Dhatx1 ΑΑmx

ΓΓpx
;

Pmx2=Dtwx2+
Dhatx2 ΑΑmx

ΓΓpx
;

DJx1:=
Dhatx12

ΓΓpx Εx1
-Djx1;

DJx2:=
Dhatx22

ΓΓpx Εx2
-Djx2;

ΒΒpy=
Βy1

Εy1
+
Βy2

Εy2
;

ΒΒmy=
Βy1

Εy1
-
Βy2

Εy2
;

GApy=ΒΒpy-
ΑΑpy2

ΓΓpy
;

GAmy=ΒΒpy-
ΑΑmy2

ΓΓpy
;

GBy=ΒΒmy-
ΑΑmy ΑΑpy

ΓΓpy
;

Ppy1=Dtwy1-
Dhaty1 ΑΑpy

ΓΓpy
;

Ppy2=Dtwy2-
Dhaty2 ΑΑpy

ΓΓpy
;

Pmy1=Dtwy1-
Dhaty1 ΑΑmy

ΓΓpy
;

Pmy2=Dtwy2+
Dhaty2 ΑΑmy

ΓΓpy
;

DJy1:=
Dhaty12

ΓΓpy Εy1
-Djy1;

DJy2:=
Dhaty22

ΓΓpy Εy2
-Djy2;

and are written as,
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dx = -
1

2
GApx

ex =
Ppx1

Εx1
J Dp1

p1
N+ Ppx2

Εx2
J Dp2

p2
N-GBx Θx

2

fx =
DJx1

2 Εx1
J Dp1

p1
N2+ DJx2

2 Εx2
J Dp2

p2
N2

+
Pmx1

Εx1
J Dp1

p1
N Θx

2
-
Pmx2

Εx2
J Dp2

p2
N Θx

2

+
Dhatx1 Dhatx2

ΓΓpx Εx1 Εx2
J Dp1

p1
N J Dp2

p2
N- GAmx

2

Θx2

4

dy = -
1

2
GApy

ey =
Ppy1

Εy1
J Dp1

p1
N+ Ppy2

Εy2
J Dp2

p2
N-GBy Θy

2

fy =
DJy1

2 Εy1
J Dp1

p1
N2+ DJy2

2 Εy2
J Dp2

p2
N2

+
Pmy1

Εy1
J Dp1

p1
N Θy

2
-
Pmy2

Εy2
J Dp2

p2
N Θy

2

+
Dhaty1 Dhaty2

ΓΓpy Εy1 Εy2
J Dp1

p1
N J Dp2

p2
N- GAmy

2

Θy2

4

The integral for the rate now looks like,

R = ÙΡs1@DsD Ρs2@DsD âDs ´Ù ÙDv@Θx,ΘyD Σ@Θx,ΘyD
á á Ρp1B Dp1p1

F Ρp2B Dp2p1
FB 1

4 Π2 Εx1 Εx2

Π2H-axL H-dxL ExpB- ex2

4 dx
+fxF F

B 1

4 Π2 Εy1 Εy2

Π2H-ayL H-dyL ExpB- ey2

4 dy
+fyFF dJ Dp1

p1
N dJ Dp2

p2
N âΘx âΘy

=
1

32 Π5 Εx1 Εx2 Εy1 Εy2 p1 Σp1 p2 Σp2

Π2 Π2

Abs@HaxL HdxL HayL HdyLD
ÙΡs1@DsD Ρs2@DsD âDsÙ ÙDv@Θx,ΘyD Σ@Θx,ΘyD
à à ExpB- 1

2 Σp12
Dp12

p12
-

1

2 Σp22
Dp22

p22
-

ex2

4 dx
+fx-

ey2

4 dy
+fyF

dJ Dp1
p1
N dJ Dp2

p2
N âΘx âΘy

N

N

N
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à à B F
J N J N

The next integration is over Dp1 and Dp2,

Ù ÙExpB- 1

2 Σp1
2

Dp1
2

p1
2
-

1

2 Σp2
2

Dp2
2

p2
2
-

ex
2

4 dx
+fx-

ey
2

4 dy
+fyF p1 p2 âJ Dp1p1

N âJ Dp2
p2
N

The argument of the exponential is of the form,

gp1J Dp1p1
N2+gp2J Dp2p2

N2+hp1J Dp1p1
N+hp2J Dp2p1

N+i J Dp1
p1
N J Dp2

p2
N+j

The coeffficients are found by comparing like terms,

gp1J Dp1p1
N2+gp2J Dp2p1

N2+hp1J Dp1p1
N+hp2J Dp2p2

N+i J Dp1
p1
N J Dp2

p1
N+j =

 -
1

2 Σp1
2

Dp1
2

p1
2
-

1

2 Σp2
2

Dp2
2

p2
2
-

ex
2

4 dx
+fx-

ey
2

4 dy
+fy

The âDp1 âDp2 integral now looks like,

à à ExpBgp1 J Dp1p1 N2+gp2 J Dp2p2 N2+hp1 J Dp1p1 N+hp2 J Dp2p2 N+i J Dp1p1 N J Dp2p2 N+jF
p1 p2 âJ Dp1

p1
N âJ Dp2

p2
N

which has the solution,

2 Π p1 p2

4 gp1 gp2-i2
ExpB- gp2 hp12+gp1 hp22-hp1 hp2 i-4 gp1 gp2 j+i2 j

4 gp1 gp2-i2
F

The new gp1,gp2,hp1,hp2,i,j terms are simplified by

introducing the following quantities,

2 2

Ζ Ζ

x y l

l

L
Θ

Ν

L

F

F
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X1:=
DJx1

Εx1
+
DJy1

Εy1
+

Ppx12

GApx Εx12
+

Ppy12

GApy Εy12
-

1

Σp12

X2:=
DJx2

Εx2
+
DJy2

Εy2
+

Ppx22

GApx Εx22
+

Ppy22

GApy Εy22
-

1

Σp22
;

Smx1=
Pmx1

Εx1
-
GBx Ppx1

GApx Εx1
;

Smy1=
Pmy1

Εy1
-
GBy Ppy1

GApy Εy1
;

Spx2=
Pmx2

Εx2
+
GBx Ppx2

GApx Εx2
;

Spy2=
Pmy2

Εy2
+
GBy Ppy2

GApy Εy2
;

SS=
Dhatx1 Dhatx2

ΓΓpx Εx1 Εx2
+
Dhaty1 Dhaty2

ΓΓpy Εy1 Εy2
+

Ppx1 Ppx2

GApx Εx1 Εx2
+

Ppy1 Ppy2

GApy Εy1 Εy2

SGx=GAmx-
GBx2

GApx
;

SGy=GAmy-
GBy2

GApy
;

and so the coefficients for the Dp1 and Dp2 integration are,

gp1 =
1

2
X1

gp2 =
1

2
X2

hp1
=
ISmx1 I Θx

2
M+Smy1 I Θy

2
MM

hp2
=
-ISpx2 I Θx

2
M+Spy2 I Θy

2
MM

i = SS

j = -
SGx

2
I Θx

2
M2- SGy

2
I Θy

2
M2

The integral for the rate, having so far integrated with 

respect to x,  Ζx,  y,  Ζy, Dp1, and Dp2, now looks like

R=
1

32 Π5 Εx1 Εx2 Εy1 Εy2 p1 Σp1 p2 Σp2

Π2 Π2 4 Π2 p12 p22

AbsAHaxL HdxL HayL HdyL I4 gp1 gp2-i2ME
ÙΡs1HDsL Ρs2HDsL âDs Ù ÙDvHΘx,ΘyL ΣHΘx,ΘyL

ExpB- gp2 hp12+gp1 hp22-hp1 hp2 i - 4 gp1 gp2 j+i2 j

4 gp1 gp2-i2
F âΘx âΘy

The argument of the exponential is of the form,

kΘx Θx2+kΘy Θy2+l Θx Θy=-
gp2 hp12+gp1 hp22-hp1 hp2 i - 4 gp1 gp2 j+i2 j

4 gp1 gp2-i2

L

Ν

L

F
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where, as before, kΘx, kΘy, and l are found by 

comparing like powers.

No additional terms are defined to simplify the kΘx, kΘy, 

and l coefficients.  They are found to be,

kΘx:= -
1

8

X2 Smx12+X1 Spx22+X1 X2 SGx+2 Smx1 Spx2 SS-SGx SS2

X1 X2-SS2

kΘx:= -
1

8

X2 Smy12+X1 Spy22+X1 X2 SGy+2 Smy1 Spy2 SS-SGy SS2

X1 X2-SS2

l := -
1

4

X2 Smx1 Smy1+X1 Spx2 Spy2+Smy1 Spx2 SS+Smx1 Spy2 SS

X1 X2-SS2

At this point we hold off from integrating over Θx and Θy.  

The relative velocity and cross-section may depend on those 

variables.  We have,

R=
1

32 Π5 Εx1 Εx2 Εy1 Εy2 p1 Σp1 p2 Σp2

Π2 Π2 4 Π2 p12 p22

AbsAHaxL HdxL HayL HdyL I4 gp1 gp2-i2ME
ÙΡs1HDsL Ρs2HDsL âDs Ù ÙDvHΘx,ΘyL ΣHΘx,ΘyL

ExpAkΘx Θx2+kΘy Θy2+l Θx ΘyE âΘx âΘy
The Ds term is easily integraged,

ÙΡs1@DsD Ρs2@DsD âDs=à 1

2 Π Σs1

ExpB- Ds2

2 Σs1
2
F 1

2 Π Σs2

ExpB- Ds2

2 Σs2
2
F âDs

=
1

2 Π Σs1 Σs2
ÙExpB- Ds2

2 Σs1
2
-
Ds2

2 Σs2
2
F âDs

=
1

2 Π Σs1 Σs2

2 Π

1

Σs1
2
+

1

Σs2
2

=
1

2 ΠIΣs12+Σs22M
After evaluating the Ds term, the rate becomes,

1
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R=
1

32 Π5 Εx1 Εx2 Εy1 Εy2 p1 Σp1 p2 Σp2

Π2 Π2 4 Π2 p12 p22

AbsAHaxL HdxL HayL HdyL I4 gp1 gp2-i2M 2 Π IΣs12+Σs22ME
Ù ÙDvHΘx,ΘyL ΣHΘx,ΘyL ExpAkΘx Θx2+kΘy Θy2+l Θx ΘyE âΘx âΘy

We now assume that DvHΘx,ΘyL and ΣHΘx,ΘyL depend only on 
the total angle Θx

2+Θy
2 and not on the Θx and Θy 

components separately.  We introduce two new 

variables, Ρ and Ν,

Θx= Ρ cos Ν

Θy = Ρ sin Ν

dΘx dΘy=
dΡdΝ

2

Χ= Θx
2+Θy

2 = Ρ

Giving,

R=
1

64 Π5 Εx1 Εx2 Εy1 Εy2 p1 Σp1 p2 Σp2

Π2 Π2 4 Π2 p12 p22

AbsAHaxL HdxL HayL HdyL I4 gp1 gp2-i2M 2 Π IΣs12+Σs22ME
Ù
0

¥Ù
0

2 Π
DvB Ρ F ΣB Ρ F
ExpAΡIkΘxHcosîL2+kΘyHsin ΝL2+l Hcos Ν sin ΝLME âΝ âΡ

The integral can be simplified,

Ù
0

¥Ù
0

2 Π
DvB Ρ F ΣB Ρ F ExpAΡ IkΘxHcosîL2-kΘy Hcos ΝL2

+kΘy Hcos ΝL2+kΘy Hsin ΝL2+l Hcos Ν sin ΝLME âΝ âΡ
Ù
0

¥Ù
0

2 Π
DvB Ρ F ΣB Ρ F

ExpAΡ IHkΘx-kΘyL HcosîL2+kΘy+ l

2
Hsin 2 ΝLME âΝ âΡ

Ù ¥Ù 2 Π B F B F

L
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Ù Ù B F B F
A IH L H îL

2
H LME

Ù
0

¥Ù
0

2 Π
DvB Ρ F ΣB Ρ F

ExpAΡ IkΘy+ I kΘx-kΘy

2
M Hcos 2î +1L+ l

2
Hsin 2 ΝLME âΝ âΡ

Ù
0

¥Ù
0

2 Π
DvB Ρ F ΣB Ρ F

ExpA Ρ
2
HHkΘx+kΘyL+HkΘx-kΘyL cos 2î+l sin 2 ΝLE âΝ âΡ

Ù
0

¥Ù
0

2 Π
DvB Ρ F ΣB Ρ F ExpA Ρ

2
HHkΘx+kΘyLE

ExpA Ρ
2
Hl sin 2 Ν +HkΘx-kΘyL cos 2îLE âΝ âΡ

Ù
0

¥Ù
0

2 Π
DvB Ρ F ΣB Ρ F ExpA Ρ

2
HHkΘx+kΘyLE

ExpB Ρ
2
K l2+HkΘx-kΘyL2 sin@2 Ν+ΦDOF âΝ âΡ

Ù
0

¥
DvB Ρ F ΣB Ρ F ExpA Ρ

2
HHkΘx+kΘyLE Ù02 Π

ExpB Ρ
2

l2+HkΘx-kΘyL2 cos@2 Ν+ΦDF âΝ âΡ
where

Φ = arcsinB kΘx-kΘy

l2+HkΘx-kΘyL2 F- Π2
The integration over Ν can be written as,

Ù
0

2 Π
ExpA Ρ

2
D1 sin@2 Ν+ΦDE âΝ,

where

D1 = l2+HkΘx-kΘyL2 .
The following identity for the modified Bessel function 

becomes useful,

I0I Ρ2 D1M= 1

2 Π
Ù
0

2 Π
ExpA Ρ

2
D1 cos@2î+ΦDE âΝ.

Usng this identity simplifies the integral to,

2 Π Ù
0

¥
DvB Ρ F ΣB Ρ F ExpA Ρ

2
HHkΘx+kΘyLE I0B Ρ2 l2+HkΘx-kΘyL2 F âΡ
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Ù B F B F A HH LE B H L F
where Ρ =Χ is the angle between the two colliding 

particles.

The equation for the rate becomes,

R = 
2 Π

64 Π5 Εx1 Εx2 Εy1 Εy2 p1 Σp1 p2 Σp2

Π2 Π2 4 Π2 p12 p22

AbsAHaxL HdxL HayL HdyL I4 gp1 gp2-i2M 2 Π IΣs12+Σs22ME
Ù
0

¥
DvB Ρ F ΣB Ρ F

ExpA Ρ
2
HkΘx+kΘyLE I0B Ρ2 l2+HkΘx-kΘyL2 F âΡ

Simplifying the factors yields,

R = 
1

16 2 Π Π Εx1 Εx2 Εy1 Εy2 Σp1 Σp2

1

AbsAHaxL HdxL HayL HdyL I4 gp1 gp2-i2M IΣs12+Σs22ME
Ù
0

¥
DvB Ρ F ΣB Ρ F

ExpAΡ kΘx+kΘy

2
E BesselIB0,Ρ l2+HkΘx-kΘyL2

2
F âΡ

Unless something is known about about the relative 

velocity Dv and cross-section Σ, we are done.  The above 

equation is exact. It gives the rate at which events whose 

cross-section is Σ occur between particles in two 

overlapping beams at different energy.  Generally, 

the integral must be evaluated numerically.  First, we 

assume that Dv and Σ are independent of Ρ.  This is done 

to aid double-checking the integration performed above.  

We pull Dv and Σ out of the equation derived by Piwinski, 

and in the limit that the properties of beam 2 match 

those of beam 1, our equation should give the same 

number as Piwinski’s equation.

We go back to the expression for the rate before Ρ and Ν 
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We go back to the expression for the rate before Ρ and Ν 

were introduced,

 R =
1

32 Π5 Εx1 Εx2 Εy1 Εy2 p1 Σp1 p2 Σp2

Π2 Π2 4 Π2 p12 p22

AbsAHaxL HdxL HayL HdyL I4 gp1 gp2-i2M 2 Π IΣs12+Σs22ME
Ù ÙDv@Θx,ΘyD Σ@Θx,ΘyD ExpAkΘx Θx2+kΘy Θy2+l Θx ΘyE âΘx âΘy

=
1

32 Π5 Εx1 Εx2 Εy1 Εy2 p1 Σp1 p2 Σp2

Π2 Π2 4 Π2 p12 p22

AbsAHaxL HdxL HayL HdyL I4 gp1 gp2-i2M 2 Π IΣs12+Σs22ME Dv Σ
Ù Ù ExpAkΘx Θx2+kΘy Θy2+l Θx ΘyE âΘx âΘy

 

 and solve the integral,

 

 Ù Ù ExpAkΘx Θx2+kΘy Θy2+l Θx ΘyE âΘx âΘy
 

 The solution is,

 

 
2 Π

4 kΘy kΘx-l2

 

 Giving a rate,

 

 R=
1

32 Π5 Εx1 Εx2 Εy1 Εy2 p1 Σp1 p2 Σp2-K Π2 Π2 4 Π2 p12 p22 4 Π2

AbsAHaxL HdxL HayL HdyL I4 gp1 gp2-i2M 2 Π IΣs12+Σs22M I4 kΘy kΘx-l2ME O DvΣ
 

This can be simplified a bit to yield,

 R=
1

8 2 Π Π Εx1 Εx2 Εy1 Εy2 Σp1 Σp2

1

AbsAHaxL HdxL HayL HdyL I4 gp1 gp2-i2M IΣs12+Σs22M I4 kΘy kΘx-l2ME DvΣ
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 Numbers are plugged in notebook one_beam.nb.  The 

 two equations do  indeed agree.The equation for 

 the velocity is,

(*Χ= Θx
2+Θy

2 = Ρ *)

DvB Ρ F:= vjB Ρ F2+vlB Ρ F2
where

vjB Ρ F:= Β1 Β2
2 p

HE1+E2L SinB Ρ F
vlB Ρ F:= 1

2 p
JΒ22 E2-Β12 E1+Β1 Β2HE1-E2L CosB Ρ FN

p:=
1

2
AbsBp1+p2F

where E1 and E1 are the energies of beam 1 and beam 2, 

and Β1 and Β2 are the relativistic Β of beam 1 and beam 2.

The integrand decay’s exponentially in Ρ, so small angle 

approximations on the formulas for the velocity are 

justified.  Approximating sin and cos yields,

vjB Ρ F:= Β1 Β2
2 p

HE1+E2L Ρ

vlB Ρ F:= 1

2 p
IΒ22 E2-Β12 E1+Β1 Β2HE1-E2LM

=
1

2 p
HΒ2-Β1L HΒ2 E2+Β1 E1L

p:=
1

2
AbsBp1+p2F

Plugging these expressions into DvB Ρ F yields,
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F
DvB Ρ F:=

vjB Ρ F2+vlB Ρ F2 =
-KJ 1

2 p
HΒ2-Β1L HΒ2 E2+Β1 E1LN2+J Β1 Β2

2 p
HE1+E2L Ρ N2O

=
1

2 p
HΒ2-Β1L2 HΒ2 E2+Β1 E1L2+Β22 Β12HE1+E2L2 Ρ

=
Β2 Β1 HE1+E2L

2 p

HΒ2-Β1L2 HΒ2 E2+Β1 E1L2
Β22 Β12HE1+E2L2 +Ρ

To simplify the expression, introduct two new definitions,

c1=
Β2 Β1 HE1+E2L

2 p

c2=
HΒ2-Β1L2 HΒ2 E2+Β1 E1L2

Β22 Β12HE1+E2L2
DvB Ρ F:=c1 c2+Ρ

Note that in the limit E1 = E2 Piwinski’s 

expression for the relative velocity is obtained,

DvB Ρ F:= Β12 H2 E1L
2 J 1

2
AbsBp1+p2FN 0+Ρ

=
Β12 H2 E1L

Ip12+p12+2 p12 cos Ρ M
0+Ρ

=
2 Β1 p1 c

4 p1

Ρ

= Β1 c Ρ

Note that our expression Ρ  is the angle between the two 

particles, whereas Piwinski’s Χ is half the angle.

Now plug the expression for the velocity into the 

rate equation,
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R = 
1

16 2 Π Π Εx1 Εx2 Εy1 Εy2 Σp1 Σp2

1

AbsAHaxL HdxL HayL HdyL I4 gp1 gp2-i2M IΣs12+Σs22ME c1

Ù
0

¥
ΣB Ρ F c2+Ρ ExpAΡ kΘx+kΘy

2
E BesselIB0,Ρ l2+HkΘx-kΘyL2

2
F âΡ

Next we introduce two cross sections.  The first, Σ1, is 

the cross-section for scattering events that exchange 

longitudinal momentum between the two particles, 

resulting in one particle being kicked above an 

aperture DE+ or below an aperture DE-.  Σ1 is independent 

of Ρ.  The second, Σ2, is the cross-section for 

scattering events that transfer transverse momentum to 

longitudinal momentum, kicking one particle above an 

aperture DE+ or below an aperture DE-.  Σ2 depends on Ρ.

Σ1=
Π re2

Γ2
K 1

2
J3- 2

Β2
-

1

Β4
N LogA 2-D

D
E-D+1+J1+ 1

Β2
N2 I 2-2 D

DH2-DL MO
D:=2

DE+
E2-E1

OR D:=2
DE-

E1-E2HDE0 1L=E1- E1+E2

2
=
E1-E2

2
<0

HDE0 2L=E2- E1+E2

2
=
E2-E1

2
>0

Σ2=
Π re2

Γ2
KJ3- 2

Β2
-

1

Β4
N LogA 1

B
E-B+1+J1+ 1

Β2
N2 I 1

B2
-1MO

B:=
DE--HDE0 1L

2 Γc Βc c pperp
OR

DE+-HDE0 1L
2 Γc Βc c pperp

OR
-DE-+HDE0 2L

2 Γc Βc c pperp
OR

-DE++HDE0 2L
2 Γc Βc c pperp

In both equations, Γ and Β are the relativistic factors of 

the particles in the center of momentum frame.  

Γc and Βc are the 

relativistic factors of the center of momentum frame.
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