Signatures of Axion Monodromy Inflation

Gang Xu
Cornell University

based on arXiv:0907.2916
with Flauger, McAllister, Pajer and Westphal

McGill University
December 2009
Outline

1. Motivations
2. Linear Potential from String Theory
3. Modulations and Phenomenology
4. Microscopic Constraints
Inflation

- Afterglow Light Pattern 400,000 yrs.
- Dark Ages
- Development of Galaxies, Planets, etc.
- Quantum Fluctuations
- 1st Stars about 400 million yrs.
- Big Bang Expansion 13.7 billion years

Motivations
- Linear Potential from String Theory
- Modulations and Phenomenology
- Microscopic Constraints

Gang Xu
Motivations
Linear Potential from String Theory
Modulations and Phenomenology
Microscopic Constraints

Brief Introduction to Inflation

A period of accelerated expansion

\[ds^2 = -dt^2 + e^{2Ht} \, d\vec{x}^2 \quad H \approx \text{const} \]

Generic Predictions:
- Scalar perturbations are approximately scale-invariant: \(n_s \approx 1 \)
- Tensor to scalar ratio \(r = 16\epsilon \), where \(\epsilon \equiv -\frac{\dot{H}}{H^2} \).
- Scalar perturbations are approximately Gaussian.
Cosmological Data

- Planck was launched on May 14th 2009 and started collecting data since August
Planck was launched on May 14th 2009 and started collecting data since August.

Planck is able to detect $r > 0.05$ and constrain $f_{NL}^{loc} < 6$.
r and the Field Excursion

\[\mathcal{L} = \frac{1}{2}(\partial \phi)^2 - V(\phi) \]
Motivations
Linear Potential from String Theory
Modulations and Phenomenology
Microscopic Constraints

r and the Field Excursion

\[\mathcal{L} = \frac{1}{2}(\partial \phi)^2 - V(\phi) \]

\[r = 16\epsilon = 8 \left(\frac{\dot{\phi}}{H} \right)^2 \text{ with } dN = Hdt \]

\[\frac{\Delta \phi}{M_p} = \int_{N_{CMB}}^{N_{end}} dN \sqrt{\frac{r(N)}{8}} \]

\(^1\)Lyth, 1996
r and the Field Excursion

- $\mathcal{L} = 1/2(\partial \phi)^2 - V(\phi)$
- $r = 16\epsilon = 8 \left(\frac{\dot{\phi}}{H} \right)^2$ with $dN = Hdt$

$$\frac{\Delta \phi}{M_p} = \int_{N_{CMB}}^{N_{end}} dN \sqrt{\frac{r(N)}{8}}$$

$$\frac{\Delta \phi}{M_p} \geq O(1) \left(\frac{r}{0.01} \right)^{1/2}$$

\footnote{Lyth, 1996}
r and the Field Excursion

- \[\mathcal{L} = \frac{1}{2}(\partial \phi)^2 - V(\phi) \]
- \[r = 16 \epsilon = 8 \left(\frac{\dot{\phi}}{H} \right)^2 \] with \(dN = Hdt \)
- \[\frac{\Delta \phi}{M_p} = \int_{N_{CMB}}^{N_{end}} dN \sqrt{\frac{r(N)}{8}} \]
- \[\frac{\Delta \phi}{M_p} \geq O(1) \left(\frac{r}{0.01} \right)^{1/2} \]
- Detectable gravitational waves suggests superplanckian field variation: \(\Delta \phi > M_p \)

\(^1\text{Lyth, 1996} \)
An inflaton potential in EFT:

\[V = \frac{1}{2} m^2 \phi^2 + \frac{1}{4\lambda} \phi^4 + \phi^4 \sum_{p=1}^{\infty} \lambda_p \left(\frac{\phi}{\Lambda} \right)^{2p} \]
UV Sensitivity

- An inflaton potential in EFT:
 \[V = \frac{1}{2}m^2 \phi^2 + \frac{1}{4}\lambda \phi^4 + \phi^4 \sum_{p=1}^{\infty} \lambda_p \left(\frac{\phi}{\Lambda} \right)^{2p} \]

- One good idea: shift symmetry \(\phi \rightarrow \phi + \text{const} \) e.g. axions
An inflaton potential in EFT:
\[V = \frac{1}{2}m^2 \phi^2 + \frac{1}{4}\lambda\phi^4 + \phi^4 \sum_{p=1}^{\infty} \lambda_p \left(\frac{\phi}{\Lambda} \right)^{2p} \]

One good idea: shift symmetry \(\phi \rightarrow \phi + \text{const e.g. axions} \)

Still not satisfactory b/c EFT is ignorant about Planck scale.
An inflaton potential in EFT:
\[V = \frac{1}{2} m^2 \phi^2 + \frac{1}{4} \lambda \phi^4 + \phi^4 \sum_{p=1}^{\infty} \lambda_p \left(\frac{\phi}{\Lambda} \right)^{2p} \]

One good idea: shift symmetry \(\phi \rightarrow \phi + \text{const} \) e.g. axions

Still not satisfactory b/c EFT is ignorant about Planck scale.

We need a candidate UV completed theory, string theory.
Axions are pseudoscalar fields with only derivative couplings. Continuous shift symmetry: $S(a) = S(a + \text{const})$.

\[V(\phi) = \Lambda^4 \left(1 - \cos \left(\frac{\phi}{f_0} \right) \right)^2 \]

\[\text{Freese, Frieman and Olinto, 1990} \]
Axions are pseudoscalar fields with only derivative couplings. Continuous shift symmetry: $S(a) = S(a + \text{const})$. Non-perturbative effect breaks it to a discrete shift symmetry, $a \rightarrow a + 2\pi$.

\(^2\)Freese, Frieman and Olinto, 1990
Axions are pseudoscalar fields with only derivative couplings. Continuous shift symmetry: $S(a) = S(a + \text{const})$.
Non-perturbative effect breaks it to a discrete shift symmetry, $a \rightarrow a + 2\pi$.

Natural Inflation\(^2\) with potential $V(\phi) = \Lambda^4 \left(1 - \cos\left(\frac{\phi}{f}\right)\right)$

\(^2\text{Freese,Frieman and Olinto, 1990}\)
Problem with Natural Inflation: Axions with super-Planckian decay constant3 are elusive in controllable string theory setup.

3Banks, Dine, Fox and Gorbatov, 2003; Svrcek and Witten, 2006
4Dimopoulos, Kachru, McGreevy and Wacker, 2005
Problem with Natural Inflation: Axions with super-Planckian decay constant3 are elusive in controllable string theory setup.

A good idea: N-flation 4 use $N \sim 10^3$ axions collectively to inflate.

3 Banks, Dine, Fox and Gorbatov, 2003; Svrcek and Witten, 2006
4 Dimopoulos, Kachru, McGreevy and Wacker, 2005
Problem with Natural Inflation: Axions with super-Planckian decay constant\(^3\) are elusive in controllable string theory setup.

A good idea: N-flation\(^4\) use \(N \sim 10^3\) axions collectively to inflate

Our proposal: recycle an axion \(N\) times via monodromy

\(^3\)Banks, Dine, Fox and Gorbatov, 2003; Svrcek and Witten, 2006

\(^4\)Dimopoulos, Kachru, McGreevy and Wacker, 2005
Real-life Monodromy: Waterride

A waterride I have taken when I was young
Real-life Monodromy: Spiral Stairs

or the spiral stairs once walked on
Summary of Motivations

- Large field inflation is both interesting for observations and theoretical concerns.
Summary of Motivations

- **Large** field inflation is both interesting for observations and theoretical concerns.
- Our model = An **axion** from **string theory** with **shift symmetry**
 + Its non-periodic potential from **monodromy**
 + **Modulations** computed with string theory setup
Axions in String Theory

- String theory provides many axions:

\[b(x) = \int_{\Sigma_2} B_2, \quad c(x) = \int_{\Sigma_p} C_p \]

\(^5\text{Wen and Witten, 1986}\)
Axions in String Theory

- String theory provides many axions:

\[b(x) = \int_{\Sigma_2} B_2, \quad c(x) = \int_{\Sigma_p} C_p \]

- Worldsheet vertex operator\(^5\):

\[V(k) = \int_{\text{WS}} d^2\xi \exp(ik \cdot X(\xi)) \epsilon^{\alpha\beta} \partial_\alpha X^\mu \partial_\beta X^\nu B_{\mu\nu}(X) \]

\[V(k = 0) = \int_{\Sigma_2} B_2 = 0 \text{ indicates axion } b \text{ can only have derivative couplings.} \]

\(^5\)Wen and Witten, 1986
We need to break shift symmetry to obtain an inflaton potential.
We need to break shift symmetry to obtain an inflaton potential.

From D-branes

The presence of worldsheet boundaries such as D-branes. We use wrapped branes to create a monodromy.

From instantons

Worldsheet instantons, or D-brane instantons introduce sinusoidal modulations.
Consider a D5-brane wrapping on a two cycle

\[
S_{DBI} = - T_5 \int d^4 x \sqrt{g_4} \int d^2 \xi \sqrt{\text{det}(G^{ind} + B^{ind})}
\]

\[
V(b) = T_5 \sqrt{l^4 + b^2}
\]

Take large b limit: \(V(\phi) = \mu^3 \phi\)
Consider a D5-brane wrapping on a two cycle 6,

$$S_{DBI} = -T_5 \int d^4x \sqrt{g_4} \int d^2 \xi \sqrt{\text{det}(G^{\text{ind}} + B^{\text{ind}})}$$

$$V(b) = T_5 \sqrt{l^4 + b^2}$$

Take large b limit: $V(\phi) = \mu^3 \phi$
Fixing Parameters

A linear potential

\[V = \mu^3 \phi \text{ with } \epsilon = \frac{1}{2\phi^2}, \eta = 0 \]

- \(N(\phi) = \int_{\phi_{\text{end}}}^{\phi} \frac{d\phi}{\sqrt{2\epsilon}} \) 60 efolds indicates \(\phi_* = 11M_p \)
- COBE normalization: \(P_s = \frac{1}{24\pi^2} \frac{V}{\epsilon} = (5.4 \times 10^{-5})^2 \) fixes \(\mu = 6 \times 10^{-4} M_p \)
Predictions of the Linear Potential

\[V = \mu^3 \phi \]

- Tensor mode: \(r = 0.07 \). We will soon know!
- Tilt: \(n_s = 0.975 \)
Predictions of the Linear Potential

\[V = \mu^3 \phi \]
- Tensor mode: \(r = 0.07 \). We will soon know!
- Tilt: \(n_s = 0.975 \)
Motivations
Linear Potential from String Theory
Modulations and Phenomenology
Microscopic Constraints

Modulations

- $V(\phi) = \mu^3 \phi + \mu^3 b f \cos\left(\frac{\phi}{f}\right)$
- Monotonicity: $b < 1$
- Number of oscillations in CMB: $\frac{1}{10f}$
Background Evolution

Solve $\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$ perturbatively in b

$\phi = \phi_0 + \phi_1$

Zeroth order solution: $\phi_0(t) = (\phi_*^{3/2} - \frac{\sqrt{3}}{2} \mu^{3/2} t)^{2/3}$

First order solution: $\phi_1 \approx -3bf^2\phi_0 \sin \left(\frac{\phi_0}{f} \right)$
Slow roll parameters

\[\epsilon = \epsilon_0 + \epsilon_{osci} \approx \frac{1}{2\phi_*^2} - \frac{3bf}{\phi_0 f} \cos \left(\frac{\phi_0}{f} \right) \]

\[\eta = \eta_0 + \eta_{osci} \approx 0 - 6b \sin \left(\frac{\phi_0}{f} \right) \]
Resonant Mechanism

- Background oscillates at frequency $\omega = \frac{\dot{\phi}}{f}$
- Perturbation mode of comoving momentum k oscillates at frequency $\frac{k}{a}$ until freezes at $k = aH$
Resonant Mechanism

- Background oscillates at frequency $\omega = \frac{\dot{\phi}}{f}$
- Perturbation mode of comoving momentum k oscillates at frequency $\frac{k}{a}$ until freezes at $k = aH$
- So when $H < \omega < M_p$, every mode will resonate with the background at some time.
Oscillations in the power spectrum

\[P_s = A_s \left(\frac{k}{k_*} \right)^{n_s-1} \left(1 + \delta n_s \cos \left(\frac{\phi_k}{f} \right) \right) \text{ where } \phi_k \simeq \phi_* - \frac{\ln k/k_*}{\phi_*} \]
Solution: \(\delta n_s = \frac{12b}{\sqrt{1 + (3f \phi_*)^2}} \sqrt{\frac{\pi}{8} \coth \left(\frac{\pi}{2f \phi_*} \right)} f \phi_* \sim 24b \sqrt{f} \)
Predicted Angular Power Spectrum
Compare with Unbinned WMAP
Motivations
Linear Potential from String Theory
Modulations and Phenomenology
Microscopic Constraints

Improvement from Planck

Planck Collaboration, 2006
Figure of merit:

\[bf < 10^{-4} \text{ for } f < 0.01 \]
Lightning review of non-Gaussianity

- Simple case: \(\phi(x) = \phi_G(x) + f_{NL}^{local} \phi_G^2(x) \)
- \(f_{NL} \), amplitude of bispectrum, is usually a function of three momenta

8Komatsu and Spergel, 2001
9Komatsu et. al. WMAP5 2008
Motivations
Linear Potential from String Theory
Modulations and Phenomenology
Microscopic Constraints

Lightning review of non-Gaussianity

- Simple case: \(\phi(x) = \phi_G(x) + f_{NL}^{local} \phi_G^2(x) \)
- \(f_{NL} \), amplitude of bispectrum, is usually a function of three momenta

![Diagram](https://example.com/scheme.png)

Equilateral

Local

- WMAP5 data gives: \(-9 < f_{NL}^{local} < 111\), \(-151 < f_{NL}^{equil} < 253\)
- Planck will constraint \(f_{NL}^{local} < 6 \)

8 Komatsu and Spergel, 2001
9 Komatsu et. al. WMAP5 2008
\(f_{NL} \) from Inflation Models

- Canonical single-field slow-roll\(^{10}\): \(f_{NL} \sim O(\epsilon), \quad \epsilon \sim 10^{-2} \)
- Curvaton, non-canonical kinetic terms (k-inflation, DBI) or features in the potential:

\(^{10}\) Maldacena, 2003
Resonant non-Gaussianity condition11: \(H < \omega < M_p \)
for linear potential: \(2.4 \times 10^{-6} < f < 0.09 \).

11Chen, Easther, and Lim, 2008
12Flauger and Pajer, to appear
Resonant non-Gaussianity condition11: $H < \omega < M_p$ for linear potential: $2.4 \times 10^{-6} < f < 0.09$.

$$\langle R(\tau, k_1)R(\tau, k_2)R(\tau, k_3) \rangle = \frac{p_s^2}{(k_1k_2k_3)^2} f_{\text{res}} \sin \left(\frac{1}{\phi f} \ln K + \text{phase} \right) \delta^3(K) (2\pi)^7, \text{ } \text{12}$$

$$f_{\text{res}} \approx \frac{3 \dot{\eta}_{\text{osci}}}{8H \sqrt{\phi f}},$$

11Chen, Easther, and Lim, 2008
12Flauger and Pajer, to appear
Non-Gaussianity: Oscillatory

- Resonant non-Gaussianity condition\(^{11}\): \(H < \omega < M_p \)
 for linear potential: \(2.4 \times 10^{-6} < f < 0.09 \).

- \(\langle R(\tau, k_1)R(\tau, k_2)R(\tau, k_3)\rangle = \frac{p^2_s}{(k_1k_2k_3)^2} f_{\text{res}} \sin\left(\frac{1}{\phi f} \ln K + \text{phase} \right) \delta^3(K)(2\pi)^7 \), \(^{12}\)

- \(f_{\text{res}} \approx \frac{3 \dot{\eta}_{\text{osci}}}{8H\sqrt{\phi f}} \),

- Our model:

\[
 f_{\text{res}} \approx \frac{9b}{4\phi_0^{3/2}f^{3/2}} = \frac{9}{4} b \left(\frac{\omega}{H} \right)^{3/2}
\]

\(^{11}\) Chen, Easther, and Lim, 2008

\(^{12}\) Flauger and Pajer, to appear
Summary of the Phenomenology

- $r=0.07$: Gravitational waves detectable by Planck.
- Potentially detectable oscillations in scalar power spectrum.
- Potentially detectable resonantly enhanced non-Gaussianity.
Parameter Space

\[\log_{10} b \]

\[\log_{10} f \]

Gang Xu
Signatures of Axion Monodromy Inflation
Cartoon of Embedding
The Plan

Calculate the decay constant f and amplitude of modulation bf and constrain them.
The Plan

Calculate the decay constant f and amplitude of modulation bf and constrain them

Decay constant f

Calculate the decay constant from the kinetic term: $-\frac{1}{2}f^2(\partial c)^2$

Recall in SUSY we have $\mathcal{L} = K_a\bar{a} \partial \Phi^a \partial \bar{\Phi}^{\bar{a}}$ for superfields
The Plan

Calculate the decay constant f and amplitude of modulation bf and constrain them.

Decay constant f

Calculate the decay constant from the kinetic term: $-\frac{1}{2}f^2(\partial c)^2$

Recall in SUSY we have $\mathcal{L} = K_{a\bar{a}} \partial \Phi^a \partial \Phi^{\bar{a}}$ for superfields.

Size of the modulation

Stabilize the moduli following KKLT

Scalar potential: $V = e^K(|DW|^2 - 3|W|^2)$

Need to know $D=4 \mathcal{N} = 1$ data.
Under orientifold action, cohomology classes split, $H_{r,s} = H_{r,s}^+ + H_{r,s}^-$.

Corresponding two cycle bases ω_A also split into ω_a, $a = 1, \cdots, h_{1,1}^+$, and ω_α, $\alpha = 1, \cdots, h_{1,1}^+$.

\[^{13}\text{Grimm and Louis, 2004}\]
Motivations

Linear Potential from String Theory

Modulations and Phenomenology

Microscopic Constraints

$D = 4, \mathcal{N} = 1$ data from Type IIB O3/O7 orientifolds

Under orientifold action, cohomology classes split, $H^{r,s} = H^{r,s}_+ + H^{r,s}_-$

Corresponding two cycle bases ω_A also split into ω_a, $a = 1, \cdots, h^{1,1}_-$, and ω_α, $\alpha = 1, \cdots, h^{1,1}_+$

Chiral multiplet

$$G^a \equiv \frac{1}{2\pi} (c^a - i \frac{b^a}{g_s})$$

$$T_\alpha \equiv i \rho_\alpha + \frac{1}{2} c_{\alpha\beta\gamma} v^\beta v^\gamma + \frac{g_s}{4} c_{\alpha bc} G^b (G - \bar{G})^c$$

13Grimm and Louis, 2004
$D = 4, \mathcal{N} = 1$ data from Type IIB O3/O7 orientifolds

Under orientifold action, cohomology classes split, $H^{r,s} = H^{r,s}_+ + H^{r,s}_-$

Corresponding two cycle bases ω_A also split into ω_a, $a = 1, \cdots, h^{1,1}_-, \text{and } \omega_\alpha, \alpha = 1, \cdots, h^{1,1}_+$

Chiral multiplet

\[
G^a \equiv \frac{1}{2\pi} (c^a - i \frac{b^a}{g_s}) \\
T_\alpha \equiv i \rho_\alpha + \frac{1}{2} c_{\alpha\beta\gamma} \nu^\beta \nu^\gamma + \frac{g_s}{4} c_{\alpha bc} G^b (G - \bar{G})^c
\]

- $K = \log \left(\frac{g_s}{2} \right) - 2 \log \mathcal{V}_E$
- $\mathcal{V}_E = \frac{1}{6} c_{\alpha\beta\gamma} \nu^\alpha(T, G) \nu^\beta(T, G) \nu^\gamma(T, G)$, note specifically $\nu = \nu(\text{Re } T, \text{Im } G)$

\[\text{Grimm and Louis, 2004}\]
Calculation of Axion Decay Constant

$$-\frac{1}{2}f^2(\partial c)^2 \subset K_G \bar{G} \partial G \partial \bar{G}$$

$$\frac{f^2}{M_p^2} = \frac{g_s}{8\pi^2} \frac{c_\alpha - v^\alpha}{V_E}$$
Calculation of Axion Decay Constant

- \(-\frac{1}{2} f^2 (\partial c)^2 \subset K_G \bar{G} \partial G \partial \bar{G}\)

\[
\frac{f^2}{M_p^2} = \frac{g_s}{8\pi^2} \frac{c_\alpha - \nu^\alpha}{\mathcal{V}_E}
\]

Validity of \(\alpha'\) expansion: use worldsheet instanton to estimate: \(e^{-S_{WS}} < e^{-2}\)

\[
2 < \frac{1}{2\pi\alpha'} \int \sqrt{g_{\text{string}}} = \sqrt{g_s} \nu^\alpha 2\pi
\]
Calculation of Axion Decay Constant

\[-\frac{1}{2} f^2 (\partial c)^2 \subset K_G \bar{G} \partial G \partial \bar{G}\]

\[
\frac{f^2}{M_p^2} = \frac{g_s}{8\pi^2} \frac{c_\alpha - \nu^\alpha}{\mathcal{V}_E}
\]

Validity of α' expansion: use worldsheet instanton to estimate: $e^{-S_{WS}} < e^{-2}$

\[
2 < \frac{1}{2\pi \alpha'} \int \sqrt{g_{\text{string}}} = \sqrt{g_s} \nu^\alpha 2\pi
\]

Lower bound on f:

\[
\frac{f^2}{M_p^2} > \frac{\sqrt{g_s}}{(2\pi)^3 \mathcal{V}_E}
\]
Warmup: Review of KKLT

Non-perturbative superpotential:

\[W = W_0 + \sum_{\alpha=1}^{h_+^{1,1}} A_\alpha e^{-a_\alpha T_\alpha}, \quad a_\alpha = \frac{2\pi}{N_\alpha} \]
Warmup: Review of KKLT

- Non-perturbative superpotential:

\[
W = W_0 + \sum_{\alpha=1}^{h^{1,1}} A_\alpha e^{-a_\alpha T_\alpha}, \quad a_\alpha = \frac{2\pi}{N_\alpha}
\]

- \(D_\alpha W \equiv \partial_{T_\alpha} W + W \partial_{T_\alpha} K = -A_\alpha a_\alpha e^{-a_\alpha T_\alpha} - W \frac{v_\alpha}{2V_E} = 0 \)
stabilizes the volume of all 4-cycles
Non-perturbative superpotential:

\[W = W_0 + \sum_{\alpha=1}^{h_{1,1}} A_\alpha e^{-a_\alpha T_\alpha}, \quad a_\alpha = \frac{2\pi}{N_\alpha} \]

- \(D_\alpha W \equiv \partial_{T_\alpha} W + W \partial_{T_\alpha} K = -A_\alpha a_\alpha e^{-a_\alpha T_\alpha} - W \frac{v_\alpha}{2V_E} = 0 \)
 stabilizes the volume of all 4-cycles
- \(D_a W = -iW \frac{c_{a\alpha c} v_\alpha b^c}{4\pi V_E} = 0 \) stabilizes \(b^a = 0 \)
Find bf: instanton correction

- Educated guess: $K = -2\log(\mathcal{V}_E + e^{-S_{ED1}} \cos(c))$
Find bf: instanton correction

- Educated guess: $K = -2 \log(\mathcal{V}_E + e^{-S_{ED1}} \cos(c))$
- Perturbative moduli stabilization like $\tau = \tau_0 + e^{-S} \tau_1 \cdots$
Find bf: instanton correction

- Educated guess: $K = -2 \log(\mathcal{V}_E + e^{-S_{ED1}} \cos(c))$
- Perturbative moduli stabilization like $\tau = \tau_0 + e^{-S_1} \tau_1 \cdots$
- $bf = \frac{U_{\text{mod} \phi}}{\mu^3 \phi} e^{-S_{ED1}} \left(K_{(1)} + 2 \Re \frac{W_{(1)}}{W_{(0)}} \right)$
Find bf: instanton correction

- Educated guess: $K = -2\log(\mathcal{V}_E + e^{-S_{ED1}}\cos(c))$
- Perturbative moduli stabilization like $\mathcal{T} = \tau_0 + e^{-S}\tau_1 \cdots$
- $bf = \frac{U_{mod} \phi}{\mu^3 \phi} e^{-S_{ED1}} \left(K_{(1)} + 2\text{Re} \frac{W_{(1)}}{W_{(0)}} \right)$
- $U_{mod} = \frac{g_s}{2} \left(\frac{3|W|^2}{\mathcal{V}_E^2} \right)_{(0)}$ from AdS minimum + uplifting
- $bf < 2c_0 \cdot 10^7 \frac{g_s}{\mathcal{V}_E^2} e^{-2/g_s} \left(\frac{W}{0.1} \right)^2$
Consistency Conditions

- $g_s \ll 1$
- Euclidean instanton: $e^{-a_{\alpha} T_{\alpha}} < e^{-2} \rightarrow \tau_{\alpha} > \frac{N_{\alpha}}{\pi}$
- Back reaction on the throat
 \[N_w = \frac{\phi}{2\pi f} \ll \frac{R_{\text{perp}}^4 X}{4\pi g_s} \rightarrow \frac{f}{M_p} > \frac{0.09}{\chi^{1/3} V^{2/3}_E} \]
- $V_{\text{inf}} \ll U_{\text{mod}} \rightarrow \tau_{\alpha} \ll 73 - 8 \log \left(\frac{\nu^{\alpha} \pi \sqrt{g_s}}{2g_s} \right)$ where we used $N_{\alpha} < 50$
- Back reaction of the 4-cycle volume.
- Higher derivative terms
Backreaction of 4-cycle volume

Effect of N_w D3 branes14

14Alternative: Berg, Pajer and Sjörs, to appear
Higher derivative terms

- $S_{10D,E} \supset \alpha'^3 \bar{R}^4$
- $\bar{R}_{MN}^{PQ} \supset \nabla_{[M} H_{N]}^{PQ}$ and $H_{[M}^{C[P} H_{N]}^{Q]} + \ldots$, \(^{15}\) where $H = dB$
- $S_{4D} = \int d^4x \left[-\frac{1}{2} \dot{\phi}^2 + \frac{\dot{\phi}^8}{M_i^{12}} + \frac{\ddot{\phi}^4}{M_{ll}^{8}} \right]$
- $\frac{\omega}{M_i}, \frac{\omega}{M_{ll}}$ at most a few percent.

\(^{15}\) Gross and Sloan, 1987
A Toy Example

\[V = 1.13e \]
\[g_s = 0.134 \]
Axion monodromy inflation is falsifiable by its prediction of $r = 0.07$.

In addition: possible detectable oscillations in the power spectrum and resonantly enhanced non-Gaussianity.

We study the microscopic constraints on specific class of models in string theory.
Future directions

- Study of oscillatory type non-Gaussianity with data.
- Study of reheating.
- Realization of chain inflation.
- Other compactification models.