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Brief Introduction to Inflation

A period of accelerated expansion

ds2 = −dt2 + e2Htd~x2 H ≈ const

Generic Predictions:

Scalar perturbations are approximately scale-invariant: ns ≈ 1

Tensor to scalar ratio r = 16ε, where ε ≡ − Ḣ
H2 .

Scalar perturbations are approximately Gaussian.
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Cosmological Data

Planck was launched on May 14th 2009 and started collecting
data since August

Planck is able to detect r > 0.05 and constrain f loc
NL < 6
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r and the Field Excursion

L = 1/2(∂φ)2 − V (φ)

r = 16ε = 8
(
φ̇
H

)2
with dN = Hdt

∆φ
Mp

=
∫ Nend

NCMB
dN
√

r(N)
8

∆φ
Mp
≥ O(1)

(
r

0.01

)1/2

Detectable gravitational waves suggests superplanckian field
variation:∆φ > Mp

1

1Lyth, 1996
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UV Sensitivity

An inflaton potential in EFT:

V = 1/2m2φ2 + 1/4λφ4 + φ4Σ∞p=1λp

(
φ
Λ

)2p

One good idea: shift symmetry φ→ φ+ const e.g. axions

Still not satisfactory b/c EFT is ignorant about Planck scale.

We need a candidate UV completed theory, string theory.
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Shift symmetry of axions

Axions are pseudoscalar fields with only derivative couplings.
Continuous shift symmetry: S(a) = S(a + const).

Non-perturbative effect breaks it to a discrete shift symmetry,
a→ a + 2π.

Natural Inflation2 with potential V (φ) = Λ4
(

1− cos
(
φ
f

))

2πf0

2Freese,Frieman and Olinto, 1990
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Axion inflation

Problem with Natural Inflation: Axions with super-Planckian
decay constant3 are elusive in controllable string theory setup.

A good idea: N-flation 4use N ∼ 103 axions collectively to
inflate

Our proposal: recycle an axion N times via monodromy

3Banks, Dine, Fox and Gorbatov, 2003; Svrcek and Witten, 2006
4Dimopoulos, Kachru, McGreevy and Wacker, 2005
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Real-life Monodromy: Waterride

A waterride I have taken when I was young
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Real-life Monodromy: Spiral Stairs

or the spiral stairs once walked on
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Summary of Motivations

Large field inflation is both interesting for observations and
theoretical concerns.

Our model= An axion from string theory with shift symmetry
+ Its non-periodic potential from monodromy
+ Modulations computed with string theory setup
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Axions in String Theory

String theory provides many axions:

b(x) =

∫
Σ2

B2, c(x) =

∫
Σp

Cp

Worldsheet vertex operator5:

V (k) =

∫
WS

d2ξexp(ik · X (ξ))εαβ∂αXµ∂βX
νBµν(X )

V (k = 0) =
∫

Σ2
B2 = 0 indicates axion b can only have

derivative couplings.

5Wen and Witten, 1986
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Shift Symmetry Breaking

We need to break shift symmetry to obtain an inflaton potential.

From D-branes

The presence of worldsheet boundaries such as D-branes.
We use wrapped branes to create a monodromy.

From instantons

Worldsheet instantons, or D-brane instantons introduce sinusoidal
modulations.
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Monodromy from a Five Brane

Consider a D5-brane wrapping on a two cycle6,

SDBI = −T5

∫
d4x
√

g4

∫
d2ξ
√

det(G ind + B ind)

V (b) = T5

√
l4 + b2

Take large b limit: V (φ) = µ3φ

NS5 NS5

6McAllister, Silverstein and Westphal
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Fixing Parameters

A linear potential

V = µ3φ with ε = 1
2φ2 , η = 0

N(φ) =
∫ φ
φend

dφ√
2ε

60 efolds indicates φ∗ = 11Mp

COBE normalization: Ps = 1
24π2

V
ε = (5.4× 10−5)2 fixes

µ = 6× 10−4Mp
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Predictions of the Linear Potential

V = µ3φ

Tensor mode: r = 0.07. We will soon know!
Tilt:ns = 0.975

Chaotic Inflation

0.92 0.94 0.96 0.98 1.0 1.02

ns

IIA Nil manifolds
µ10/3!2/3

N = 50  
N = 60 

Linear Axion Inflation
µ3!

N = 50
N = 60
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Modulations

V (φ) = µ3φ+ µ3bf cos(φf )
Monotonicity: b < 1
Number of oscillations in CMB: 1

10f
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Background Evolution

Solve φ̈+ 3Hφ̇+ V ′(φ) = 0 perturbatively in b

φ = φ0 + φ1

Zeroth order solution: φ0(t) = (φ
3/2
∗ −

√
3

2 µ
3/2t)2/3

First order solution: φ1 ≈ −3bf 2φ0 sin
(
φ0
f

)
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Background Evolution

Slow roll parameters

ε = ε0 + εosci ≈
1

2φ2
∗
− 3bf

φ∗
cos

(
φ0

f

)
η = η0 + ηosci ≈ 0− 6b sin

(
φ0

f

)

10.2 10.4 10.6 10.8

0.001

0.002

0.003

0.004

0.005

10.2 10.4 10.6 10.8

-0.10

-0.05

0.05

0.10
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Resonant Mechanism

Background oscillates at frequency ω = φ̇
f

Perturbation mode of comoving momentum k oscillates at
frequency k

a until freezes at k = aH

So when H < ω < Mp, every mode will resonate with the
background at some time.
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Postulated Power Spectrum

Oscillations in the power spectrum

Ps = As

(
k
k∗

)ns−1 (
1 + δns cos

(
φk
f

))
where φk ' φ∗− ln k/k∗

φ∗

-12 -10 -8 -6 -4 -2

2.2 ´ 10-9

2.4 ´ 10-9

2.6 ´ 10-9

2.8 ´ 10-9

3. ´ 10-9

3.2 ´ 10-9
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Analytical Power Spectrum

Solution: δns = 12b√
(1+(3f φ∗)2)

√
π
8 coth

(
π

2f φ∗

)
f φ∗ ∼ 24b

√
f

0 0.02 0.04 0.06 0.08 0.1
f

0

0.05

0.1

0.15

0.2

∆n
s
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Predicted Angular Power Spectrum
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Compare with Unbinned WMAP
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Improvement from Planck

7

7Planck Collaboration, 2006
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Power Spectrum: Likelihood Analysis

0 0.02 0.04 0.06 0.08 0.1
f

0

0.05

0.1

0.15

0.2

∆n
s

 - 4   -3.5   -3   -2.5   -2   -1.5   -1
log10 f

0

0.00025

0.0005

0.00075

0.001

0.00125

0.0015

0.00175

bf

Figure of merit:
bf < 10−4 for f < 0.01
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Lightning review of non-Gaussianity

Simple case: φ(x) = φG (x) + f local
NL φ2

G (x) 8

fNL, amplitude of bispectrum, is usually a function of three
momenta

k1

k3

k 2

k 1

k 3

k 2

Equilateral Local

WMAP5 data gives: −9 < f local
NL < 111, −151 < f equil

NL < 253
9

Planck will constraint f local
NL < 6

8Komatsu and Spergel,2001
9Komatsu et. al. WMAP5 2008
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fNL from Inflation Models

Canonical single-field slow-roll10 : fNL ∼ O(ε), ε ∼ 10−2

Curvaton, non-canonical kinetic terms(k-inflation, DBI) or
features in the potential:

10Maldacena, 2003
Gang Xu Signatures of Axion Monodromy Inflation 29/44
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Non-Gaussianity: Oscillatory

Resonant non-Gaussianity condition11: H < ω < Mp

for linear potential: 2.4× 10−6 < f < 0.09.

〈R(τ, k1)R(τ, k2)R(τ, k3)〉 =
P2

s
(k1k2k3)2 fres sin

(
1
φf ln K + phase

)
δ3(K) (2π)7 , 12

fres ' 3 η̇osci

8H
√
φf

,

Our model:

fres '
9b

4φ
3/2
0 f 3/2

=
9

4
b
(ω

H

)3/2

11Chen, Easther, and Lim, 2008
12Flauger and Pajer,to appear
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Summary of the Phenomenology

r=0.07: Gravitational waves detectable by Planck.

Potentially detectable oscillations in scalar power spectrum.

Potentially detectable resonantly enhanced non-Gaussianity.
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Parameter Space

 - 4  - 3 - 2 - 1
log10 f

-4--

 -3

 -2

 -1

0
log

10
b

TT

TTT
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Cartoon of Embedding
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The Plan

Calculate the decay constant f and amplitude of modulation bf
and constrain them

Decay constant f

Calculate the decay constant from the kinetic term: −1
2 f 2(∂c)2

Recall in SUSY we have L = Kaā∂Φa∂Φ̄ā for superfields

Size of the modulation

Stabilize the moduli following KKLT
Scalar potential: V = eK (|DW |2 − 3|W |2)

Need to know D=4 N = 1 data.
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Size of the modulation

Stabilize the moduli following KKLT
Scalar potential: V = eK (|DW |2 − 3|W |2)

Need to know D=4 N = 1 data.

Gang Xu Signatures of Axion Monodromy Inflation 34/44



Motivations
Linear Potential from String Theory

Modulations and Phenomenology
Microscopic Constraints

The Plan

Calculate the decay constant f and amplitude of modulation bf
and constrain them

Decay constant f

Calculate the decay constant from the kinetic term: −1
2 f 2(∂c)2

Recall in SUSY we have L = Kaā∂Φa∂Φ̄ā for superfields

Size of the modulation

Stabilize the moduli following KKLT
Scalar potential: V = eK (|DW |2 − 3|W |2)

Need to know D=4 N = 1 data.

Gang Xu Signatures of Axion Monodromy Inflation 34/44



Motivations
Linear Potential from String Theory

Modulations and Phenomenology
Microscopic Constraints

D = 4,N = 1 data from Type IIB O3/O7 orientifolds

Under orientifold action, cohomology classes
split,H r ,s = H r ,s

+ + H r ,s
−

Corresponding two cycle bases ωA also split into ωa,
a = 1, · · · , h1,1

− ,and ωα, α = 1, · · · , h1,1
+

13

Chiral multiplet

G a ≡ 1

2π
(ca − i

ba

gs
)

Tα ≡ iρα +
1

2
cαβγv

βvγ +
gs

4
cαbcG

b(G − Ḡ )c

K = log
(gs

2

)
− 2logVE

VE = 1
6cαβγv

α(T ,G )vβ(T ,G )vγ(T ,G ), note specifically
v = v(ReT , ImG )

13Grimm and Louis,2004
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Calculation of Axion Decay Constant

−1
2 f 2(∂c)2 ⊂ KGḠ∂G∂Ḡ

f 2

M2
p

=
gs

8π2

cα−−vα

VE

Validity of α′ expansion: use worldsheet instanton to
estimate: e−SWS < e−2

2 <
1

2πα′

∫
√

gstring =
√

gsv
α2π

Lower bound on f:
f 2

M2
p

>

√
gs

(2π)3VE
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Warmup: Review of KKLT

Non-perturbative superpotential:

W = W0 +

h1,1
+∑

α=1

Aαe−aαTα , aα =
2π

Nα

DαW ≡ ∂TαW + W ∂TαK = −Aαaαe−aαTα −W vα

2VE
= 0

stabilizes the volume of all 4-cycles

DaW = −iW cαacvαbc

4πVE
= 0 stablizes ba = 0
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Find bf : instanton correction

Educated guess: K = −2log(VE + e−SED1cos(c))

Perturbative moduli stabilization like τ = τ0 + e−Sτ1 · · ·
bf = Umodφ

µ3φ
e−SED1

(
K(1) + 2ReW(1)

W(0)

)
Umod = gs

2

(
3|W |2
V2

E

)
(0)

from AdS minimum+uplifting

bf < 2c0 · 107 gs

V2
E
e−2/gs

(
W
0.1

)2
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Consistency Conditions

gs � 1

Euclidean instanton:e−aαTα < e−2 → τα >
Nα
π

Back reaction on the throat
Nw = φ

2πf �
R4

perpX

4πgs
→ f

Mp
> 0.09

X 1/3V2/3
E

Vinf � Umod → τα � 73− 8 log
(

vαπ
√

gs

2gs

)
where we used

Nα < 50

Back reaction of the 4-cycle volume.

Higher derivative terms
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Backreaction of 4-cycle volume

Effect of Nw D3 branes14

NS5
NS5

14Alternative: Berg, Pajer and Sjörs, to appear
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Higher derivative terms

S10D,E ⊃ α′3R̄4

R̄ PQ
MN ⊃ ∇[MH PQ

N] and H
C [P

[M H
Q]

N]C + . . . ,15 where
H = dB

S4D =
∫

d4x
[
−1

2 φ̇
2 + φ̇8

M12
I

+ φ̈4

M8
II

]
,

ω
MI

, ω
MII

at most a few percent.

15Gross and Sloan, 1987
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A Toy Example

 - 4  - 3 - 2 - 1
log10 f

-4--

 -3

 -2

 -1

0
log

10
b

TT

TTT

V =113e
g  =0.134s
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Conclusions

Axion monodromy inflation is falsifiable by its prediction of
r = 0.07.

In addition: possible detectable oscillations in the power
spectrum and resonantly enhanced non-Gaussianity.

We study the microscopic constraints on specific class of
models in string theory.
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Future directions

Study of oscillatory type non-Gaussianity with data.

Study of reheating.

Realization of chain inflation.

Other compactification models.
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