Signatures of Modulations in Axion Monodromy Inflation

Gang Xu, Cornell University

work in progress with R.Flauger L.McAllister E.Pajer E.Silverstein A.Westphal

December 9, 2008
Outline

1 Motivation
 - Inflation
 - Generating non-Gaussianity

2 Our Model
 - More Motivation
 - The Potential

3 Analysis
 - Calculation Steps
 - Constraints
 - Results

4 Conclusion
Inflation

Generating non-Gaussianity

Gang Xu, Cornell University

Signatures of Axion Monodromy Inflation
A brief introduction to Inflation

A period of accelerated expansion

\[ds^2 = -dt^2 + e^{2Ht} d\vec{x}^2 \]

\[H \approx \text{const} \]

Explains why universe is so large, flat and empty (Guth, 1981)

Predictions:
Brief Introduction to Inflation

A period of accelerated expansion

\[ds^2 = -dt^2 + e^{2Ht} d\vec{x}^2 \]

\(H \approx \text{const} \)

Explains why universe is so large, flat and empty (Guth, 1981)

Predictions:

- Amplitude \(P_s \) of primordial scalar fluctuations.
A period of accelerated expansion

\[ds^2 = -dt^2 + e^{2Ht} d\vec{x}^2 \]

\[H \approx \text{const} \]

Explains why universe is so large, flat and empty (Guth, 1981)

Predictions:

- Amplitude P_s of primordial scalar fluctuations.
- Scalar fluctuations are approximately scale-invariant: $n_s \approx 1$
Brief Introduction to Inflation

A period of accelerated expansion

\[ds^2 = -dt^2 + e^{2Ht} d\vec{x}^2 \]

\[H \approx \text{const} \]

Explains why universe is so large, flat and empty (Guth, 1981)

Predictions:

- Amplitude \(P_s \) of primordial scalar fluctuations.
- Scalar fluctuations are approximately scale-invariant: \(n_s \approx 1 \)
- Tensor fluctuations \(r = 16\epsilon \), where \(\epsilon \equiv -\frac{\dot{H}}{H^2} \).
A period of accelerated expansion

$$ds^2 = -dt^2 + e^{2Ht} d\vec{x}^2$$

$$H \approx \text{const}$$

Explains why universe is so large, flat and empty (Guth, 1981)

Predictions:

- Amplitude P_s of primordial scalar fluctuations.
- Scalar fluctuations are approximately scale-invariant: $n_s \approx 1$
- Tensor fluctuations $r = 16\epsilon$, where $\epsilon \equiv -\frac{\dot{H}}{H^2}$.
- Scalar fluctuations are approximately Gaussian.
Why non-Gaussianity?

\[\phi = \phi_G + f_{NL} \phi_G^2 \]

\(^1\) WMAP5 Komatsu et.al arXiv: 0803.0547[astro-ph]
Why non-Gaussianity?

- $\phi = \phi_G + f_{NL} \phi_G^2$ \(^1\)
- P_s, n_s, r are numbers; f_{NL} is usually a function of the scales

\(^1\) WMAP5 Komatsu et.al arXiv: 0803.0547[astro-ph]
Why non-Gaussianity?

\[\phi = \phi_G + f_{NL} \phi_G^2 \]

- \[P_s, n_s, r \] are numbers; \(f_{NL} \) is usually a function of the scales

\[\begin{align*}
 k_1 & \quad k_2 \\
 k_3 & \quad \text{Equilateral}
\end{align*} \quad \begin{align*}
 k_1 & \quad k_2 \\
 k_3 & \quad \text{Local}
\end{align*} \]

- WMAP5 data gives:
 \[-9 < f_{NL}^{\text{local}} < 111 \]
 \[-151 < f_{NL}^{\text{equil}} < 253 \]

Would be a truly remarkable discovery

\[^1 \text{WMAP5 Komatsu et.al arXiv: 0803.0547[astro-ph]} \]
Why non-Gaussianity?

\[\phi = \phi_G + f_{NL} \phi_G^2 \]

- \(P_s, n_s, r \) are numbers; \(f_{NL} \) is usually a function of the scales

\[
\begin{align*}
\text{Equilateral} & \quad k_1 \quad k_2 \quad k_3 \\
\text{Local} & \quad k_1 \quad k_2 \quad k_3
\end{align*}
\]

- WMAP5 data gives: \(-9 < f_{NL}^{\text{local}} < 111 \)
 \(-151 < f_{NL}^{\text{equil}} < 253 \)

- Would be a truly remarkable discovery
- In five years, Planck \(f_{NL}^{\text{loc}} < 6 \)

\(^1\)WMAP5 Komatsu et.al arXiv: 0803.0547[astro-ph]
Why non-Gaussianity?

- \(\phi = \phi_G + f_{NL} \phi_G^2 \)
- \(P_s, n_s, r \) are numbers; \(f_{NL} \) is usually a function of the scales

\[\begin{align*}
\text{Equilateral} & \quad \text{Local} \\
\begin{array}{c}
\text{Equilateral} \\
k_1 \quad k_2 \quad k_3
\end{array} & \quad \begin{array}{c}
\text{Local} \\
k_1 \quad k_2 \\
k_3
\end{array}
\]

- WMAP5 data gives: \(-9 < f_{local}^{NL} < 111 \)
 \(-151 < f_{equil}^{NL} < 253 \)

- Would be a truly remarkable discovery
- In five years, Planck \(f_{loc}^{NL} < 6 \)
- Let’s hope we are lucky!

\(^1\)WMAP5 Komatsu et.al arXiv: 0803.0547[astro-ph]
Current Situation

- Generic single field slow roll: \(f_{NL} \sim O(\epsilon) \), \(\epsilon \sim 10^{-2} \)
- Exceptions: non-inflation models, DBI inflation or

\[
\begin{align*}
\text{bump} & \\
\text{sharp feature}
\end{align*}
\]

- For a potential with oscillatory modulations, when \(H < \omega < M_p \) the non-Gaussianity will be dominated by \(^2\)

\[
f_{\text{res}} \sim \epsilon \dot{\eta} \quad \eta \equiv \frac{\dot{\epsilon}}{\epsilon H}
\]

Motivation Summary

- **Inflation** can deliver a flat, homogeneous universe.
- **Non-Gaussianity** can tell us a lot about this inflationary era.
- A resonant production mechanism can help us to achieve an observable non-Gaussianity.
Why string theory?

- Promising candidate for UV completion
- Easy to find a scalar to act as the inflaton
Why axions?

Axion: a pseudo-Goldstone boson with a shift symmetry,

\[S(a) = S(a + f), \]

\(^3\)McAllister, Silverstein and Westphal arXiv:0808.0706[hep-th]
Why axions?

Axion: a pseudo-Goldstone boson with a shift symmetry,

\[S(a) = S(a + f), \]

higher order corrections, e.g. \(\frac{\phi^6}{M_{pl}^2} \), \(\frac{\phi^8}{M_{pl}^4} \) etc vanish.

\[^3\text{McAllister, Silverstein and Westphal arXiv:0808.0706[hep-th]}\]
Axion: a pseudo-Goldstone boson with a shift symmetry,

$$S(a) = S(a + f),$$

higher order corrections, e.g. $\frac{\phi^6}{M_{pl}^2}$, $\frac{\phi^8}{M_{pl}^4}$ etc vanish.

What are the axions \(^3\) in our model?

\(^3\)McAllister, Silverstein and Westphal arXiv:0808.0706[hep-th]
Axion: a pseudo-Goldstone boson with a shift symmetry,

\[S(a) = S(a + f), \]

higher order corrections, e.g. \(\frac{\phi^6}{M_{pl}^2} \), \(\frac{\phi^8}{M_{pl}^4} \) etc vanish.

What are the axions \(^3\) in our model?

\(^3\)McAllister, Silverstein and Westphal arXiv:0808.0706[hep-th]
Why monodromy?

Monodromy:

\[
\text{DBI} = -\int dp^+ \xi (2\pi)^p \alpha' - \left(p + \frac{1}{2} \right) e^{-\Phi} \sqrt{\det (G_{MN} + B_{MN})} \partial \alpha X^M \partial \beta X^N \]

\[
V(b) = \epsilon g_s (2\pi)^{5/2} \alpha' \sqrt{l_4^4 + b^2}
\]

Large field inflation:
\[
V(\phi) \approx \mu^3 \phi
\]

Gang Xu, Cornell University
Why monodromy?

Monodromy:

\[
S_{DBI} = - \int \frac{d^{p+1}\xi}{(2\pi)^p} \alpha'^{(p+1)/2} e^{-\phi} \sqrt{\det(G_{MN} + B_{MN})} \partial_\alpha X^M \partial_\beta X^N
\]

\[
V(b) = \frac{\epsilon}{g_s (2\pi)^5 \alpha'^2} \sqrt{l^4 + b^2}
\]

Large field inflation: \(V(\phi) \approx \mu^3 \phi \)
Parameter Fixing

$$V = \mu^3 \phi + \Lambda^4 \cos \left(\frac{\phi}{f} \right)$$

- 60 e-folds: $\phi_0 \approx 11 M_{pl}$
- COBE: $\mu = 6 \times 10^{-4} M_{pl}$
- CMB: $\frac{\Lambda^4}{\mu^3} < 3.3 \times 10^{-4} M_{pl}$
Calculation steps and Predictions

1. **Background evolution:** solve $\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$

2. **Calculate spectrum:** solve Mukhanov-Sasaki equation

 $$u''_k + \left(k^2 - \frac{z''}{z}\right) = 0, \quad z \equiv \frac{a\dot{\phi}}{H}$$

3. **Calculate bispectrum:** following Chen et al.

Predictions

$$n_s \approx 0.975 \text{ and } r \approx 0.07$$
f the decay constant

\[f_{\text{res}} \simeq \frac{9\Lambda^4}{4\mu^3 \phi_0^{3/2} f^{5/2}}, \]

Where \(f = \frac{c_0}{2\pi} \sqrt{\frac{g_s}{T_L}} \quad 4 \), and \(f_{\text{res}} \simeq 2 \times 10^{-3} \left(\frac{T_L}{c_0^2 g_s} \right)^{5/4} \)

\(^4\)Svrcek and Witten[arXiv:hep-th/0605206]
The decay constant f can be calculated as

$$f_{\text{res}} \simeq \frac{9 \Lambda^4}{4 \mu^3 \phi_0^{3/2} f^{5/2}}.$$

Where $f = \frac{c_0}{2\pi} \sqrt{\frac{g_s}{T_L}}^4$, and $f_{\text{res}} \simeq 2 \times 10^{-3} \left(\frac{T_L}{c_0^2 g_s}\right)^{5/4}$

$g_s \ll 1$

4Svrcek and Witten[arXiv:hep-th/0605206]
f the decay constant

\[f_{\text{res}} \approx \frac{9\Lambda^4}{4\mu^3\phi_0^{3/2} f^{5/2}} \]

Where \(f = \frac{c_0}{2\pi} \sqrt{\frac{g_s}{T_L}} 4 \), and \(f_{\text{res}} \approx 2 \times 10^{-3} \left(\frac{T_L}{c_0^2 g_s} \right)^{5/4} \)

1. \(g_s \ll 1 \)
2. \(S_{WS} > 2 \) and \(S_{ED3} > 2 \)

\(^4\text{Svrcek and Witten[arXiv:hep-th/0605206]}\)
Motivation
Our Model
Analysis
Conclusion
Calculation Steps
Constraints
Results

f the decay constant

Prediction

\[
f_{\text{res}} \simeq \frac{9 \Lambda^4}{4 \mu^3 \phi_0^{3/2} f^{5/2}},
\]

Where \(f = \frac{c_0}{2\pi} \sqrt{\frac{g_s}{T_L}} \), and \(f_{\text{res}} \simeq 2 \times 10^{-3} \left(\frac{T_L}{c_0^2 g_s} \right)^{5/4} \)

1. \(g_s \ll 1 \)
2. \(S_{WS} > 2 \) and \(S_{ED3} > 2 \)
3. \(V < U_{\text{mod}} \simeq \frac{1}{T_L^3} e^{-4\pi T_L / N_L} \)

\(^4\)Svrcek and Witten[arXiv:hep-th/0605206]
f the decay constant

Prediction

\[f_{\text{res}} \simeq \frac{9\Lambda^4}{4\mu^3\phi_0^{3/2}f^{5/2}}, \]

Where \(f = \frac{c_0}{2\pi} \sqrt{\frac{g_s}{T_L}} \), and \(f_{\text{res}} \simeq 2 \times 10^{-3} \left(\frac{T_L}{c_0^2 g_s} \right)^{5/4} \)

1. \(g_s \ll 1 \)
2. \(S_{WS} > 2 \) and \(S_{ED3} > 2 \)
3. \(V < U_{\text{mod}} \simeq \frac{1}{T_L^3} e^{-4\pi T_L/N_L} \)
4. Taste bound: \(N_L < 50 \)

\(^4\)Svrcek and Witten[arXiv:hep-th/0605206]
Table of Results

<table>
<thead>
<tr>
<th>T_L</th>
<th>N_L</th>
<th>g_s</th>
<th>f_{res}</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>40</td>
<td>0.03</td>
<td>11</td>
</tr>
<tr>
<td>26</td>
<td>33</td>
<td>0.05</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
<td>0.1</td>
<td>1</td>
</tr>
</tbody>
</table>
We have studied the observational signatures of an axion monodromy inflation model. This model predicts observable non-Gaussianity.