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The set of complex numbers, commonly symbolized by C, has many applications in
physics. Its appearance occured naturally in the 16th century, when mathematicians
wanted to express all the roots of polynomials. Integer numbers (Z) could solve equations
such as x+1 = 0, rational numbers (Q) could solve equations such as 2x− 1 = 0, and real
numbers (R), equations as x2 − 2 = 0. Similarly, complex numbers yield the solutions of
equations of the form x2 +1 = 0. The set of complex numbers is now sufficient to express
all roots of any polynomial.

First, we give formal definitions and we show some of the most important properties of
complex numbers. Then, we present a short list of the many possible applications related
to complex numbers.

1 Definition

A complex number is an ordered pair of two real numbers, x and y, written

z = x+ iy, (1)

where i =
√
−1. x is called the real part and y, the imaginary part of z. This is written

as <{z} = x and ={z} = y.
You know already that a pair of real numbers specifes the position of a point on a

2-dimensional cartesian plane. The set of complex numbers defines the complex plane the
same way. It is therefore natural to represent a complex number in polar coordinates:

z = r(cos θ + i sin θ), (2)

with the usual relations between (x, y) and (r, θ).
Exercise: Write down these relations. You shouldn’t need to think more than 2 or 3
seconds!

Here, r is called the modulus (or, sometimes, the absolute value) and θ is the phase of
z. We often write r ≡ |z|. Using the Taylor expansion of cos() and sin() functions, this
can be written in the very elegant, so-called complex exponential form:

z = reiθ. (3)

Exercise: Assuming that sin(), cos() and exp() are well-defined in the whole complex
plane, prove that (2) is equivalent to (3).
Exercise: Using the equality of (2) and (3), express cos(x) and sin(x) as a combination
of complex exponentials.
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2 Basic Operations

The addition of two complex numbers is totally equivalent to the usual vectorial componant-
by-componant addition:

z1 + z2 = (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2). (4)

As you can guess, additions are most easily done in the x+ iy notation.
Exercise: What is the addition of two complex numbers in the complex exponential
notation?

The multiplication of two complex numbers is also the usual, distributive, commutative,
multiplication that we used in R. You only have to remember that i2 = −1!
Exercise: What is z1z2 in the notation (1)?

Here, the complex exponential notation is really more effective:

z1z2 = (r1e
iθ1)(r2e

iθ2) = r1r2e
i(θ1+θ2). (5)

Exercise: Is it true that <{z1 + z2} = <{z1} + <{z2}? And what about <{z1z2} =
<{z1}<{z2}?
Exercise: Show that z2 6= |z|2 in general. This confusion is one common source of
miscalculations.

It should be clear for you that the result of the multiplication of two complex numbers
is a complex number which modulus is the product of the modulus of the two numbers,
and which phase is the sum of the two phases.
Exercise: What complex number represents a pure rotation of an angle φ?

3 Complex Conjugation

The complex conjugate of a complex number z is noted z∗ (mathematicians also often use
z̄) and is defined by:

z∗ = (x+ iy)∗ = x− iy. (6)

Hence, complex conjugation correspond to a transformation of a number into its symmetric
part with respect to the real axis. In complex exponential notation, it is:

z∗ = (reiθ)∗ = re−iθ.

A good trick is to remember that taking the complex conjugate is equivalent to replacing
all i’s by −i’s.
Exercise: Show that (z1z2)

∗ = z∗1z
∗
2 .

Exercise: What do you conclude of a number such that z∗ = z? And if z∗ = −z?
Exercise: Express |z|2 as a function of z and z∗. Isn’t it nice?
Exercise: Show that |z1z2| = |z1||z2|.

Now, a few applications.

4 Waves and Oscillations

Recall the differential equation of a harmonic oscillator:

d2ψ

dt2
+ ω2ψ = 0. (7)
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Since this is a linear ODE, its solution can be written ψ(t) = Aeλt. Substituting, you get
the condition λ2 = −ω2, that is, λ = ±iω. The general solution is therefore of the form:

ψ(t) = A1e
iωt +A2e

−iωt. (8)

Where A1, A2 ∈ C. Of course, if you want this equation to represent a physical system,
you have to specify properly A1 and A2.

The wave equation,

∇2ψ =
1

c2
∂2ψ

∂t2
, (9)

is also linear and can be solved the same way (using the method of separation of variables):
the solutions can be expressed as plane waves, of the form Aei(±kz±ωt). The informations
on the physical system should suffice to specify the value of the complex coefficients, and
may impose constraints on the values of ω and k.

Finally, you will soon encounter the famous Schrödinger equation,

i~
∂Ψ

∂t
= − ~2

2m
∇2Ψ+ VΨ, (10)

which is also linear when V is indenpendant of time and position. Once again, the solutions
will be easily expressed in the form of plane waves (complex exponentials).

5 Fourier Transforms

Another field of application of complex numbers, relevant to quantum mechanics, is Fourier
transforms. Since you might have never seen the theory, we won’t present it in detail. At
some point, you will certainly have to calculate integrals such as

g(k) =

∫
∞

−∞

f(x)e−ikxdx. (11)

Here again, it is essential to know how to manipulate complex exponentials.

6 Other Application

Even outside Quantum Mechanics, complex numbers are everywhere.
In physics, for instance, you are likely to meet

them in electromagnetism (when dealing with oscil-
lating currents). The mathematics field which deals
with the complex plane is called Complex Analy-
sis. If you learn this subject, you will learn, among
other things, amazing properties of some functions
defined on the complex plane. You will also see
some nice theorems about integration of functions
along a path in C.

Complex numbers can even make stunning and
beautiful images. The Mandelbrot set is the classic
example of such fractals.

Technical notice: this set is realized quite easily by iteration. For each point c on the
complex plane, set z0 = 0, then compute z1 = c, z2 = z2

1 + c, z3 = z2
2 + c, ... zn+1 = z2

n+ c.
You make the image by relating a color to the “rate” at which |zn| goes to infinity.
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