Some Algebraic Structures

Set: thought of as any collection of objects.

Magma or groupoid: a set S with any single binary operation. For here we denote it by +. It takes $S \times S \rightarrow S$, i.e. $\forall a, b \in S$, $\exists c \in S$ so that $c = a + b$.

Semigroup: an associative magma M, i.e. $\forall a, b, c \in M$, $a + (b + c) = (a + b) + c$.

Monoid: a semigroup S with an identity element, i.e. $\exists a_0 \in S$ so that $\forall a \in S, a + a_0 = a$.

Group: a monoid M in which every element has an inverse, i.e. $\forall a \in M$, $\exists b \in M$ so that $a + b + c = c \forall c \in M$.

Abelian group: a commutative group G, i.e. $\forall a, b \in G, a + b = b + a$.

Ring: an Abelian group AG with a monoid operation called multiplication, here denoted as \times, satisfying distributivity with respect to the binary operation of AG, i.e. the set S of AG with $+$ is an Abelian group, S with \times is a monoid, and furthermore $\forall a, b, c \in S, a \times (b + c) = a \times b + a \times c$.

Commutative ring: a ring R whose multiplication is commutative, i.e. $\forall a, b \in R, a \times b = b \times a$.

Field: a commutative ring CR where no element is simultaneously identity element of $+$ and of \times, and in which each element has an inverse of \times, i.e. $\forall a \in CR$, $\exists b \in CR$ so that $a + b \neq a$, $\exists c \in CR$ so that $(a \times c) \times d = d \forall d \in CR$.

Module over a ring: an Abelian group M with its binary operation, here called \oplus, and a ring R with its operations $+$ and \times which has the following properties: (A) There is an additive unary operation called scalar multiplication for every element of R, i.e. $\forall x \in R, \exists x: S \rightarrow S$ so that $\forall a, b \in S, x \cdot (a \oplus b) = (x \cdot a) \oplus (x \cdot b)$, (B) The scalar multiplication is linked to multiplication in R by an associativity condition, i.e. $\forall x, y, z \in R, a \in S, x \cdot [(y \times z) \cdot a] = (x \times y) \cdot (z \cdot a)$.

Algebra a module M over a ring R together with a binary operation \otimes on M that is bilinear with respect to the scalar multiplication, i.e. $\forall a, b \in M, c \in M$ with $c = a \otimes b$ and $\forall x, y \in R, a, b, c \in M, [(x \cdot a) \oplus (y \cdot b)] \otimes c = [(x \cdot a) \otimes c] \oplus [(y \cdot b) \otimes c]$ and $a \otimes [(x \cdot b) \oplus (y \cdot c)] = [(x \cdot a) \otimes b] \oplus [(y \cdot a) \otimes c]$.

Lie algebra: an algebra A where the binary operation \otimes satisfies $\forall a \in A, a \otimes a = 0$ and the Jacobi identity, i.e. $\forall a, b, c \in A, [a \otimes (b \otimes c)] \oplus [b \otimes (c \otimes a)] \oplus [c \otimes (a \otimes b)] = 0$.

Associative algebra: an algebra A where the module’s binary operator \otimes is associative, i.e. $\forall a, b, c \in A, a \otimes (b \otimes c) = (a \otimes b) \otimes c$.

Commutative algebra: an associative algebra AA where the module’s multiplication is commutative, it is called a multiplication, i.e. $\forall a, b \in AA, a \otimes b = b \otimes a$.

Differential algebra: a commutative algebra CA with a differentiation $\partial: CA \rightarrow CA$, i.e. $\forall a, b \in CA, \partial(a \otimes b) = \partial a \otimes \partial b$ and $\partial(a \otimes b) = (a \otimes \partial b) \oplus (b \otimes \partial a)$.