Projection amplitudes for linear and circular polarization

The field of any plane light wave with frequency ν can be decomposed in linear polarization

$$\vec{E} = \text{Re}[(\vec{e}_x A_x + \vec{e}_y A_y) e^{i(kz - \omega t)}]$$

and in circular polarization:

$$\vec{E} = \text{Re}[\{\vec{e}_R B_x + \vec{e}_L B_y\} e^{i(kz - \omega t)}], \quad \vec{e}_R = \frac{\vec{e}_x - i\vec{e}_y}{\sqrt{2}}, \quad \vec{e}_L = \frac{\vec{e}_x + i\vec{e}_y}{\sqrt{2}}$$

Example: $\vec{E} \propto \vec{e}_x$,

$$\text{Re}[\vec{e}_x e^{i(kz - \omega t)}] = \text{Re}[(\vec{e}_x \cos \vartheta + \vec{e}_y \sin \vartheta) e^{i(kz - \omega t)}]$$

Corresponding projection amplitudes

$$\langle x | x' \rangle = \cos \vartheta, \quad \langle y | x' \rangle = \sin \vartheta$$

$$\langle x | y' \rangle = -\sin \vartheta, \quad \langle y | y' \rangle = \cos \vartheta$$

Example of circular polarization: $\text{Re}[\vec{e}_Re^{i(kz - \omega t)}] = \text{Re}[\left(\frac{1}{\sqrt{2}} \vec{e}_x - i\frac{1}{\sqrt{2}} \vec{e}_y\right) e^{i(kz - \omega t)}]$

Corresponding complex projection amplitudes

$$\langle x | R \rangle = \frac{1}{\sqrt{2}}, \quad \langle y | R \rangle = -i\frac{1}{\sqrt{2}}$$

$$\langle x | L \rangle = \frac{1}{\sqrt{2}}, \quad \langle y | L \rangle = i\frac{1}{\sqrt{2}}$$
Properties of projection amplitudes

Probability to be in a given state: \[|< \Psi | \Psi >|^2 = 1 \]

After the analyzer:
\[|< L | \Psi >|^2 + |< R | \Psi >|^2 = 1 \]
\[< L | \Psi >^* < L | \Psi > + < R | \Psi >^* < R | \Psi > = 1 \]

After the combiner:
\[< \Psi | L > < L | \Psi > + < \Psi | R > < R | \Psi > = < \Psi | \Psi > = 1 \]

Since this has to hold for arbitrary states \(\Psi \) and for any complete sets of states like \(R \) and \(L \):

Reflexivity: \[< \Psi | \Phi > = < \Phi | \Psi >^* \]

Projection amplitudes are sometimes called **Dirac brackets**.

Paul A.M. Dirac
(1902-1984, UK)
Nobel Prize in Physics, 1933
Georg.Hoffstaetter@Cornell.edu
The state vector

Arbitrary initial photon state: \(| \Psi > \)

Projection amplitude into x-channel:

\[
< x | x' > < x' | \Psi > + < x | y' > < y' | \Psi >
\]

Projection amplitude into an arbitrary final state:

\[
< ? | x' > < x' | \Psi > + < ? | y' > < y' | \Psi >
\]

The state vector or (brac-) ket-vector:

\[
| \Psi > = | x' > < x' | \Psi > + | y' > < y' | \Psi >
\]
Quantum amplitudes for linear polarization

The field of any plane light wave with frequency ν can be written as
$$\vec{E} = \text{Re}[(\vec{e}_x A_x + \vec{e}_y A_y) e^{i(kz - \omega t)}]$$

The intensity in the x channel after an x/y analyzer:
$$I_x \propto 2 \left\langle \text{Re}[\vec{e}_x A_x e^{i(kz - \omega t)}]^2 \right\rangle_t$$
$$= 2 \left\langle \frac{1}{4} \left[A_x^2 e^{i2(kz - \omega t)} + 2 A_x A_x^* + A_x^2 e^{-i2(kz - \omega t)} \right] \right\rangle_t = A_x A_x^*$$

Intensity in the y channel: $I_y \propto A_y A_y^*$

The corresponding state vector describes a photon which is in the state $| x \rangle$ with probability $| A_x |^2$ and in the state $| y \rangle$ with probability $| A_y |^2$.

The interferences of the photons correspond to the interferences of the field when the phases and the probability amplitudes are chosen according to the amplitudes and phases of the filed components by using complex quantum amplitudes

$$| \Psi \rangle = | x \rangle A_x + | y \rangle A_y$$