A particle in a 3 dimensional box

$$-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)\Phi + V(\vec{x})\Phi = E\Phi$$

$$V(\vec{x}) = \begin{cases} 0 & \text{inside the box: } x \in [0, a], \quad y \in [0, b], \quad z \in [0, c] \\ \infty & \text{outside the box} \end{cases}$$

Search energies **E** for which functions $\Phi(\vec{x})$ with

$$\Phi(\vec{x}) = 0$$
 at the surface of the box and inside: $-\frac{\hbar^2}{2m}(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2})\Phi = E\Phi$

Custumary first try: $\Phi(\vec{x}) = f(x)g(y)h(z)$

$$-\frac{\hbar^2}{2m} fgh\left[\underbrace{\frac{1}{f} \frac{\partial^2}{\partial x^2} f(x)}_{F(x)} + \underbrace{\frac{1}{g} \frac{\partial^2}{\partial y^2} g(y)}_{G(y)} + \underbrace{\frac{1}{h} \frac{\partial^2}{\partial z^2} h(z)}_{H(z)}\right] = E fgh$$

$$F(x) + G(y) + H(z) = -\frac{2m}{\hbar^2}E = const.$$
 \rightarrow $F(x), G(y), H(z)$ are constant.

$$F(x) = -k_x^2$$
, $G(y) = -k_y^2$, $H(z) = -k_z^2$, $k_x^2 + k_y^2 + k_z^2 = \frac{2m}{\hbar^2}E$

$$\frac{\partial^2}{\partial x^2} f(x) = -k_x^2 f(x), \quad f(0) = f(a) = 0$$

Georg.Hoffstaetter@Cornell.edu

Products of one dimensional wave functions

$$\frac{\partial^2}{\partial x^2} f(x) = -k_x^2 f(x), \quad f(0) = f(a) = 0$$
 A one dimensional wave function

$$\rightarrow f(x) \propto \sin(k_x x)$$
 and $k_x = n_x \frac{\pi}{a}$ for integers n_x

$$\rightarrow g(y) \propto \sin(k_y y)$$
 and $k_y = n_y \frac{\pi}{b}$ for integers n_y

$$\rightarrow h(z) \propto \sin(k_z z)$$
 and $k_z = n_z \frac{\pi}{c}$ for integers n_z

$$E = \frac{\hbar^2 \pi^2}{2m} \left(\frac{n_x^2}{a^2} + \frac{n_y^2}{b^2} + \frac{n_z^2}{c^2} \right)$$

$$\Phi(\vec{x}) \propto \sin(k_x x) \sin(k_y y) \sin(k_z z)$$

If Φ_1 and Φ_2 are solutions of for the same energy **E**,

then also $\Phi = \Phi_1 + \Phi_2$ is a solution.

Any linear combination of states for the energy E is also a state for the energy E.

Degeneracy: There two or more stationary wave functions which do not only differ by a phase factor.

Georg.Hoffstaetter@Cornell.edu

What does **C** have to be to normalize the wave function, i.e. $\int_{0}^{c} \int_{0}^{b} \int_{0}^{a} |\Phi|^{2} dx dy dz = 1$

$$\int_{0}^{a} \sin^{2}(n_{x} \frac{\pi}{a} x) dx = \frac{a}{\pi} \int_{0}^{\pi} \sin^{2}(n_{x} \frac{\pi}{a} x) d(\frac{\pi}{a} x) = \frac{a}{\pi} \int_{0}^{\pi} \sin^{2}(n_{x} \xi) d\xi = \frac{a}{2}$$

$$\Phi_{n_x n_y n_z}(\vec{x}) = \sqrt{\frac{2}{a}} \sin(n_x \frac{\pi}{a} x) \sqrt{\frac{2}{b}} \sin(n_y \frac{\pi}{b} y) \sqrt{\frac{2}{c}} \sin(n_z \frac{\pi}{c} z)$$

 Φ is a product of stationary states of a one dimensional wave functions.

These are orthogonal for different quantum numbers. Two three dimensional wave functions Φ are therefore orthogonal when one of their three quantum numbers differ. $\int_{0}^{a} f_{n_{x}}^{*}(x) f_{m_{x}}(x) dx = \delta_{n_{x}m_{x}}$

$$\iint_{0}^{z} \iint_{0}^{z} \Phi_{n_{x}n_{y}n_{z}}(\vec{x}) \Phi_{m_{x}m_{y}m_{z}}(\vec{x}) dxdydz = \delta_{n_{x}m_{x}} \delta_{n_{y}m_{y}} \delta_{n_{z}m_{z}}$$

3D Schrödinger equation:
$$-\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \Phi + V(\vec{x}) \Phi = E \Phi$$

$$d\vec{x}\cdot\vec{\nabla}\Phi = (dr\vec{e}_r + rd\vartheta\vec{e}_\vartheta + r\sin\vartheta d\varphi\vec{e}_\varphi)\cdot\vec{\nabla}\Phi = dr\frac{\partial}{\partial r}\Phi + d\vartheta\frac{\partial}{\partial\vartheta}\Phi + d\varphi\frac{\partial}{\partial\varphi}\Phi$$

$$\frac{\partial}{\partial k}\vec{e}_{k} \perp \vec{e}_{k} , \frac{\partial}{\partial \vartheta}\vec{e}_{r} = \vec{e}_{\vartheta} , \frac{\partial}{\partial \vartheta}\vec{e}_{\vartheta} = -\vec{e}_{r} , \frac{\partial}{\partial \varphi}\vec{e}_{r} = \sin\vartheta \vec{e}_{\varphi} , \frac{\partial}{\partial \varphi}\vec{e}_{\vartheta} = \cos\vartheta \vec{e}_{\varphi}$$

$$\vec{\nabla}\Phi = \vec{e}_r \frac{\partial}{\partial r} \Phi + \vec{e}_{\vartheta} \frac{1}{r} \frac{\partial}{\partial \vartheta} \Phi + \vec{e}_{\varphi} \frac{1}{r \sin \vartheta} \frac{\partial}{\partial \varphi} \Phi$$

all other $\frac{\partial}{\partial k}\vec{e}_i = 0$

$$|\vec{\nabla}^2 \Phi(r, \vartheta, \varphi)| = \frac{1}{r} \frac{\partial^2}{\partial r^2} (r \Phi) + \frac{1}{r^2 \sin \vartheta} \frac{\partial}{\partial \vartheta} (\sin \vartheta \frac{\partial}{\partial \vartheta} \Phi) + \frac{1}{\sin^2 \vartheta r^2} \frac{\partial^2}{\partial \varphi^2} \Phi$$

Search for only those wave functions for a spherically symmetric potential that are spherically symmetric. The other wave functions will be found later.

$$-\frac{\hbar^2}{2m}\frac{1}{r}\frac{\partial^2}{\partial r^2}[r\Phi(r)]+V(r)\Phi(r)=E\Phi(r)$$

$$u(r) = r \Phi(r)$$

$$\frac{\partial^2}{\partial r^2} u(r) = \frac{2m}{\hbar^2} [V(r) - E] u(r)$$
 Like a 1D Schrödinger equation

Georg.Hoffstaetter@Cornell.edu