

Advanced Accelerator Physics

Content

- 1. A History of Particle Accelerators
- 2. E & M in Particle Accelerators
- 3. Linear Beam Optics in Straight Systems
- 4. Linear Beam Optics in Circular Systems
- 5. Nonlinear Beam Optics in Straight Systems
- 6. Nonlinear Beam Optics in Circular Systems
- 7. Injection and Extraction
- 8. Accelerator Measurements
- 9. RF Systems for Particle Acceleration
- 10. Luminosity

CHESS & LEPP

Required:

Particle Accelerator Physics I, Helmut Wiedemann, Springer, 2nd edition, 1999, ISBN 3 540 64671 x

Optional:

The Physics of Particle Accelerators, Klaus Wille, Oxford University Press, 2000, ISBN: 19 850549 3

Related material:

Handbook of Accelerator Physics and Engineering, Alexander Wu Chao and Maury Tigner, 2nd edition, 2002, World Scientific, ISBN: 981 02 3858 4

Particle Accelerator Physics II, Helmut Wiedemann, Springer, 2nd edition, 1999, ISBN 3 540 64504 7

<u>Accelerator Physics</u> has applications in particle accelerators for high energy physics or for x-ray science, in spectrometers, in electron microscopes, and in lithographic devices. These instruments have become so complex that an empirical approach to properties of the particle beams is by no means sufficient and a detailed theoretical understanding is necessary. This course will introduce into theoretical aspects of charged particle beams and into the technology used for their acceleration.

- Physics of beams
- Physics of non-neutral plasmas
- Physics of involved in the technology:
 - Superconductivity in magnets and radiofrequency (RF) devices
 - Surface physics in particle sources, vacuum technology, RF devices
 - Material science in collimators, beam dumps, superconducting materials

A short history of accelerators

- 1862: Maxwell theory of electromagnetism
- 1887: Hertz discovery of the electromagnetic wave
- 1886: Goldstein discovers positively charged rays (ion beams)
- 1894: Lenard extracts cathode rays (with a 2.65um AI Lenard window)
- 1897: JJ Thomson shows that cathode rays are particles since they followed the classical Lorentz force $m\vec{a} = e(\vec{E} + \vec{v} \times \vec{B})$ in an electromagnetic field
- 1926: GP Thomson shows that the electron is a wave (1929-1930 in Cornell, NP in 1937)

CHESS

Georg.Hoffstaettter@Cornell.edu **USPAS Advanced Accelerator Physics** 12-23 June 2006

• 1911: Rutherford discovers the nucleus with 7.7MeV ⁴He from ²¹⁴Po alpha decay measuring the elastic crossection of ¹⁹⁷Au + ⁴He \mapsto ¹⁹⁷Au + ⁴He.

$$E = \frac{Z_1 e Z_2 e}{4\pi\varepsilon_0 d} = Z_1 Z_2 m_e c^2 \frac{r_e}{d},$$

$$r_e = 2.8 \text{fm}, \quad m_e c^2 = 0.511 \text{MeV}$$

d = smalles approach for back scattering

- 1919: Rutherford produces first nuclear reactions with natural ⁴He $^{14}N + {}^{4}He \mapsto {}^{17}O + p$
- 1921: Greinacher invents the cascade generator for several 100 keV
- Rutherford is convinced that several 10 MeV are in general needed for nuclear reactions. He therefore gave up the thought of accelerating particles.

Tunneling allows low energies

1928: Explanation of alpha decay by Gamov as tunneling showed that several 100keV protons might suffice for nuclear reactions

Schroedinger equation:

$$\frac{\partial^2}{\partial r^2}u(r) = \frac{2m}{\hbar^2} [V(r) - E]u(r), \quad T = \left|\frac{u(L)}{u(0)}\right|^2$$

The transmission probability T for an alpha particle traveling from the inside towards the potential well that keeps the nucleus together determines the lifetime for alpha decay.

Three historic lines of accelerators

Direct Voltage Accelerators

The energy limit is given by the maximum possible voltage. At the limiting voltage, electrons and ions are accelerated to such large energies that they hit the surface and produce new ions. An avalanche of charge carries causes a large current and therefore a breakdown of the voltage.

Georg.Hoffstaettter@Cornell.edu USPAS

USPAS Advanced Accelerator Physics 12-23 June 2006

The Marx Generator

1932: Marx Generator achieves 6MV at General Electrics

After capacitors of around 2uF are filled to about 20kV, the spark gaps or switches close as fast as 40ns, allowing up to 500kA.

Today:

The Z-machine (Physics Today July 2003) for z-pinch initial confinement fusion has 40TW for 100ns from 36 Marx generators

Georg.Hoffstaettter@Cornell.edu USPAS Advanced Accelerator Physics 12-23 June 2006

First Medical Applications

1939: Lawrence uses 60' cyclotron for 9MeV protons, 19MeV deuterons, and 35MeV 4He. First tests of tumor therapy with neutrons via d + t \mapsto n + α With 200-800keV d to get 10MeV neutrons.

The microtron

Electrons are quickly relativistic and cannot be accelerated in a cyclotron.
In a microtron the revolution frequency changes, but each electron misses an integer number of RF waves.

•Nuclear physics: MAMI designed for 820MeV as race track microtron.

Georg.Hoffstaettter@Cornell.edu

Accelerating cavities

1933: J.W. Beams uses resonant cavities for acceleration

Phase focusing

 1945: Veksler (UDSSR) and McMillan (USA) realize the importance of phase focusing

Phase focusing is required in any RF accelerator.

The RF quadrupole (RFQ)

1970: Kapchinskii and Teplyakov invent the RFQ

TIME: $\triangle T_1, \triangle T_5, \ldots$

 t_0, t_2, t_4, \dots

INJECTED BEAM ACCELERATE

Georg.Hoffstaettter@Cornell.edu

USPAS Advanced Accelerator Physics 12-23 June 2006

The Betatron Condition

Condition:
$$R = \frac{-p_{\varphi}(t)}{qB_{z}(R,t)} = \text{const.}$$
 given $\oint_{\partial A} \vec{E} \cdot d\vec{s} = -\iint_{A} \frac{d}{dt} \vec{B} \cdot d\vec{a}$
 $E_{\varphi}(R,t) = -\frac{1}{2\pi R} \int \frac{d}{dt} B_{z}(r,t) r dr d\varphi = -\frac{R}{2} \left\langle \frac{d}{dt} B_{z} \right\rangle$
 $\frac{d}{dt} p_{\varphi}(t) = qE_{\varphi}(R,t) = -q \frac{R}{2} \left\langle \frac{d}{dt} B_{z} \right\rangle$
 $p_{\varphi}(t) = p_{\varphi}(0) - q \frac{R}{2} [\left\langle B_{z} \right\rangle(t) - \left\langle B_{z} \right\rangle(0)] = -RqB_{z}(R,t)$
 $B_{z}(R,t) - B_{z}(R,0) = \frac{1}{2} [\left\langle B_{z} \right\rangle(t) - \left\langle B_{z} \right\rangle(0)]$

Small deviations from this condition lead to transverse beam oscillations called betatron oscillations in all accelerators.

Today: Betatrons with typically about 20MeV for medical applications

The Synchrotron

- 1945: Veksler (UDSSR) and McMillan (USA) invent the synchrotron
- 1946: Goward and Barnes build the first synchrotron (using a betatron magnet)
- 1949: Wilson et al. at Cornell are first to store beam in a synchrotron (later 300MeV, magnet of 80 Tons)
- 1949: McMillan builds a 320MeV electron synchrotron
- Many smaller magnets instead of one large magnet
- Only one acceleration section is needed, with

$$R = \frac{p(t)}{qB(R,t)} = \text{const.}$$
$$\omega = 2\pi \frac{v_{\text{particle}}}{n}$$

for an integer n called the harmonic number

Rober R Wilson, Architecture

Wilson Hall, FNAL

Science Ed Center, FNAL (1990)

Robert R Wilson USA 1914-2000

Georg.Hoffstaettter@Cornell.edu USPAS Advanced Accelerator Physics 12-23 June 2006

Rober R Wilson, Cornell & FNAL

Georg.Hoffstaettter@Cornell.edu USPAS A

USPAS Advanced Accelerator Physics 12-23 June 2006

Strong focusing Synchrotrons

- 1952: Courant, Livingston, Snyder publish about strong focusing
- 1954: Wilson et al. build first synchrotron with strong focusing for 1.1MeV electrons at Cornell, 4cm beam pipe height, only 16 Tons of magnets.
- 1959: CERN builds the PS for 28GeV after proposing a 5GeV weak focusing accelerator for the same cost (still in use)

Transverse fields defocus in one plane if they focus in the other plane. But two successive elements, one focusing the other defocusing, can focus in both planes:

Colliding Beam Accelerators

- 1961: First storage ring for electrons and positrons (AdA) in Frascati for 250MeV
- 1972: SPEAR electron positron collider at 4GeV. Discovery of the J/Psi at 3.097GeV by Richter (SPEAR) and Ting (AGS) starts the November revolution and was essential for the quarkmodel and chromodynamics.
- 1979: 5GeV electron positron collider CESR (designed for 8GeV)

Advantage:

More center of mass energy

Drawback:

Less dense target

The beams therefore must be stored for a long time.

Storage Rings

To avoid the loss of collision time during filling of a synchrotron, the beams in colliders must be stored for many milions of turns.

Chalenges:

•Required vacuum of pressure below 10^{-7} Pa = 10^{-9} mbar, 3 orders of magnitude below that of other accelerators.

• Fields must be stable for a long time, often for hours.

• Field errors must be small, since their effect can add up over millions of turns.

• Even though a storage ring does not accelerate, it needs acceleration sections for phase focusing and to compensate energy loss due to the emission of radiation.

Further Development of Colliders

- 1981: Rubbia and van der Meer use stochastic cooling of antiportons and discover W+,W- and Z vector bosons of the weak interaction
- 1987: Start of the superconducting TEVATRON at FNAL
- 1989: Start of the 27km long LEP electron positron collider
- 1990: Start of the first asymmetric collider, electron (27.5GeV) proton (920GeV) in HERA at DESY
- 1998: Start of asymmetric two ring electron positron colliders KEK-B / PEP-II
- Today: 27km, 7 TeV proton collider LHC being build at CERN

Special Relativity

 $E = mc^2$

Albert Einstein, 1879-1955 Nobel Prize, 1921 Time Magazine Man of the Century

Four-Vectors:

Quantities that transform according to the Lorentz transformation when viewed from a different inertial frame.

Examples:

$$X^{\mu} \in \{ct, x, y, z\}$$

$$P^{\mu} \in \{\frac{1}{c}E, p_{x}, p_{y}, p_{z}\}$$

$$\Phi^{\mu} \in \{\frac{1}{c}\phi, A_{x}, A_{y}, A_{z}\}$$

$$J^{\mu} \in \{c\rho, j_{x}, j_{y}, j_{z}\}$$

$$K^{\mu} \in \{\frac{1}{c}\omega, k_{x}, k_{y}, k_{z}\}$$

$$X^{\mu} \in \{ct, x, y, z\} \implies X^{\mu} X_{\mu} = (ct)^{2} - \vec{x}^{2} = \text{const.}$$
$$P^{\mu} \in \{\frac{1}{c} E, p_{x}, p_{y}, p_{z}\} \implies P^{\mu} P_{\mu} = \left(\frac{E}{c}\right)^{2} - \vec{p}^{2} = (m_{0}c)^{2} = \text{const.}$$

38 Available Energy

$$\frac{1}{c^2} E_{cm}^2 = (P_1^{\mu} + P_2^{\mu})_{cm} (P_{1\mu} + P_{2\mu})_{cm}$$

$$= (P_1^{\mu} + P_2^{\mu})(P_{1\mu} + P_{2\mu})$$

$$= \frac{1}{c^2}(E_1 + E_2)^2 - (p_{z1} - p_{z2})^2$$

$$= 2(\frac{E_1E_2}{c^2} + p_{z1}p_{z2}) + (m_{01}c)^2 + (m_{02}c)^2$$
Operation of synchrotrons: fixed target experiments
where some energy is in the motion of the center off
mass of the scattering products

$$E_1 >> m_{01}c^2, m_{02}c^2; p_{z2} = 0; E_2 = m_{02}c^2 \implies E_{cm} = \sqrt{2E_1m_{02}c^2}$$
Operation of colliders:
the detector is in the center of mass system

$$E_1 >> m_{01}c^2; E_2 >> m_{02}c^2 \implies E_{cm} = 2\sqrt{E_1E_2}$$

1954: Operation of Bevatron, first proton synchrotron for 6.2GeV, production of the antiporton by Chamberlain and Segrè

$$p + p \mapsto p + p + p + \overline{p}$$

$$\frac{1}{c^2}E_{\rm cm}^2 = 2(\frac{E_1E_2}{c^2} + p_{z1}p_{z2}) + (m_{01}c)^2 + (m_{02}c)^2$$

$$(4m_{p0}c)^{2} < \frac{1}{c^{2}}E_{cm}^{2} = 2\frac{E_{1}m_{p0}}{c^{2}} + (m_{p0}c)^{2} + (m_{p0}c)^{2}$$

$$7m_{p0}c^2 < E_1$$

$$K_1 = E_1 - m_0 c^2 > 6m_{p0} c^2 = 5.628 \text{ GeV}$$

NP 1959

USA 1920 - 2006

NP 1959 Emilio Gino Segrè Italy 1905 - USA 1989

> Georg.Hoffstaettter@Cornell.edu **USPAS Advanced Accelerator Physics** 12-23 June 2006

Rings for Synchrotron Radiation

- 1947: First detection of synchrotron light at General Electrics.
- 1952: First accurate measurement of synchrotron radiation power by Dale Corson with the Cornell 300MeV synchrotron.
- 1968: TANTALOS, first dedicated storage ring for synchrotron radiation

Dale Corson Cornell's 8th president USA 1914 –

3 Generations of Light Sources

- 1st Genergation (1970s): Many HEP rings are parasitically used for X-ray production
- 2nd Generation (1980s): Many dedicated X-ray sources (light sources)
- 3rd Generation (1990s): Several rings with dedicated radiation devices (wigglers and undulators)
- Today (4th Generation): Construction of Free Electron Lasers (FELs) driven by LINACs

Accelerators of the World

Sorted by Location

Europe

100P	Association Operation on Operation of Netherlands
AGUR	Accelerateur Groningen-ORsay, KVI Groningen, Netherlands
ANKA	Angstromquelle Karlsruhe, Karlsruhe, Germany (Forschungsgruppe Synchrotronstrahlung (FGS))
ASTRID	Aarhus Storage Ring in Denmark, ISA, Aarhus, Denmark
BESSY	Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung, Germany (BESSY I status, BESSY II status)
BINP	Budker Institute for Nuclear Physics, Novosibirsk, Russian Federation (VEPP-2M collider, VEPP-4M collider (status))
CERN	Centre Europeen de Recherche Nucleaire, Geneva, Suisse (LEP & SPS Status, LHC, CLIC, PS-Division, SL-Division)
COSY	Cooler Synchrotron, IKP, FZ Jülich, Germany (COSY Status)
CYCLONE	Cyclotron of Louvain la Neuve, Louvain-la-Neuve, Belgium
DELTA	Dortmund Electron Test Accelerator, U of Dortmund, Germany (DELTA Status)
DESY	Deutsches Elektronen Synchrotron, Hamburg, Germany (HERA, PETRA and DORIS status, TESLA)
ELBE	ELectron source with high Brilliance and low Emittance, FZ Rossendorf, Germany
ELETTRA	Trieste, Italy (ELETTRA status)
ELSA	Electron Stretcher Accelerator, Bonn University, Germany (ELSA status)
ESRF	European Synchrotron Radiation Facility, Grenoble, France (ESRF status)
GANIL	Grand Accélérateur National d'Ions Lourds, Caen, France
GSI	Gesellschaft für Schwerionenforschung, Darmstadt, Germany
IHEP	Institute for High Energy Physics, Protvino, Moscow region, Russian Federation
INFN	Istituto Nazionale di Fisica Nucleare, Italy, LNF - Laboratori Nazionali di Frascati (DAFNE, other accelerators), LNL - Laboratori Nazionali di Legnaro (Tandem, CN Van de Graaff, AN 2000 Van de Graaff), LNS - Laboratori Nazionali del Sud, Catania, (Superconducting Collider & Van de Graaff Tandem)
ISIS	Rutherford Appleton Laboratory, Oxford, U.K. (ISIS Status)
ISL	IonenStrahlLabor am HMI, Berlin, Germany
JINR	Joint Institute for Nuclear Research, Dubna, Russian Federation (U-200, U-400, U-400M, Storage Ring, LHE Synchrophasotron / Nuclotron)
JYFL	Jyväskylän Yliopiston Fysiikan Laitos, Jyväskylä, Finland
КТН	Kungl Tekniska Högskola (Royal Institute of Technology), Stockholm, Sweden (Alfén Lab electron accelerators)

Accelerators of the World

LMU/TUM	Accelerator of LMU and TU Muenchen, Munich, Germany
LURE	Laboratoire pour l'Utilisation du Rayonnement Electromagnétique, Orsay, France (DCI, Super-ACO status, CLIO)
MAMI	Mainzer Microtron, Mainz U, Germany
MAX-Lab	Lund University, Sweden
MSL	Manne Siegbahn Laboratory, Stockholm, Sweden (CRYRING)
NIKHEF	Nationaal Instituut voor Kernfysica en Hoge-Energie Fysica, Amsterdam, Netherlands (AmPS closed)
PSI	Paul Scherrer Institut, Villigen, Switzerland (PSI status, SLS under construction)
S-DALINAC	Darmstadt University of Technology, Germany (S-DALINAC status)
SRS	Synchrotron Radiation Source, Daresbury Laboratory, Daresbury, U.K. (SRS Status)

- TSL The Svedberg Laboratory, Uppsala University, Sweden (CELSIUS)
- TSR Heavy-Ion Test Storage Ring, Heidelberg, Germany

North America

88" Cycl.	88-Inch Cyclotron, Lawrence Berkeley Laboratory (LBL), Berkeley, CA	
ALS	Advanced Light Source, Lawrence Berkeley Laboratory (LBL), Berkeley, CA (ALS Status)	
ANL	Argonne National Laboratory, Chicago, IL (Advanced Photon Source APS [status], Intense Pulsed Neutron Source IPNS [status], Argonne Tandem Linac Accelerator System ATLAS)	
BNL	Brookhaven National Laboratory, Upton, NY (AGS, ATF, NSLS, RHIC)	
CAMD	Center for Advanced Microstructures and Devices	
CHESS	Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY	
CLS	Canadian Light Source, U of Saskatchewan, Saskatoon, Canada	
CESR	Cornell Electron-positron Storage Ring, Cornell University, Ithaca, NY (CESR Status)	
FNAL	Fermi National Accelerator Laboratory , Batavia, IL (Tevatron)	
IAC	Idaho accelerator center, Pocatello, Idaho	
IUCF	Indiana University Cyclotron Facility, Bloomington, Indiana	
JLab	aka TJNAF, Thomas Jefferson National Accelerator Facility (formerly known as CEBAF), Newport News, VA	
LAC	Louisiana Accelerator Center, U of Louisiana at Lafayette, Louisiana	
LANL	Los Alamos National Laboratory	
MIT-Bates	Bates Linear Accelerator Center, Massachusetts Institute of Technology (MIT)	
NSCL	National Superconducting Cyclotron Laboratory, Michigan State University	
ORNL	Oak Ridge National Laboratory (EN Tandem Accelerator), Oak Ridge, Tennessee	
SBSL	Stony Brook Superconducting Linac, State University of New York (SUNY)	
SLAC	Stanford Linear Accelerator Center (Linac, NLC - Next Linear Collider, PEP - Positron Electron Project (finished), PEP-II - asymmetric B Factory (in commissioning), SLC - SLAC Linear electron positron Collider, SPEAR - Stanford Positron Electron Asymmetric Ring (actually SPEAR-II, see SSRL), SSRL - Stanford Synchrotron Radiation Laboratory)	
SNS	Spallation Neutron Source, Oak Ridge, Tennessee	
SRC	Synchrotron Radiation Center, U of Wisconsin - Madison (Aladdin Status)	

- SURF II Synchrotron Ultraviolet Radiation Facility, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland
- TASCC Tandem Accelerator Superconducting Cyclotron (Canada) (closed!)
- TRIUME TRI-University Meson Facility / National Meson Research Facility, Vancouver, BC (Canada)

South America

- LNLS Laboratorio Nacional de Luz Sincrotron, Campinas SP, Brazil
- TANDAR Tandem Accelerator, Buenos Aires, Argentina

Asia

- BEPC Beijing Electron-Positron Collider, Beijing, China
- KEK National Laboratory for High Energy Physics ("Koh-Ene-Ken"), Tsukuba, Japan (KEK-B, PF, JLC)
- NSC Nuclear Science Centre, New Delhi, India (15 UD Pelletron Accelerator)
- PLS Pohang Light Source, Pohang, Korea
- RIKEN Institute of Physical and Chemical Research ("Rikagaku Kenkyusho"), Hirosawa, Wako, Japan
 - SESAME Synchrotron-light for Experimental Science and Applications in the Middle East, Jordan (under construction)
- SPring-8 Super Photon ring 8 GeV, Japan
- SRRC Synchrotron Radiation Research Center, Hsinchu, Taiwan (SRRC Status)
- UVSOR Ultraviolet Synchrotron Orbital Radiation Facility, Japan
- VECC Variable Energy Cyclotron, Calcutta, India

Africa

NAC National Accelerator Centre, Cape Town, South Africa

Sorted by Accelerator Type

Electrons

Stretcher Ring/Continuous Beam facilities

ELSA (Bonn U), JLab, MAMI (Mainz U), MAX-Lab, MIT-Bates, PSR (SAL), S-DALINAC (TH Darmstadt), SLAC

Georg.Hoffstaettter@Cornell.edu

USPAS Advanced Accelerator Physics 12-23 June 2006

Accelerators of the World

Synchrotron Light Sources

ANKA (FZK), ALS (LBL), APS (ANL), ASTRID (ISA), BESSY, CAMD (LSU), CHESS (Cornell Wilson Lab), CLS (U of Saskatchewan), DELTA (U of Dortmund), ELBE (FZ Rossendorf), Elettra, ELSA (Bonn U), ESRF, HASYLAB (DESY), LURE, MAX-Lab, LNLS, NSLS (BNL), PF (KEK), UVSOR (IMS), PLS, S-DALINAC (TH Darmstadt), SESAME, SLS (PSI), SPEAR (SSRL, SLAC), SPring-8, SRC (U of Wisconsin), SRRC, SRS (Daresbury), SURF II (NIST)

Other

Alfén Lab (KTH), IAC

Protons

88" Cyclotron (LBL), CELSIUS (TSL), COSY (FZ Jülich), IPNS (ANL), ISL (HMI), ISIS, IUCF, LHC (CERN), NAC, PS (CERN), PSI, SPS (CERN)

Light and Heavy lons

88" Cyclotron (LBL), AGOR, ASTRID (ISA), ATLAS (ANL), CELSIUS (TSL), CRYRING (MSL), CYCLONE, EN Tandem (ORNL), GANIL, GSI, ISL (HMI), IUCF, JYFL, LAC, LHC (CERN), LHE Synchrophasotron / Nuclotron (JINR), LMU/TUM, LNL (INFN), LNS (INFN), NAC, NSC, PSI, RHIC (BNL), SBSL, SNS, SPS (CERN), TANDAR, TSR, U-2007 U-4007 U-400M / Storage Ring (JINR), VECC

Collider

BEPC, CESR, DAFNE (LNF), HERA (DESY), LEP (CERN), LHC (CERN), PEP / PEP-II (SLAC), SLC (SLAC), KEK-B (KEK), TESLA (DESY), Tevatron (FNAL), VEPP-2M, VEPP-4M (BINP)

