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The time dependence of a particle’s motion is 
often not as interesting as the trajectory 
along the accelerator length “s”.

The comoving Coordinate System
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3 dimensional ODE of 2nd order can be changed to a
6 dimensional ODE of 1st order: 
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If the force does not depend on time, as in a typical beam line magnet, the 
energy is conserved so that one can reduce the dimension to 5. The 
equation of motion is then autonomous.

Furthermore, the time dependence is often not as interesting as the 
trajectory along the accelerator length “s”.  Using “s” as the 
independent variable reduces the dimensions to 4.  The equation of 
motion is then no longer autonomous.
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The 4D Equation of Motion



Georg.Hoffstaetter@Cornell.edu USPAS Advanced Accelerator Physics        12-23 June 2006

CHESS & LEPPCHESS & LEPP

81

Usually one prefers to compute the trajectory as a function of “s” along the 
accelerator even when the energy is not conserved, as when 
accelerating cavities are in the accelerator.

Then the energy “E” and the time “t” at which a particle arrives at the cavities 
are important.  And the equations become 6 dimensional again:
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But:                     is an especially suitable variable, since it is a phase space 
vector so that its equation of motion comes from a Hamiltonian, or by 
variation principle from a Lagrangian.
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The new canonical coordinates are:

The new Hamiltonian is:
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The 6D Equation of Motion
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The equations of motion can be determined by one function:
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The force has a Hamiltonian Jacobi Matrix:
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A linear force: zsFszF GGG ⋅= )(),(

The Jacobi Matrix of a linear force: )(sF

The general Jacobi Matrix : izij FF
j
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Hamiltonian Matrices: 0=+ TFJJF
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Prove :

Significance of Hamiltonian



Georg.Hoffstaetter@Cornell.edu USPAS Advanced Accelerator Physics        12-23 June 2006

CHESS & LEPPCHESS & LEPP

83

),()( 0zsMsz GGG
=

The flow of a Hamiltonian equation of motion has a symplectic Jacobi Matrix

The flow or transport map:

A linear flow: 0)()( zsMsz GG
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The Jacobi Matrix of a linear flow: )(sM
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The Symplectic Group SP(2N) : JMJM T =
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K = J is a solution.  Since this is a linear ODE ,  K = J is the unique solution. 

H i Symplectic Flows
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For every symplectic transport map there is a Hamilton function

The flow or transport map:

Force vector: [ ] ),(0 1
0
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There is a Hamilton function H with: Hh ∂=
GG
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Symplectic Flows i H
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A phase space volume does not change when it is transported by 
Hamiltonian motion.

Phase space trajectories move on surfaces of constant energy
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Phase space density in 2D
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A phase space volume does not change when it is transported by 
Hamiltonian motion. 1)](det[with)()( 0 +=⋅= sMzsMsz GG
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0VV =Hamiltonian Motion

But Hamiltonian requires symplecticity, which is 
much more than just 1)](det[ +=sM

Lioville’s Theorem


