Exercises for the final Exam, Physics 330, Modern Experimental Optics

Schedule: Thursday 12/06/2007, optics lab 405 Clark Hall, 9:00-11:30.

Question 1: 1P

The optical density has been measured from a reflection coefficient		
$R = (\frac{n-1}{n+1})^2$ by 4 different people using 4 different setups, and the	R(%)	$\sigma_R(\%)$
following values of R were obtained with the indicated estimated error	4	± 0.1
σ_R . Perform an error analysis and determine the resulting value for n	9	± 0.1
and the error estimate for σ_n for each experiment. To obtain the final	4	± 0.1
result for n and its error estimate, weigh each measurement according	1	± 0.1
to its error. Writing formulas is sufficient here, you do not have to		
perform the numerical calculation.		

Question 2: 1P

A thin wedge of glass is placed in one of the arms of a Michelson interferometer in which plane waves propagate. Find an expression for the index of refraction n of the glass wedge using the number of fringes per meter N and the angle of the wedge ϕ .

Question 3: 1P

A laser beam in vacuum with irradiance of $I = 5 \text{mW}/(\text{mm})^2$ is incident onto a mirror. What is the radiation pressure, i.e. the force per unit area on this mirror.

Question 4: 1P

Describe why an observer on the earth observes light from the sun that is scattered in the atmosphere as polarized. Make a sketch showing in which direction it is polarized.

Question 5: 1P

If a plane wave with wavelength λ in a medium of optical density n_1 is incident with the angle ϕ on the surface of a medium with optical density n_2 , under what condition can an evanescent wave be produced? At what distance from the surface will its intensity have diminished to 1/e of its initial intensity?

Question 6: 1P

Underline all correct statements:

• All focusing lenses are convex. All focusing lenses are concave. Focusing lenses can be concave.

 \circ An arrangement of focusing and defocusing lenses that focuses light coming from the right cannot defocus light coming from the left.

 \circ A vertically positioned cylindrical glass rod in air focuses in the horizontal and neither focuses nor defocuses in the vertical direction. Two cylindrical glass rods can be arranged to focus a beam of light simultaneously in the horizontal and in the vertical dimension, transverse to its direction of propagation.

 \circ A 4-f arrangement of lenses magnifies by a factor of 4. A 4-f arrangement of lenses magnifies by a factor of 1/4. A 4-f arrangement of lenses does not magnify. A 4-f arrangement of lenses consists of 4 lenses.

 \circ An object that is located in front of a focusing lens can produce a virtual image that is also in front of the lens. An object that is located in front of a focusing lens can produce a virtual image that is behind the lens. An object that is located in front of a focusing lens always produce a real image that is behind the lens.

Question 7: 1P

Draw the shape of a glass capillary for x-rays which focuses light from a point source to an image point. Can you describe this shape with an equation? (A capillary is a narrow, empty tube of glass.)

Question 8: 1P

A laser beam has a minimum beam waist of $D_0 = 2$ mm and a divergence of $\theta = 10$ mrad. Its beam size changes according to $D(s) = \sqrt{D_0^2 [1 + (\theta \frac{s-s_0}{D_0})^2]}$. If the beam is expanded so it has a waist of 20mm, what divergence would this beam have?

Derive the phase-space transport matrix of a Galilean beam expander and of a Keplerian beam expander.

Describe a setup to measure the astigmatism of a lens. The astigmatism coefficient A is given by the following relation between the initial trajectory in the horizontal and vertical $(x_i \text{ and } y_i)$, and the angles $\Delta x'$ and $\Delta y'$ produced by the lens,

$$\Delta x' + i\Delta y' = -\frac{1}{f}(x_i + iy_i) + A(x_i - iy_i) \tag{1}$$

where f is the focal length of the lens. How far apart are the two focal lines behind this lens when a parallel beam of light is incident.