Multipoles in Accelerators v=0: Solenoids
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Solenoid vs. Strong Focusing

If the solenoids field was perpendicular to the particle’s motion,

its bending radius would be P, = ——
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Solenoid focusing is weak compared to the deflections created by a transverse
magnetic field.
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Solenoid Focusing

Solenoid magnets are used in detectors for particle identification via p = _B
q

— of the beam is often compensated by

. 2my
a reversed solenoid called compensator.

The solenoid’s rotation (0 =—

Solenoid or Weak Focusing:
Solenoids are also used to focus low ybeams: w =

Weak focusing from natural ring focusing:

Ar=r—R
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Linearizationin A: Ar =(cos@Ax, +sin @ Ay,)
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(&) v=1: Dipoles
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Dipole magnets are used for steering the beams direction

d—p:qﬁxé = d—p:quL = p= di _ _vdt___p
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Bending radius: 0 =——
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Different Dipoles

C-shape magnet: H-shape magnet: Window frame magnet:
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a Dipole strength:
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B =2 T: Typical limit, since the field becomes
dominated by the coils, not the iron.
Limiting j for Cu is about 100A/mm?

B < 1.5 T: Typically used region
nl
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B <1 T: Region in which B, = u,—
a

useful field region
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Shims reduce the space that is open

useful field region
g to the beam, but they also
I ‘/\ =  reduce the fringe field region.
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Multipoles in Accelerators v=2: Quadrupoles %,

=%, Im{(x—iy)’}=-¥, 2xy = B=-Vy=VY, 2(y]
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In a quadrupole particles are focused in one plane and defocused in the
other plane. Other modes of strong focusing are not possible.
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Quadrupole Fields
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Quadrupole strength:
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Real Quadrupoles

lose-up ofithe water,
wro.
/7

upright quadrupole not
or skew quadrupole.
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The coils show that this is an
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