 Orbit distortions

\[x' = a \]
\[a' = - (K^2 + k)x + \Delta f \]

The extra force can for example come from an erroneous dipole field or from a correction coil:
\[\Delta f = \frac{q}{p} \Delta B_y = \Delta \kappa \]

Variation of constants:
\[\Delta \tilde{z} = M\tilde{z}_0 + \Delta \tilde{z} \quad \text{with} \quad \Delta \tilde{z} = \int_0^s M (s - \hat{s}) \begin{pmatrix} 0 \\ \Delta \kappa(\hat{s}) \end{pmatrix} d\hat{s} \]

\[\Delta \tilde{z} = \int_0^L \begin{pmatrix} -\sqrt{\beta} \hat{\beta} \sin \hat{\psi} \\ \sqrt{\beta} [\cos \hat{\psi} + \alpha \sin \hat{\psi}] \end{pmatrix} \Delta \kappa(\hat{s}) d\hat{s} \]

\[\Delta x(s) = \sum_k \Delta \vartheta_k \sqrt{\beta(s)} \beta_k \sin(\psi(s) - \psi_k) \]
When the closed orbit \(x_{co}^{\text{old}}(s_m) \) is measured at beam position monitors (BPMs, index m) and is influenced by corrector magnets (index k), then the monitor readings before and after changing the kick angles created in the correctors by \(\Delta \psi_k \) are related by

\[
x_{co}^{\text{new}}(s_m) = x_{co}^{\text{old}}(s_m) + \sum_k \Delta \psi_k \sqrt{\beta_m \beta_k} \sin(\psi_m - \psi_k)
\]

\[
x_{co}^{\text{new}} = x_{co}^{\text{old}} + \sum_k O_{mk} \Delta \psi_k
\]

\[
\vec{x}_{co}^{\text{new}} = \vec{x}_{co}^{\text{old}} + O \Delta \vec{\psi}
\]

\[
\Delta \vec{\psi} = -O^{-1} \vec{x}_{co}^{\text{old}} \Rightarrow \vec{x}_{co}^{\text{new}} = 0
\]

It is often better not to try to correct the closed orbit at the BPMs to zero in this way since

1. computation of the inverse can be numerically unstable, so that small errors in the old closed orbit measurement lead to a large error in the corrector coil settings.

2. A zero orbit at all BPMs can be a bad orbit inbetween BPMs
Closed Orbit Bumps

\[x_k(s) = v_k \sqrt{\beta_k \beta(s)} \sin(\psi - \psi_k) \]

\[
x_1(s_{3+}) + x_2(s_{3+}) + x_3(s_{3+}) = 0
\]
\[
x_1'(s_{3+}) + x_2'(s_{3+}) + x_3'(s_{3+}) = 0
\]
\[
v_1 \sqrt{\beta_1} \sin(\psi_3 - \psi_1) + v_2 \sqrt{\beta_2} \sin(\psi_3 - \psi_2) = 0
\]
\[
v_1 \sqrt{\beta_1} \cos(\psi_3 - \psi_1) + v_2 \sqrt{\beta_2} \cos(\psi_3 - \psi_2) + v_3 \sqrt{\beta_3} = 0
\]
\[
v_1 \sqrt{\beta_1} \sin(\psi_2 - \psi_1) = v_3 \sqrt{\beta_3} \sin(\psi_3 - \psi_2)
\]
\[-v_2 \sqrt{\beta_2} \sin(\psi_2 - \psi_1) = v_3 \sqrt{\beta_3} \sin(\psi_3 - \psi_1)
\]

\[v_1 : v_2 : v_3 = \beta_1^{-\frac{1}{2}} \sin \psi_{32} : \beta_2^{-\frac{1}{2}} \sin \psi_{31} : \beta_3^{-\frac{1}{2}} \sin \psi_{21} \]