

RF in Accelerators

$$\vec{\nabla} \times \vec{E} = -\partial_t \vec{B}$$

$$\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = -\frac{1}{c^2} \partial_t^2 \vec{E} - \mu_0 \partial_t \vec{j}$$

$$\vec{\nabla} \times \vec{B} = \frac{1}{c^2} \partial_t \vec{E} + \mu_0 \vec{j} \vec{j} \vec{\nabla} \times (\vec{\nabla} \times \vec{B}) = -\frac{1}{c^2} \partial_t^2 \vec{B} - \mu_0 \vec{\nabla} \times \vec{j}$$

Wave equation for all components

$$\vec{\nabla}^2 \vec{E} = \frac{1}{c^2} \partial_t^2 \vec{E}$$
$$\vec{\nabla}^2 \vec{B} = \frac{1}{c^2} \partial_t^2 \vec{B}$$

$$\vec{\nabla} \times \vec{E} = -\partial_t \vec{B} \ \ \, \vec{\nabla}_{\perp} \times \vec{E}_{\perp} = -\partial_t \vec{B}_z$$

$$\vec{\nabla} \times \vec{B} = \frac{1}{c^2} \partial_t \vec{E} \ \ \, \vec{\nabla}_{\perp} \times \vec{B}_{\perp} = \frac{1}{c^2} \partial_t \vec{E}_z$$

$$\vec{\nabla} \cdot \vec{E} = 0 \quad \vec{\nabla}_{\perp} \cdot \vec{E}_{\perp} + \partial_{z} E_{z} = 0$$

$$\vec{\nabla} \cdot \vec{B} = 0 \quad \vec{\nabla}_{\perp} \cdot \vec{B}_{\perp} + \partial_{z} B_{z} = 0$$

Search for simple modes:

Transverse electric and magnetic (TEM) waves cannot exists, since:

$$E_z = 0$$
 and $B_z = 0 \implies \vec{E}_{\perp} = const$ and $\vec{B}_{\perp} = const$

TE and TM Modes

Fourier expansion of the z-dependence: $\vec{E}(x,y,z,t) = \int \vec{E}_{k,\omega}(x,y)e^{ik_zz-i\omega t}dk_zd\omega$

$$\vec{\nabla}^{2}\vec{E} = \frac{1}{c^{2}}\partial_{t}^{2}\vec{E} \\ \vec{\nabla}^{2}\vec{B} = \frac{1}{c^{2}}\partial_{t}^{2}\vec{B}$$
 \Rightarrow
$$\vec{\nabla}_{\perp}^{2}E_{z} = -\left[\left(\frac{\omega}{c}\right)^{2} - k_{z}^{2}\right]E_{z} \\ \vec{\nabla}_{\perp}^{2}B_{z} = -\left[\left(\frac{\omega}{c}\right)^{2} - k_{z}^{2}\right]B_{z}$$

Eigenvalue equation with boundary conditions:

Walls:

$$\vec{E}_{ll} = 0 \quad \vec{B}_r = 0$$

$$E_z = 0 \quad \partial_r B_z = 0$$

$$E_z = 0 \quad \partial_r B_z = 0$$

$$\vec{\nabla}_r \times \vec{B}_z + ik_z \vec{e}_z \times \vec{B}_r = -i\omega_{\frac{1}{c^2}} \vec{E}_{\varphi} \Rightarrow \partial_r B_z = 0$$
Solutions for E or B only exist for a discrete set of eigenvalues: $(\omega)^2 - k$

Solutions for E or B only exist for a discrete set of eigenvalues: $(\frac{\omega}{r})^2 - k_r^2 = k_n^{(E)^2}$

$$\left(\frac{\omega}{c}\right)^2 - k_z^2 = k_n^{(B)^2}$$

Due to different boundary conditions, E_z and B_z cannot simultaneously be nonzero.

TE modes have
$$E_z = 0$$

TM modes have
$$B_z = 0$$

Dispersion relation

$$\omega(k_z) = c\sqrt{A_n^2 + k_z^2}$$

Phase velocity
$$v_{ph} = \omega / k_z = c \sqrt{1 + \left(\frac{A_n}{k_z}\right)^2} > c$$

Group velocity
$$v_{gr} = d\omega/dk_z = c/\sqrt{1 + \left(\frac{A_n}{k_z}\right)^2} < c_{1.2}^{1.4}$$

For each excitation frequency ω one obtains a propagation in the wave guide of

$$e^{ik_z z}$$
, $k_z = \sqrt{\left(\frac{\omega}{c}\right)^2 - A_n^2}$

Transport for ω above the cutoff frequency $\omega > \omega_n = cA_n$ Damping for ω below the cutoff frequency $\omega < \omega_n = cA_n$

$$\omega > \omega_n = cA_n$$

$$\omega < \omega_n = cA_n$$